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Abstract This paper considers the problem of change point in single index models. In order to obtain asymp-

totically valid confidence intervals for the estimation of the change point, the convergence rate and asymptotic

distribution of the change point estimate is studied. Some simulation results are presented which show that the

numerical performance of our estimator is satisfactory.
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1 Introduction

The question of the instability of model parameters is a common phenomenon in the observational data

analysis for signal processing, quality control, fault detection, finance, security, and clinical medicine.

The statistical theory of change point was researched in many literatures (e.g., [5, 8, 9, 12, 13]). Model

parametric changes can be initiated by policy decisions or permanent changes in resources, population or

the society. Failure to take into account parameter changes can lead to huge forecasting errors and make

the model unreliable.

The purpose of this paper is to study the parametric change problem in a single index model with an

unknown change point. Cao et al. [6] studied the problem and obtained an asymptotic distribution of the

test statistic under the null hypothesis, which focused on test rather than estimation of a change point in

single index models. In this paper, we further research the asymptotic distribution of the estimation of a

change point under an alternative hypothesis, which can be applied to obtain the mean and variance of

the estimation of change point or to construct asymptotically valid confidence intervals for the estimator.

Most previous studies involved econometrics (e.g., [1–3, 16]).

The single index model is a classical semi-parametric model that is widely used in many fields such

as medicine, econometrics, and industry as a reasonable compromise between fully parametric and fully

nonparametric modeling. A single index model with a change point parameter has the form

yi =

{
g(XT

i β1) + εi, i = 1, 2, . . . , �nτ∗�,
g(XT

i β2) + εi, i = �nτ∗�+ 1, . . . , n,
(1.1)
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where yi, i = 1, 2, . . . are the response variables,Xi, i = 1, 2, . . . are independent and identically distributed

(i.i.d.) with a common density f(X), εi, i = 1, 2, . . . are i.i.d with mean 0, variance σ2 and E(εi|Xi) = 0,

β1 �= β2 are unknown index coefficient vectors of length p, g is a smooth unknown link function, and

τ∗ ∈ [δ, 1− δ] is an unknown change point where δ ∈ (0, 1/2) is a given constant. In order to ensure that

β1 and β2 are identifiable, we set ‖β1‖ = ‖β2‖ = 1 where ‖(x1, . . . , xp)T‖ = (
∑p

k=1 x
2
k)

1/2 and the first

non-zero component of β1 and β2 are larger than zero.

There are three estimation problems for the single index model with a change point: the estimations of

parameters β1 and β2, the estimation of the link function g, and the estimation of the change point τ∗. If
τ∗ is known, then there are direct and indirect methods to estimate the parameters β1, β2, and g for the

single index model. Indirect methods, such as [7] and [14], use an iterative algorithm to simultaneously

estimate parameters and the link function. Direct methods include the slice inverse regression [10] and

the average derivative estimation [11, 15].

For the case where τ∗ is unknown, Cao et al. [6] has proposed an estimator τ̂n based on the average

derivative estimations of the parameters β1 and β2. In this paper, the consistency of τ̂n is discussed. For

a consistent estimate τ̂n, it is well known that the larger the difference ρ = β1 − β2 or the sample size n

is, the more accurate the change point τ∗ is estimated by τ̂n. Theoretically, for a given small difference

ρ, if the sample size n is large enough, then the consistent estimate τ̂n can also accurately estimate τ∗.
But if ρ → 0 as n → ∞, then τ̂n might not accurately estimate τ∗, as stated in [1]. It is interesting and

important that we can find a rate of convergence of ρ → 0 such that the asymptotic distributions of τ̂n
can be obtained in this paper.

Here is the structure of the paper. The main theorems about the consistency and the limiting dis-

tribution of the estimator are presented in Section 2. Section 3 contains the simulation results. Some

conclusions and discussions are contained in Section 4. Proofs are presented in Appendix.

2 Main result

The density-weighted average derivative vectors are defined by Powell et al. [15] as

β∗
j = E

(
f(X)

∂g(XTβj)

∂X

)
= E

(
f(X)

∂g(XTβj)

∂XTβj

)
βj ≡ cjβj , j = 1, 2.

Because ‖βj‖ = 1, it is easy to see that βj = β∗
j /‖β∗

j ‖, j = 1, 2. We can use a U-statistic to estimate

β∗
j as shown in [15], which is a consistent estimator of β∗

j , j = 1, 2. The three assumptions of Powell et

al. [15] needed for the theoretical results are stated below:

A1. The support Ω of f is a convex (possibly unbounded) subset of Rp with a nonempty interior

Ω0. The density function f is continuous in the components of x for all x ∈ R
p, so that f(x) = 0 for

all x ∈ ∂Ω, where ∂Ω denotes the boundary of Ω. Furthermore, f is continuously differentiable in the

components of x for all x ∈ Ω0 and g is continuously differentiable in the components of x for all x ∈ Ω̄,

where Ω̄ differs from Ω0 by a set of measure zero. Let p = (k + 4)/2 if k is even and p = (k + 3)/2 if

k is odd. All partial derivatives of f(x) of order p+ 1 exist. The expectation E[y(∂qf(x)/∂xl1 · · · ∂xlq )]
exists for all q < p+ 1.

A2. The components of the random vector ∂g(XTβ)/∂X and random matrix ∂f(X)/∂X[y,XT] have

finite second moments. Additionally, ∂f(X)/∂X and ∂(g(XTβ)f(X))/∂X satisfy the following Lipschitz

conditions: for some m(X),∥∥∥∥∂f(X + V )

∂X
− ∂f(X)

∂X

∥∥∥∥ < m(X)‖V ‖,

max
t=1,2

∥∥∥∥∂f(X + V )g((X + V )Tβt)

∂X
− ∂f(X)g(XTβt)

∂X

∥∥∥∥ < m(X)‖V ‖

with E[(1 + |yi|+ ‖X‖)m(X)]2 <∞. Finally, v(X) = E(Y 2|X) is continuous in X .
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A3. The support ΩK of K(u) is a convex (possibly unbounded) subset of Rp with a nonempty interior

and the origin as an interior point. K(u) is a bounded differentiable function such that K(u) = 0 for all

u ∈ ∂ΩK , where ∂ΩK denotes the boundary of ΩK . K(u) is a symmetric function; K(u) = K(−u) for
all u ∈ ΩK . All moments of K(u) of order p exist. The kernel function K(·) obeys∫

K(u)du = 1,

∫
ul11 · · ·ulkk K(u)du = 0 for 0 < l1 + · · ·+ lk < p,

and ∫
vl11 · · · vlkk K(u)du �= 0, for l1 + · · ·+ lk = p.

Remark 2.1. Assumption A1 restricts X to be a continuously distributed random vector and results

in the smoothness conditions on f and g. Assumption A2 imposes the bounded moment conditions and

dominance conditions. Assumption A3 restricts K(·) to be symmetric and whose “moments” of order

p− 1 or less are zero.

As Lemma 2.1 of [15] shows, under these assumptions,

β∗
t = E

(
f(X)

∂g(XTβt)

∂X

)
=

∫
Ω

∂g(XTβt)

∂X
f(X)2dX

= −2

∫
Ω

g(XTβt)
∂f(X)

∂X
f(X)dX = −2Eg(XTβt)

∂f(X)

∂X
, t = 1, 2. (2.1)

Because E(yi|Xi) = g(XT
i β1) if i � �nτ∗� and E(yi|Xi) = g(XT

i β2) if i > �nτ∗�, there are product-

moment representations of the density-weighted average derivative:

β∗
1 = −2Eyi

∂f(Xi)

∂Xi
, i � �nτ∗� and β∗

2 = −2Eyi
∂f(Xi)

∂Xi
, i > �nτ∗�. (2.2)

The estimators of β∗
1 and β∗

2 are obtained using the U-statistic form, which is similar to that of Powell

et al. [15], β̂∗
1 = T1n(�nτ∗�) and β̂∗

2 = T2n(�nτ∗�), where

T1n(k) = − 2

k

k∑
i=1

[
1

k − 1

k∑
j=1,j �=i

1

hp+1
K ′

(
Xi −Xj

h

)]
yi =

(
k

2

)−1 ∑
1�i<j�k

ψi,j ,

T2n(k) =

(
n− k

2

)−1 ∑
k+1�i<j�n

ψi,j ,

with ψi,j = −( 1h)
p+1K ′(Xi−Xj

h )(yi − yj), and h = hn is a window width that depends on the sample size

n. From (3.13) of [15], we have

E‖ψi,j‖2 = O(h−(p+2)). (2.3)

If τ∗ is known, then the following results can be obtained from [15]. Define Zi = (Xi, yi), k
∗ = �nτ∗�,

g1(X) = g(XTβ1), g2(X) = g(XTβ2),

r1(Zi) = f(Xi)
∂g1(Xi)

∂Xi
− [yi − g1(Xi)]

∂f(Xi)

∂Xi
, r1n(Zi) = E(ψi,j |Zi), i �= j, i � k∗, j � k∗,

r2(Zj) = f(Xj)
∂g2(Xj)

∂X
− [yj − g2(Xj)]

∂f(Xj)

X
, r2n(Zj) = E(ψi,j |Zj), i �= j, i > k∗, j > k∗,

r∗1(Zi) = f(Xi)
∂g2(Xi)

∂X
− [yi − g2(Xi)]

∂f(Xi)

∂Xi
, r∗1n(Zi) = E(ψi,j |Zi), i � k∗, j > k∗,

r∗2(Zj) = f(Xj)
∂g1(Xj)

∂Xj
− [yj − g1(Xj)]

∂f(Xj)

∂Xj
, r∗2n(Zj) = E(ψi,j |Zj), i � k∗, j > k∗.

In view of (2.1) and (2.2), we can show that Er1(Zi) = β∗
1 , Er2(Zj) = β∗

2 and Er∗1(Zi) = Er∗2(Zj) =

(β∗
1 + β∗

2 )/2. Using (3.15) from [15] and Assumption A2, we have, as h→ 0,

r1(Zi)− r1n(Zi) = Op(h), r2(Zj)− r2n(Zj) = Op(h),
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r∗1(Zi)− r∗1n(Zi) = Op(h), r∗2(Zj)− r∗2n(Zj) = Op(h). (2.4)

Define

r̂1k(Zi) =
1

k − 1

k∑
j=1,j �=i

ψi,j , r̂2k(Zj) =
1

n− k − 1

n∑
i=k+1,i�=j

ψi,j ,

r̂∗1k(Zi) =
1

n− k

n∑
j=k+1

ψi,j , i � k , r̂∗2k(Zj) =
1

k

k∑
i=1

ψi,j , j > k,

Σβ∗
1
= 4E[r1(Zi)r1(Zi)

T]− 4β∗
1(β

∗
1 )

T , Σβ∗
2
= 4E[r2(Zj)r2(Zj)

T]− 4β∗
2(β

∗
2 )

T,

Σ̂β∗
1
= 4E[r̂1k∗(Zi)r̂1k∗ (Zi)

T]− 4β̂∗
1(β̂

∗
1 )

T and Σ̂β∗
2
= 4E[r̂2k∗(Zj)r̂2k∗ (Zj)

T]− 4β̂∗
2(β̂

∗
2 )

T.

Using Theorems 3.3 and 3.4 from [15], under Assumptions A1–A3, nhp+2 → ∞ and nh2p → 0 as n→ ∞,

we have

√
n(β̂∗

t − β∗
t ) →d Np(0,Σβ∗

t
) and Σ̂β∗

t
→p Σβ∗

t
, for t = 1, 2. (2.5)

Defining

E

[
−
(
1

h

)p+1

K ′
(
Xi −Xj

h

)
yi

]
=

{
v1n, i � �nτ∗�,
v2n, i > �nτ∗�,

ηn = ‖β∗
1 − β∗

2‖ and ρn = ‖v1n − v2n‖, by Theorem 3.2 from [15], it follows that

2vtn − β∗
t = o(n−1/2), t = 1, 2 (2.6)

and

2ρn − ηn = o(n−1/2). (2.7)

If τ∗ is unknown, let k̂n = argmaxδn<k<(1−δ)n ‖Q(k)‖, where Q(k) = T1n(k) − T2n(k). A natural

estimator of τ∗ is defined as τ̂n = k̂n/n, as in [6]. By using the results (2.3)–(2.7), the following theorem

is established.

Theorem 2.2. Given Assumptions A1–A3, if
√
nηn → ∞, h satisfies nhp+2 → ∞ and nh2p → 0 as

n → ∞, then we have (1) τ̂n →p τ
∗; (2) |τ̂n − τ∗| = Op(n

−1η−2
n ); (3) ωn(k̂n − k∗) →d argmaxsG(s),

where ωn = (τ∗)2η2n/λ22,

G(s) =

⎧⎨
⎩

λ1
λ2
W1(s)− 1− τ∗

τ∗
|s|/2, s > 0,

W2(−s)− |s|/2, s � 0

and

λ1 =

(
E

∥∥∥∥ (β∗
1 − β∗

2 )
T

‖β∗
1 − β∗

2‖
[
(1 − τ∗)

(
r∗2(Zj)− β∗

1 + β∗
2

2

)
+ τ∗(r2(Zj)− β∗

2)

]∥∥∥∥
2)1/2

,

λ2 =

(
E

∥∥∥∥ (β∗
1 − β∗

2 )
T

‖β∗
1 − β∗

2‖
[
τ∗

(
r∗1(Zi)− β∗

1 + β∗
2

2

)
+ (1− τ∗)(r1(Zi)− β∗

1 )

]∥∥∥∥
2)1/2

.

Remark 2.3. Here we give the estimators of λ1 and λ2. Because (k̂n − k∗)/n →p 0, by Makov’s

inequality, (2.3) and (2.4), we can obtain that r̂∗1k∗(Zi) − r∗1(Zi) →p 0, r̂∗2k∗ (Zj) − r∗2(Zj) →p 0,

r̂1k∗(Zi) − r1(Zi) →p 0 and r̂2k∗(Zj) − r2(Zj) →p 0. By (2.6) and the law of large numbers, we

have 1
k∗

∑k∗

i=1 r̂1k∗(Zi) →p β∗
1 ,

1
n−k∗

∑n
j=k∗+1 r̂2k∗(Zj) →p β∗

2 ,
1
k∗

∑k∗

i=1 r̂
∗
1k∗ (Zi) →p (β∗

1 + β∗
2 )/2 and

1
n−k∗

∑n
j=k∗+1 r̂

∗
2k∗(Zj) →p (β∗

1 + β∗
2 )/2. Denote

δ̂n =
1

k∗

k∗∑
i=1

r̂1k∗(Zi)− 1

n− k∗

n∑
j=k∗+1

r̂2k∗(Zj),
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r̂1i =

(
1− k̂n

n

)[
r̂1k̂n

(Zi)− 1

k̂n

k̂n∑
i=1

r̂1k̂n
(Zi)

]
+
k̂n
n

[
r̂∗
1k̂n

(Zi)− 1

k̂n

k̂n∑
i=1

r̂∗
1k̂n

(Zi)

]
,

r̂2j =

(
1− k̂n

n

)[
r̂∗
2k̂n

(Zj)− 1

n− k̂n

n∑
j=k̂n+1

r̂∗
2k̂n

(Zj)

]
+
k̂n
n

[
r̂2k̂n

(Zj)− 1

n− k̂n

n∑
j=k̂n+1

r̂2k̂n
(Zj)

]
.

Therefore, we can define η̂n = ‖δ̂n‖,

λ̂1 =

(
1

n− k̂n

n∑
j=k̂n+1

δ̂Tn r̂2j r̂
T
2j δ̂n

η̂2n

)1/2

and λ̂2 =

(
1

k̂n

k̂n∑
i=1

δ̂Tn r̂1ir̂
T
1iδ̂n

η̂2n

)1/2

as the estimators of ηn, λ1 and λ2, respectively.

Remark 2.4. Using the result of Appendix B in [1], we can get the cumulative distribution function

F (s) of argmaxs>0G(s) as follows:

F (s) = −(2π)−1/2|s|1/2 exp(−8−1|s|)− φ(φ + 2ξ)

ξ(φ+ ξ)
exp

(
ξ(φ + ξ)

2φ2
|s|

)
Φ

(
−
(
φ+ 2ξ

2φ

)
|s|1/2

)

+

(
(φ + 2ξ)2

ξ(φ+ ξ)
− 2 + 2−1|s|

)
Φ(−2−1|s|1/2), s � 0,

and

F (s) = 1 +
ξs1/2

φ1/2(2π)1/2
exp

(
− ξ2

8φ
s

)
+
ξ(2φ+ ξ)

(φ+ ξ)φ
exp

(
(φ + ξ)s

2

)
Φ

(
− (2φ+ ξ)s1/2

2φ1/2

)

−
(
(2φ+ ξ)2

(φ+ ξ)φ
− 2 +

ξ2s

2φ

)
Φ

(
− ξs1/2

2φ1/2

)
, s > 0,

where φ = λ21/λ
2
2 and ξ = (1− τ∗)/τ∗.

Remark 2.5. Because ‖Q(k)‖ is the estimate of ηn, it is natural to give the condition of ηn to replay

‖β1 − β2‖ in the theorem which can be directly applied in the proof. The relationship between ηn and

‖β1 − β2‖ is not very clear for ηn = ‖c1β1 − c2β2‖, where ci, i = 1, 2 are based on the unknown link

function g and the explanatory variable X . We can easily see that if β2−β1 = 0 then ηn = 0, and we can

deduce ηn �= 0 when β1 − β2 �= 0 if g′(t) + g′(−t) > 0 for all t or g′(t) + g′(−t) < 0 for all t. Otherwise,

we assume β1 �= β2 but c1β1 = c2β2, and then only one case satisfies it that is β1 = −β2 and c1 = −c2.
But, for c1 + c2 = E(f(X)(g′(XTβ1)) + g′(−XTβ1)) �= 0 under the condition of g′(t) + g′(−t) > 0 for all

t or g′(t) + g′(−t) < 0 for all t, the case of β1 �= β2 and ηn = 0 does not exist.

Since we apply ‖Q(k)‖ as the criterion to estimate the change point, Theorem 2.1 might also work in

the model yi = g1(X
T
i β1) + εi, i � �nτ∗� while yi = g2(X

T
i β2) + εi, i > �nτ∗�.

3 Simulation

In this section, we investigate the performance of our estimator of the parametric change point in a single

index model. We consider the following model:

yi =

{
g(XT

i β1) + εi, 1 � i < k∗,

g(XT
i β2) + εi, k∗ � i � n.

For convenience, we assume that εi, i = 1, 2, . . . , n are independent and identically distributed (i.i.d.)

with a standard normal distribution N(0, 1) and g(v) = 10 exp(v). The normal density kernel function is

used, and the bandwidth is set to be h = n−1/5. Let X = (x1,x2,x3)
T, where xi = (xi,1, . . . , xi,n)

T.

Consider the following four types of parameters:
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Table 1 The true values and estimations of the parameters of F̂ (k̂n)

True value Mean of estimation value
Models

k∗ η2n λ1 λ2 k̂n η̂2n λ̂1 λ̂2

M1 100 71.57 66.37 18.02 109.34 79.45 64.27 23.80

M2 150 61.21 11.71 11.49 150.02 61.55 11.72 11.50

M3 100 61.00 13.24 10.85 95.01 62.12 13.59 11.34

M4 200 61.41 10.74 13.37 204.72 62.61 11.21 13.72

Table 2 The qunatiles of empirical distribution Fn(k̂n) and theoretical distribution F̂ (k̂n)

Models Qunatiles 2.5% 5% 10% 50% 90% 95% 97.5%

M1 Fn(k̂n) 91.97 95.00 98.00 103.00 139.00 146.00 148.00

F̂ (k̂n) 87.56 92.25 96.35 102.98 131.14 148.41 167.70

M2 Fn(k̂n) 143.00 146.00 147.00 150.00 153.00 155.00 157.02

F̂ (k̂n) 141.78 144.27 146.50 150.00 153.60 155.89 158.45

M3 Fn(k̂n) 57.00 71.95 85.00 99.00 100.00 101.00 102.00

F̂ (k̂n) 95.48 96.79 97.96 99.87 100.38 100.68 101.01

M4 Fn(k̂n) 198.00 199.00 200.00 201.00 212.00 230.00 244.00

F̂ (k̂n) 178.05 185.24 191.63 202.58 242.52 267.21 294.80

M1. Elements of x1,x2 and x3 are i.i.d. with N(0, 0.5), N(1, 0.5) and N(−1, 0.5), respectively, β1 =

(1/
√
2,−1/

√
2, 0), β2 = (1/

√
2, 0,−1/

√
2), n = 200 and k∗ = 100.

M2, M3, M4. Elements of x1,x2 and x3 are i.i.d. with N(0, 0.5), N(2, 0.5) and N(−2, 0.5), respec-

tively, β1 = (1/
√
3,−1/

√
3,−1/

√
3), β2 = (1/

√
3, 1/, 1/

√
3, 1/

√
3) and n = 300. Change points are set to

be k∗ = 150, 100 and 200 for M2, M3 and M4, respectively.

Each model is repeated 1000 times, and the results are shown in Tables 1 and 2. Table 1 displays

the estimators of parameters of the distribution F (k∗) as shown in Theorem 2.2. The true values ηn, λ1
and λ2 are obtained using the numerical approximate operation. The estimate values η̂n, λ̂1 and λ̂2 are

obtained by Remark 2.3. Table 1 shows that the differences between the true and estimated values are

not large. Notice that ηn of M1 is larger than that of M2, but ηn
√
n of M1 is smaller than that of M2,

which correspond to the condition of Theorem 2.2 ηn → 0, ηn
√
n→ ∞. For τ∗ = k∗/n = 0.5 in both M1

and M2, comparing the results of M1 and M2 in Tables 1 and 2, we find estimated values in M2 is more

accurate.

Using the estimated values in Table 1, we obtain the quantiles of the distribution F̂ (k̂n) as shown in

Remark 2.4, which is displayed in Table 2. In Table 2, Fn(k̂n) is the empirical distribution of k̂n based on

the 1000 estimated value. From Table 2, comparing with Fn(k̂n), we can see that F̂ (k̂n) is better when

the change point is in the middle of data, the estimate too centralized when the change point is in the

front of data (namely, τ∗ < 0.5), and the estimate is too decentralized when the change point is in the

back of data (that is, τ∗ > 0.5).

4 Conclusion

In this paper, we proved the consistency, obtained the convergence rate, and derived the distribution

function of the estimate of a change point in single index models. However, because there are many

parameters in the distribution function, a description of how to find consistent estimators of these pa-

rameters is not included in this paper and will be the subject of a future paper.
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Appendix

Lemma 4.1 (Rényi-Hájek-Chow inequality). Denote {Xn, n � 1} to be a martingale difference se-

quence and Sn =
∑n

j=mXj. Let σ2
n = E‖Xn‖2 and c1 � c2 � · · · � cn > 0, then for any x > 0 and any

positive integer m,

P
(

max
m�j�n

cj‖Sj‖ � x
)
� 1

x2

n∑
j=m

c2jσ
2
j .

A.1 The proof of Theorem 2.2(1)

Proof. Since ‖Q(k̂n)‖ � ‖Q(k̂n)−EQ(k̂n)‖+‖EQ(k̂n)‖ and ‖EQ(k∗)‖ � ‖Q(k∗)−EQ(k∗)‖+‖Q(k∗)‖,
noticing that ‖Q(k̂n)‖ > ‖Q(k∗)‖, by the triangle inequality, it is easy to show that

‖EQ(k∗)‖ − ‖EQ(k̂n)‖ � 2 max
δn<k<(1−δ)n

‖Q(k)− EQ(k)‖. (A.1)

If k > k∗, by the simple decomposition for Q(k), we have

Q(k) =

(
k

2

)−1( ∑
1�i<j�k∗

ψi,j +
∑

k∗<i<j�k

ψi,j +

k∗∑
i=1

k∑
j=k∗+1

ψi,j

)
−
(
n− k

2

)−1 ∑
k<i<j�n

ψi,j ,

thus, we obtain

EQ(k) =

(
k

2

)−1( ∑
1�i<j�k∗

2v1n +
∑

k∗<i<j�k

2v2n +

k∗∑
i=1

k∑
j=k∗+1

(v1n + v2n)

)
−
(
n− k

2

)−1 ∑
k<i<j�n

2v2n
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=
2(v1n − v2n)k

∗

k
. (A.2)

For k � k∗, we have

EQ(k) =
2(v1n − v2n)(n− k∗)

n− k
.

This leads to

‖EQ(k∗)‖ − ‖EQ(k̂n)‖ =

⎧⎪⎪⎨
⎪⎪⎩

2ρn
k̂n − k∗

k̂n
= 2ρn

τ̂n − τ∗

τ̂n
, k̂n > k∗,

2ρn
k∗ − k̂n

n− k̂n
= 2ρn

τ∗ − τ̂n
1− τ̂n

, k̂n � k∗.
(A.3)

Since δ < τ̂n < 1− δ, we obtain

2ρn|τ∗ − τ̂n|
1− δ

� ‖EQ(k∗)‖ − ‖EQ(k̂n)‖ � 2 max
δn<k<(1−δ)n

‖Q(k)− EQ(k)‖.

Hence, we have

P

(
ρn|τ∗ − τ̂n|

1− δ
> ε

)
� P

(
max

δn<k<(1−δ)n
‖Q(k)− EQ(k)‖ > ε

)
� P

(
max

δn<k�k∗
‖Q(k)− EQ(k)‖ > ε

)
+ P

(
max

k∗<k<(1−δ)n
‖Q(k)− EQ(k)‖ > ε

)
.

Because of the symmetry, we only show P (maxk∗<k<(1−δ)n ‖Q(k)−EQ(k)‖ > ε) → 0 as n→ ∞. The

remaining part P (maxδn<k�k∗ ‖Q(k)− EQ(k)‖ > ε) is analogous and thus is omitted.

Now, we consider the P (maxk∗<k<(1−δ)n ‖Q(k)−EQ(k)‖ > ε). By the decomposition forQ(k)−EQ(k),

we have, for k∗ < k < (1− δ)n,

Q(k)− EQ(k) =

(
k

2

)−1 ∑
1�i<j�k∗

(ψi,j − Eψi,j) +

(
k

2

)−1 ∑
k∗<i<j�k

(ψi,j − Eψi,j)

+

(
k

2

)−1 k∗∑
i=1

k∑
j=k∗+1

(ψi,j − Eψi,j)−
(
n− k

2

)−1 ∑
k<i<j�n

(ψi,j − Eψi,j)

≡ I + II + III − IV. (A.4)

Note that n−1h−(p+2) → 0, and by (2.3), it follows that

max
k∗<k�(1−δ)n

‖I‖ �
(
k∗

2

)−1 ∑
1�i<j�k∗

(ψi,j − Eψi,j) →p 0. (A.5)

For the second part II in above Q(k)−EQ(k), denote Uk−k∗ =
(
k−k∗

2

)−1 ∑
k∗<i<j�k(ψi,j −Eψi,j) and

Vk−k∗ = 4
k−k∗

∑k
i=k∗+1(r2n(Zi)−Eψi,j). Then Uk−k∗ − Vk−k∗ =

(
k−k∗

2

)−1 ∑
k∗<i<j�k φi,j , where φi,j =

ψi,j−r2n(Zi)−r2n(Zj)+Eψi,j . By (3.15) of [15] and Assumption A2, we have E‖r2n(Zi)−Eψi,j‖2 <∞.

Thus, we can obtain

E‖φi,j‖2 = E‖ψ‖2 + E‖r2n(Zi)− Eψi,j‖2 + E‖r2n(Zj)− Eψi,j‖2
− 4E[(ψ)T(r2n(Zi)− Eψi,j)]

= E‖ψ‖2 − 2E‖r2n(Zi)− Eψi,j‖2 = O(h−(p+2)) (A.6)

and

E[φTi,jφi,j′ ] = E[(ψi,j − Eψi,j)
T(ψi,j′ − Eψi,j′ )]− E[(r2n(Zi)− Eψi,j)

T(ψi,j′ − Eψi,j′ )]

− E[(ψi,j − Eψi,j)
T(r2n(Zi)− Eψi,j)] + E‖r2n(Zi)− Eψi,j‖2 = 0. (A.7)
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Similarly, we have E[φTi,jφi′,j′ ] = E[φTi′,jφi,j ] = E[φTi,jφi,j′ ] = 0, where i, i′, j, j′ are four unequal numbers

each other.

Let Φk =
∑

k∗<i<j�k φi,j . Since E(Φk+1|Zi, i = k∗ + 1, . . . , k) = Φk, {Φk, k = k∗ + 1, . . . , n} is a

discrete-time martingale process. By Lemma 4.1 and
(
k
2

)−1(k−k∗

2

)
1

k−k∗ = (k−k∗−1)
k(k−1) < 1

k , we have

P
(

max
k∗<k�(1−δ)n

‖II‖ � ε
)
� P

(
max

k∗<k�n

∥∥∥∥2k
k∑

i=k∗+1

(r2n(Zi)− E(ψi,j))

∥∥∥∥ � ε/2

)

+ P

(
max

k∗<k�n

(
k

2

)−1∥∥∥∥ ∑
k∗<i<j�k

φi,j

∥∥∥∥ � ε/2

)

� 16E‖(r2n(Zi)− E(ψi,j)‖2
ε2

n∑
k=k∗+1

1

k2

+

n∑
k=k∗+2

16(k − 1− k∗)E‖φi,j‖2
ε2k2(k − 1)2

= O(k∗−1ε−2) +O(k∗−2h−(p+2)ε−2) = O(n−1ε−2). (A.8)

If 1 � i � k∗ and k∗ < j � k, denote Uk∗,k−k∗ = 1
k∗(k−k∗)

∑k∗

i=1

∑k
j=k∗+1(ψi,j − Eψi,j) and

Vk∗,k−k∗ =

k∗∑
i=1

E(Uk∗,k−k∗ |Zi) +

k∑
j=k∗+1

E(Uk∗,k−k∗ |Zj)

≡ 1

k∗

k∗∑
i=1

(r∗1n(Zi)− v1n − v2n) +
1

k − k∗

k∑
j=k∗+1

(r∗2n(Zj)− v1n − v2n).

Notice that Uk∗,k−k∗ − Vk∗,k−k∗ = 1
k∗(k−k∗)

∑k∗

i=1

∑k
j=k∗+1 φ̃i,j , where φ̃i,j = ψi,j − r∗1n(Zi) − r∗2n(Zj) +

v1n+ v2n. By Assumption A2, we have E‖r∗1n(Zi)‖2 <∞ and E‖r∗2n(Zj)‖2 <∞. Similarly to the proofs

of (A.6) and (A.7), we have E‖φ̃i,j‖2 = O(h−(p+2)) and E[φ̃Ti,j φ̃i′,j′ ] = E[φ̃Ti′,j φ̃i,j ] = E[φ̃Ti,j φ̃i,j′ ] = 0,

where i, i′, j, j′ are four unequal numbers. By Chebyshev inequality and Lemma 4.1, we have

P
(

max
k∗<k�(1−δ)n

‖III‖ � 3ε
)

� P

(
max

k∗<k�n

(
k

2

)−1

k∗(k − k∗)
1

k∗

∥∥∥∥
k∗∑
i=1

(r∗1n(Zi)− v1n − v2n)

∥∥∥∥ > ε

)

+ P

(
max

k∗<k�n

(
k

2

)−1

k∗(k − k∗)
1

k − k∗

∥∥∥∥
k∑

j=k∗+1

(r∗2n(Zj)− v1n − v2n)

∥∥∥∥ > ε

)

+ P

(
max

k∗<k�n

(
k

2

)−1

k∗(k − k∗)
1

k∗(k − k∗)

∥∥∥∥
k∗∑
i=1

k∑
j=k∗+1

φi,j

∥∥∥∥ > ε

)

� P

(
1

k∗

∥∥∥∥
k∗∑
i=1

[r∗1n(Zi)− v1n − v2n]

∥∥∥∥ > ε

)

+ P

(
max

k∗<k�(1−δ)n

2k∗

k(k − 1)

∥∥∥∥
k∑

j=k∗+1

[r∗2n(Zj)− v1n − v2n]

∥∥∥∥ > ε

)

+ P

(
max

k∗<k�(1−δ)n

2

k(k − 1)

∥∥∥∥
k∗∑
i=1

k∑
j=k∗+1

φi,j

∥∥∥∥ > ε

)

� E‖r∗1n(Zi)‖2
ε2k∗

+
E‖r∗2n(Zj)‖2

ε2

n∑
k=k∗+1

(
2k∗

k(k − 1)

)2

+
E‖φi,j‖2

ε2

n∑
k=k∗+1

4(k∗ − 1)

k2(k − 12)
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= O(n−1ε−2) +O(n−1ε−2) +O(k∗−2h−(p+2)ε−2) = O(n−1ε−2). (A.9)

As IV is a U-statistic which is a reversed martingale (see [4]), by the basic inequality of reversed

martingale, we have

P
(

max
k∗<k�(1−δ)n

‖IV ‖ � ε
)
�
E‖((1−δ)n

2

)−1 ∑
(1−δn<i<j�n)(ψi,j − Eψi,j)‖2

ε2
= O(n−1ε−2). (A.10)

Thus, combining (A.4), (A.5) and (A.8)–(A.10), there exits a constant c such that

P

(
ρn|τ∗ − τ̂n|

1− δ
> ε

)
� P

(
max

δn<k<(1−δ)n
‖Q(k)− EQ(k)‖ > ε

)
� c

nε2
.

By (2.7), nη2n → ∞ implies nρ2n → ∞. Therefore, we have P (|τ∗ − τ̂n| > ε) � (1−δ)2c
nε2ρ2

n
→ 0 as n → ∞.

The proof is completed.

A.2 The proof of Theorem 2.2(2)

Proof. Noticing that ‖Q(k̂n)‖2 � ‖Q(k∗)‖2 and

‖Q(k̂n)‖2 − ‖Q(k∗)‖2 = ‖Q(k̂n)− EQ(k̂n)‖2 − ‖Q(k∗)− EQ(k∗)‖2 + ‖EQ(k̂n)‖2 − ‖EQ(k∗)‖2
+ 2(Q(k̂n)− EQ(k̂n))

TEQ(k̂n)− 2(Q(k∗)− EQ(k∗))TEQ(k∗),

we have

‖EQ(k∗)‖2 − ‖EQ(k̂n)‖2 � ‖Q(k̂n)− EQ(k̂n)‖2 − ‖Q(k∗)− EQ(k∗)‖2
+ 2(Q(k̂n)− EQ(k̂n))

TE(Q(k̂n))− 2(Q(k∗)− EQ(k∗))TEQ(k∗)

= ‖Q(k̂n)− EQ(k̂n)−Q(k∗) + EQ(k∗)‖2
+ 2(Q(k∗)− EQ(k∗))T(Q(k̂n)− EQ(k̂n)−Q(k∗) + EQ(k∗))

+ 2(Q(k̂n)− EQ(k̂n))
T(EQ(k̂n)− EQ(k∗))

+ 2(Q(k̂n)− EQ(k̂n)−Q(k∗) + EQ(k∗))TEQ(k∗) ≡ A.

By (A.2), it follows that

‖EQ(k∗)‖2 − ‖EQ(k̂n)‖2 =

{
4ρ2n(τ̂n − τ∗)(τ̂n + τ∗)/(τ̂n)2, k̂n > k∗,

4ρ2n(τ
∗ − τ̂n)(2 − τ̂n − τ∗)/(1− τ̂n)

2, k̂n � k∗,

therefore, we have ‖EQ(k∗)‖2 − ‖EQ(k̂n)‖2 � 8ρ2n|τ̂n − τ∗|δ/(1− δ)2.

Now we consider the case k̂n > k∗. By the simple decomposition, we have

Q(k̂n)− EQ(k̂n)−Q(k∗) + EQ(k∗)

=

((
k̂n
2

)−1

−
(
k∗

2

)−1) ∑
1�i<j�k∗

(ψi,j − Eψi,j) +

((
k̂n
2

)−1

+

(
n− k∗

2

)−1) ∑
k∗<i<j�k̂n

(ψi,j − Eψi,j)

+

(
k̂n
2

)−1 k∗∑
i=1

k̂n∑
j=k∗+1

(ψi,j − Eψi,j) +

(
n− k∗

2

)−1 k̂n∑
i=k∗+1

n∑
j=k̂n+1

(ψi,j − Eψi,j)

+

((
n− k∗

2

)−1

−
(
n− k̂n

2

)−1) ∑
k̂n<i<j�n

(ψi,j − Eψi,j)

≡ Ĩ + ĨI + ˜III + ˜IV + Ṽ . (A.11)
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By the asymptotic normality of U-statistic, we obtain

Ĩ =

((
k̂n
2

)−1(
k∗

2

)
− 1

)(
k∗

2

)−1 ∑
1�i<j�k∗

(ψi,j − Eψi,j)

= Op

(((
k̂n
2

)−1(
k∗

2

)
− 1

)
/
√
k∗

)
= Op

(
τ∗ − τ̂n√

n

)
. (A.12)

Similarly, we can obtain ĨI = Op(
(τ−τ∗)3/2√

n
) and Ṽ = Op(

τ∗−τ̂n√
n

).

Recall the proof of theorem 2.2(1), we have

˜III =

(
k̂n
2

)−1 k∗∑
i=1

k̂n∑
j=k∗+1

(ψ) =

(
k̂n
2

)−1

k∗(k̂n − k∗)
1

k∗

k∗∑
i=1

(r∗1n(Zi)− v1n − v2n)

+

(
k̂n
2

)−1

k∗(k̂n − k∗)
1

k̂n − k∗

k̂n∑
j=k∗+1

(r∗2n(Zj)− v1n − v2n)

+

(
k̂n
2

)−1

k∗(k̂n − k∗)
1

k∗(k̂n − k∗)

k∗∑
i=1

k̂n∑
j=k∗+1

φ̃i,j

≡ Ĩ .1 + Ĩ .2 + Ĩ .3. (A.13)

By the central limit theory, we have Ĩ .1 = Op(
τ̂n−τ∗√

n
), Ĩ .2 = Op(

(τ̂n−τ∗)1/2√
n

) and Ĩ .3 = op(
(τ̂n−τ∗)1/2√

n
).

Thus, we obtain that ˜III = Op(
(τ̂n−τ∗)1/2√

n
). Similar arguments give that ˜IV = Op(

(τ̂n−τ∗)1/2√
n

). By

(A.11)–(A.13) and Theorem 2.2(1), τ̂n − τ∗ →p 0, we have that Q(k̂n) − EQ(k̂n) − Q(k∗) + EQ(k∗) =

Op(
(τ̂n−τ∗)1/2√

n
).

Similarly, by the asymptotic normality of U-statistic, we have Q(k̂n)−EQ(k̂n) = Op(
1√
n
) and Q(k∗)−

EQ(k∗) = Op(
1√
n
). By (A.6), we obtain that EQ(k̂n) − EQ(k∗) = 2(v1n−v2n)(k

∗−k̂n)

k̂n
= Op(ρn(τ

∗ − τ̂n))

and EQ(k∗) = Op(ρn). Thus, note that
√
nρn → ∞ and τ̂n − τ∗ →p 0, we can obtain that

A = Op

(
τ̂n − τ∗

n

)
+ Op

(
(τ̂n − τ∗)1/2

n

)
+Op

(
ρn(τ

∗ − τ̂n)√
n

)
+Op

(
(τ̂n − τ∗)1/2ρn√

n

)

= Op

(
(τ̂n − τ∗)1/2ρn√

n

)
.

Similar arguments also yield that, for k̂n � k∗,

A = Op

(
(τ∗ − τ̂n)

1/2ρn√
n

)
.

Therefore, for any ε > 0, there exists M > 0 such that

P

( √
n

|τ̂n − τ∗|1/2ρn 8ρ
2
n|τ̂n − τ∗| δ

(1− δ)2
�M

)
� P

( √
n

|τ̂n − τ∗|1/2ρnA �M

)
� 1− ε.

which leads to |τ̂n − τ∗| = Op(n
−1ρ−2

n ) = Op(n
−1η−2

n ). The proof is completed.

A.3 The proof of Theorem 2.2(3)

Proof. By Theorem 2.2(2), it follows that k̂n = k∗ + Op(ρ
−2
n ). For any given M > 0, we shall derive

the limiting process of Vn(s) = nτ∗(1− τ∗)(‖Q(k∗ + �sρ−2
n �)‖2 − ‖Q(k∗)‖2)/8, where s ∈ [−M,M ]. For

s > 0, by the proof of Theorem 2.2(2), we have

Vn(s) = nτ∗(1− τ∗)(‖EQ(k∗ + �sρ−2
n �)‖2 − ‖EQ(k∗)‖2)/8
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+ 2nτ∗(1− τ∗)(EQ(k∗))T
(
k∗ + �sρ−2

n �
2

)−1

k∗
k∗+�sρ−2

n �∑
j=k∗+1

(r∗2n(Zj)− v1n − v2n)/8

+ 2nτ∗(1− τ∗)(EQ(k∗))T
(
n− k∗

2

)−1

(n− k∗ − �sρ−2
n �)

k∗+�sρ−2
n �∑

j=k∗+1

(r2n(Zj)− 2v2n)/8

+ op(1). (A.14)

In view of (A.2), we obtain that, as n→ ∞,

nτ∗(1 − τ∗)(‖EQ(k∗ + �sρ−2
n �)‖2 − ‖EQ(k∗)‖2)/8

= nτ∗(1− τ∗)
(
4‖v1n − v2n‖2 (k∗)2

(k∗ + �sρ−2
n �)2 − 4‖v1n − v2n‖2

)
/8

= −nτ∗(1− τ∗)ρ2n
�sρ−2

n �(2k∗ + �sρ−2
n �)

2(k∗ + �sρ−2
n �)2

→ −(1− τ∗)s. (A.15)

Combining (2.4), (A.2), (A.6), (A.7) and functional central limit theorem, we get

2nτ∗(1− τ∗)(EQ(k∗))T
(
k∗ + �sρ−2

n �
2

)−1

k∗
k∗+�sρ−2

n �∑
j=k∗+1

(r∗2n(Zj)− v1n − v2n)/8

+2nτ∗(1− τ∗)(EQ(k∗))T
(
n− k∗

2

)−1

(n− k∗ − �sρ−2
n �)

k∗+�sρ−2
n �∑

j=k∗+1

(r2n(Zj)− 2v2n)/8

= ρn

k∗+�sρ−2
n �∑

j=k∗+1

(β∗
1 − β∗

2)
T

‖β∗
1 − β∗

2‖
[
(1− τ∗)

(
r∗2(Zj)− β∗

1 + β∗
2

2

)
+ τ∗(r2(Zj)− β∗

2 )

]
+ op(1)

⇒ λ1W1(s), (A.16)

where W1(s) is a standard Wiener process on [0,∞) and

λ1 =

(
E

∥∥∥∥ (β∗
1 − β∗

2 )
T

‖β∗
1 − β∗

2‖
[
(1− τ∗)

(
r∗2(Zj)− β∗

1 + β∗
2

2

)
+ τ∗(r2(Zj)− β∗

2)

]∥∥∥∥
2)1/2

.

Thus, we obtain that, for s > 0, Vn(s) ⇒ λ1W1(s) − (1 − τ∗)s. For the case s � 0, similar arguments

also lead to Vn(−s) ⇒ λ2W2(−s)+ τ∗s, where W2(·) is another Wiener process on [0,∞) independent of

W1(·) and

λ2 =

(
E

∥∥∥∥ (β∗
1 − β∗

2 )
T

‖β∗
1 − β∗

2‖
[
τ∗
(
r∗1(Zi)− β∗

1 + β∗
2

2

)
+ (1− τ∗)(r1(Zi)− β∗

1)

]∥∥∥∥
2)1/2

.

Since W1(s) is a function of {Xi, i � k∗} and W2(s) is a function of {Xi, i > k∗}, W1(s) and W2(s)

are independent. By the continuous mapping theorem, we have ρ2n(k̂n − k∗) →d argmaxs V (s), where

V (s) =

{
λ1W1(s)− (1− τ∗)s, s > 0,

λ2W2(−s) + τ∗s, s � 0.

Setting s = λ22/(2τ
∗)2v, it can be shown that argmaxs V (s) = λ22/(2τ

∗) argmaxuG(u), where

G(u) =

{
λ1

λ2
W1(u)− 1−τ∗

τ∗ |u|/2, u > 0,

W2(−u)− |u|/2, u � 0.

This implies that
4(τ∗)2ρ2

n

λ2
2

(k̂n − k∗) →d argmaxuG(u).


