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1 Introduction

Hausdorff operators have been widely studied by many researchers. They were first introduced in 1917

with summability of number series. The general Hausdorff operator of a Fourier-Stieltjes transform was

introduced by Georgakis in [8]. Since then, various boundedness of Hausdorff operators have been studied

by Liflyand, Lerner, Móricz, Miyachi et al.; see, for example, [1, 2, 4, 7, 11, 12] and the references therein

for details. The one-dimensional Hausdorff operator is defined by

hΦf(x) =

∫ ∞

0

Φ(xt )

t
f(t)dt, x > 0,

where Φ(t) is a locally integrable function in (0,∞). By the generalized Minkowski inequality and the

scaling property, one can easily show that hΦ is bounded on Lp(R+) if∫ ∞

0

|Φ(t)|t−1+ 1
p dt < +∞.

There are several high-dimensional extensions of hΦ. Below is one of them introduced in [1, 2]:

H̃Φf(x) =

∫
Rn

Φ(x|y|−1)

|y|n f(y)dy,

where y = (y1, y2, . . . , yn), |y| =
√

y21 + y22 + · · ·+ y2n. In [2], Chen et al. proved various boundednesses

for such Hausdorff operators. Later, in [3], Chen et al. extended it to the one-parameter multilinear case.
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They obtained the sharp bounds of multilinear Hausdorff operators on Herz type spaces. Below is one of

their theorems.

Theorem A. Let p � 1. If the non-negative radial function Φ satisfies
∫∞
0 Φ(t)t−1+n

p dt < ∞, then

H̃Φ is bounded on Lp(Rn); moreover

‖H̃Φ‖Lp→Lp = ωn

∫ ∞

0

|Φ(t)|t−1+n
p dt,

where ωn is the area of the unit sphere.

In this paper, we consider a different kind of multi-parameter Hausdorff operators and obtain their

boundedness. Denote G = (0,+∞)n. Let Φ(t1, t2, . . . , tn) be a locally integrable function on G. For any

x = (x1, x2, . . . , xn) ∈ G, we define

HΦf(x1, x2, . . . , xn) =

∫
G

Φ(x1

t1
, x2

t2
, . . . , xn

tn
)

t1t2 · · · tn f(t1, t2, . . . , tn)dt1dt2 · · · dtn,

and call it the Hausdorff operator on the one-dimensional product spaces G. It is easy to verify that if

Φ(t1, t2, . . . , tn) = χ(1,+∞)(t1)t
−1
1 · · ·χ(1,+∞)(tn)t

−1
n , then

HΦf(x) = Hnf(x) =
1

x1 · · ·xn

∫ x1

0

· · ·
∫ xn

0

f(t1, . . . , tn)dt1 · · · dtn,

which is the Hardy operator on the one-dimensional product spaces. If Φ(t1, t2, . . . , tn) = χ(0,1)(t1) · · ·
χ(0,1)(tn), then

HΦf(x) = H∗
nf(x) =

∫ ∞

x1

· · ·
∫ ∞

xn

f(t1 · · · tn)
t1 · · · tn dt1 · · · dtn,

which is the adjoint of Hn. When n = 1, H1 becomes the famous Hardy operator introduced by Hardy

in [10]. This operator and its variants attracted a lot of attention. Their boundedness estimates and

sharp bounds were studied, for example, in [5, 6, 13–15]. In [13], Pachpatte studied the boundedness of

Hn and H∗
n on the Lebesgue space Lp(G). Recently, Wang et al. [14] obtained the boundedness of Hn

and H∗
n with power weights on one-dimensional product spaces and found their explicit bounds.

Here, we will consider the operatorHΦ on the weighted Lebesgue spaces. We prove the power weighted

Lp to Lq boundedness of HΦ and obtain the sharp constant for 1 � p = q � ∞. The proof of sufficiency

here is different from that in [2, 3]. And the sharp bound is archived in a different way from [14]. In

this paper, we will also study the Hausdorff operator on high-dimensional product spaces. Suppose

m ∈ N, ni ∈ N, 1 � i � m,

Hm
Ψ f(x) =

∫
Rn1

∫
Rn2

· · ·
∫
Rnm

Ψ( x1

|u1| ,
x2

|u2| , . . . ,
xm

|um|)

|u1|n1 |u2|n2 · · · |um|nm
f(u1, u2, . . . , um)du1du2 · · · dum,

where ui ∈ Rni , x = (x1, x2, . . . , xm) ∈ Rn1 × Rn2 × · · · × Rnm .

Noting that for n1 = n2 = · · · = nm = 1, the operator Hm
Ψ will be equal to HΨ defined above. If

Ψ(t1, t2, . . . , tm) = χ(1,+∞)(t1)t
−n1
1 · · ·χ(1,+∞)(tm)t−nm

m , then we will get the product Hardy operator

Hm
n , i.e.,

Hm
Ψ f = Hm

n f(x) =
1

|x1|n1 · · · |xm|nm

∫
|u1|<|x1|

· · ·
∫
|um|<|xm|

f(u1, . . . , um)du1 · · · dum.

If Ψ(t1, t2, . . . , tm) = χ(0,1)(t1) · · ·χ(0,1)(tm), then Hm
Ψ f = Hm∗

n f , which is the adjoint operator of Hm
n ,

i.e.,

Hm
Ψ f = Hm∗

n f(x) =

∫
|u1|>|x1|

· · ·
∫
|um|>|xm|

f(u1, . . . , um)

|u1|n1 · · · |um|nm
du1 · · · dum.

It is not hard to see that for m = 1,

Hm
n f(x) = H̃nf(x) =

1

|x|n
∫
|u|<|x|

f(u)du, Hm∗
n f(x) = H̃n

∗
f(x) =

∫
|u|>|x|

f(u)

|u|n du.
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They are the n-dimensional Hardy operator and its adjoint. In 1995, Christ and Grafakos [5] proved

that the Lp(Rn) norm of H̃n is p
p−1 , which is independent of dimension n. But the Lp(Rn) norm of

Hn obtained in [14] depends on n. See [14] for details. So there are some differences between these two

extensions of the classical Hardy operator. In [6], Fu et al. studied the boundedness of H̃n on Lp spaces

with power weights, and got the explicit bound of H̃n. The above observation motives us to study the

Hausdorff operators in the high dimensional product spaces as both the Hardy operator and the adjoint

Hardy operator are its special models. Here, we will discuss the boundedness of Hm
Ψ on Lebesgue spaces

with power weights. We will get the power weighted Lp to Lq boundedness by using the boundedness

of HΦ. Moreover, we will work out the best constants of Hm
Ψ on these spaces for 1 � p = q � ∞ by

constructing a special function. As a corollary, we can get the sharp bounds of Hm
n and Hm∗

n with power

weights.

Now we introduce some notations frequently used in this paper. For two vectors �α = (α1, α2, . . . , αm) ∈
Rm, �β = (β1, β2, . . . , βm) ∈ Rm, �α�β = α1β1 + α2β2 + · · · + αmβm. Throughout this paper, the notation

�α < �β means αi < βi for each i = 1, 2, . . . ,m. Let x = (x1, x2, . . . , xm) ∈ Rn1 × Rn2 × · · · × Rnm , x�α

be xα1
1 xα2

2 · · ·xαm
m , and |x|�α stands for |x1|α1 |x2|α2 · · · |xm|αm , where |xi| = (

∑ni

j=1 x
2
ij)

1/2, xi ∈ R
ni . We

write |x|�α < |y|�β if |xi|αi < |yi|βi for each i = 1, 2, . . . ,m. Denote also p = (p, p, . . . , p). Then it is clear

that x1 = x1x2 · · ·xm and |x|1 = |x1||x2| · · · |xm|.
This paper is organized as follows. In Section 2, we will formulate our results on HΦ and give the

proofs of the theorems. In Section 3, the boundedness of Hm
Ψ on Lebesgue spaces with power weights will

be studied.

2 The boundedness of HΦ

We formulate our results as follows.

Theorem 2.1. Suppose that 1 � p � q � ∞ and r satisfies 1
q + 1 = 1

p + 1
r . If the vectors �α, �β ∈ Rn

satisfy �α+1
p =

�β+1
q and

A :=

(∫
G

|Φ(x)|rx r(�β+1)
q −1dx

) 1
r

< ∞,

then

‖HΦf‖Lq(G,x�β) � A‖f‖Lp(G,x�α).

Remark 2.2. When Φ(t1, t2, . . . , tn) = χ(1,+∞)(t1)t
−1
1 · · ·χ(1,+∞)(tn)t

−1
n , then HΦf = Hnf . By a

simple computation, we get that if �α+ 1 < p, then

A =

( n∏
i=1

q

r(q − βi − 1)

) 1
r

.

When Φ(t1, t2, . . . , tn) = χ(0,1)(t1) · · ·χ(0,1)(tn), then HΦf = H∗
nf . If �α > −1, then

A =

( n∏
i=1

q

r(βi + 1)

) 1
r

.

This confirms the constants in [14].

Theorem 2.3. Let 1 � p � ∞. If Φ(x) is a non-negative function on G satisfying

B :=

∫
G

Φ(x)x
�α+1
p −1dx < ∞,

then

‖HΦf‖Lp(G,x�α) � B‖f‖Lp(G,x�α).
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Moreover, we have

‖HΦ‖Lp(G,x�α)→Lp(G,x�α) = B.
Remark 2.4. When �α = (0, 0, . . . , 0), we get the boundedness of HΦ on Lebesgue space Lp(G). That

is, for 1 � p � ∞, if
∫
G
Φ(x)x

1
p−1dx < ∞, then

‖HΦf‖Lp(G) �
∫
G

Φ(x)x
1
p−1dx‖f‖Lp(G).

Moreover, we have

‖HΦ‖Lp(G)→Lp(G) =

∫
G

Φ(x)x
1
p−1dx.

Comparing with Theorem A, we see that these two extensions of the Hausdorff operators have different

Lp-norms. It means that there are some differences between these two extensions.

In order to prove our theorems, we need the following lemma, which can be found in [9].

Lemma 2.5 (Young’s inequality [9]). Let 1 � p, q, r � ∞ satisfy 1
q + 1 = 1

p + 1
r , and μ be a Haar

measure on G. Then for any f in Lp(G,μ) and any g in Lr(G,μ), we have

‖f ∗ g‖Lq(G,μ) � ‖g‖Lr(G,μ)‖f‖Lp(G,μ),

where (f ∗ g)(x) = ∫
G f(y)g(y−1x)dμ(y),

Lp(G,μ) =

{
f : ‖f‖Lp(G,μ) =

(∫
G

|f(x)|pdμ(x)
) 1

p

< ∞
}

for 1 � p < +∞, and

L∞(G,μ) = {f : ‖f‖L∞ < ∞}

for p = +∞.

Now let us prove Theorem 2.1.

Proof of Theorem 2.1. The proof is based on an idea used in [5] for proving a result on Hardy operator;

also see [14]. As we all know, the multiplicative group R
+ is a locally compact group. So is G = (0,+∞)n.

The Haar measure μ on G is dx
x1x2···xn

; see [9]. Let f1(x) = f(x)x
�α+1
p and f2(x) = x

�β+1
q Φ(x). ‖ · ‖Lp(G,μ)

denotes the Lp-norm with respect to the Haar measure on G and ‖ · ‖Lp(G,x�α) respects the Lp-norm with

power weight x�α on G. By a simple calculation, we have

‖f1‖Lp(G,μ) =

(∫
G

|f(x)|px�α+1 dx

x1

) 1
p

=

(∫
G

|f(x)|px�αdx

) 1
p

= ‖f‖Lp(G,x�α),

and

‖f2‖Lr(G,μ) =

(∫
G

|Φ(x)|rx r(�β+1)
q

dx

x1

) 1
r

=

(∫
G

|Φ(x)|rx r(�β+1)
q −1dx

) 1
r

= ‖Φ‖
Lr(G,x

r(�β+1)
q

−1
)

.

Noticing that �α+1
p =

�β+1
q , we have

f1 ∗ f2(x) =
∫
G

f1(y)f2(y
−1x)

dy

y1

=

∫
G

f(y)y
�α+1
p (y−1x)

�β+1
q Φ(y−1x)

dy

y1

= x
�β+1
q

∫
G

f(y)
Φ(x1

y1
, . . . , xn

yn
)

y1 · · · yn dy1 · · · dyn.



Wu X M et al. Sci China Math March 2014 Vol. 57 No. 3 573

So,

‖f1 ∗ f2‖Lq(G,μ) =

(∫
G

x
�β+1

∣∣∣∣
∫
G

f(y)
Φ(x1

y1
, . . . , xn

yn
)

y1 · · · yn dy1 · · · dyn
∣∣∣∣q dxx1

) 1
q

=

(∫
G

∣∣∣∣
∫
G

f(y)
Φ(x1

y1
, . . . , xn

yn
)

y1 · · · yn dy

∣∣∣∣qx�βdx

) 1
q

= ‖HΦf‖Lq(G,x�β).

Then by Lemma 2.5, we have

‖HΦf‖Lq(G,x�β) �
(∫

G

|Φ(x)|rx r(�β+1)
q −1dx

) 1
r

‖f‖Lp(G,x�α).

This finishes the proof.

Now, we turn to the proof of Theorem 2.3.

Proof of Theorem 2.3. Take p = q in Theorem 2.1. Then r = 1 and �α = �β. So we already get the

sufficient part of the theorem. For the necessary part, let

fk(x) = x− �α+1+ 1
k

p χ{x1>1}(x),

where
1

k
=

(
1

k
,
1

k
, . . . ,

1

k

)
(k > 0).

Then by a simple calculation, we have ‖fk‖Lp(G,x�α) = k
n
p . Using a changing of variables, we obtain that

‖HΦfk‖Lp(G,x�α) �
(∫

x1�k

∣∣∣∣
∫
u1>1

Φ(x1

u1
, . . . , xn

un
)

u1 · · ·un
u− �α+1+ 1

k
p du

∣∣∣∣px�αdx

) 1
p

=

(∫
x1�k

x−1− 1
k

∣∣∣∣
∫
0<y1<x1

Φ(y)y
�α+1+ 1

k
p −1dy

∣∣∣∣pdx
) 1

p

� (k1−
1
k )

n
p

∫
0<y1<k

Φ(y)y
�α+1+ 1

k
p −1dy

= k−
1
k ·np

∫
0<y1<k

Φ(y)y
�α+1+ 1

k
p −1dy‖fk‖Lq(G,x�α).

On the other hand,

‖HΦfk‖Lp(G,x�α) � ‖HΦ‖Lp(G,x�α)→Lp(G,x�α)‖fk‖Lp(G,x�α).

So,

‖HΦ‖Lp(G,x�α)→Lp(G,x�α) � k−
1
k ·np

∫
0<y1<k

Φ(y)y
�α+1+ 1

k
p −1dy.

Let k → ∞ (using k
1
k → 1). We obtain

‖HΦ‖Lp(G,x�α)→Lp(G,x�α) �
∫
G

Φ(y)y
�α+1
p −1dy.

Consequently,

‖HΦ‖Lp(G,x�α)→Lp(G,x�α) =

∫
G

Φ(y)y
�α+1
p −1dy.

This completes the proof.
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3 The boundedness of Hm
Ψ

In this section, we will discuss the Hausdorff operator on high-dimensional product space. Our results

can be stated as follows. Denote n = (n1, n2, . . . , nm),Rn = Rn1 × Rn2 × · · · × Rnm and Sn−1 =

S
n1−1×S

n2−1 × · · ·×S
nm−1. Ψ(t1, t2, . . . , tm) is a locally integrable function on R

+×R
+ × · · ·×R

+. For

convenience, we also use Ψ(x) to denote Ψ(|x1|, |x2|, . . . , |xm|).
Theorem 3.1. Soppose 1 � p � q � ∞, r satisfies 1

q + 1 = 1
p + 1

r , the vectors �γ and �δ ∈ Rm satisfy
�γ+n
p =

�δ+n
q and Ψ(x) = Ψ(|x1|, |x2|, . . . , |xm|) is a radial function in each variable. If

C :=

(∫
Rn

|Ψ(x)|r |x| r(
�δ+n)
q −ndx

) 1
r

< ∞,

then

‖Hm
Ψ f‖Lq(Rn,|x|�δ) � C‖f‖Lp(Rn,|x|�γ).

Theorem 3.2. Let 1 � p � ∞. If Ψ(x) = Ψ(|x1|, |x2|, . . . , |xm|) is a non-negative function satisfying

D :=

∫
Rn

Ψ(x)|x| �α+n
p −ndx < ∞,

then

‖Hm
Ψ f‖Lp(Rn,|x|�α) � D‖f‖Lp(Rn,|x|�α).

Moreover, we have

‖Hm
Ψ ‖Lp(Rn,x�α)→Lp(Rn,x�α) = D.

Remark 3.3. When Ψ(t1, t2, . . . , tm) = χ(1,+∞)(t1)t
−n1

1 · · ·χ(1,+∞)(tm)t−nm
m , Hm

Ψ is the product

Hardy operator Hm
n . By a computation, we get that if αi < (p − 1)ni, then D =

∏m
i=1

pωni

nip−ni−αi
is

its sharp bound. When Ψ(t1, t2, . . . , tm) = χ(0,1)(t1) · · ·χ(0,1)(tm), then Hm
Ψ f = Hm∗

n f , which is the

adjoint operator of Hm
n . If αi > −ni, then D =

∏m
i=1

pωni

αi+ni
is the sharp bound of Hm∗

n . If m = 1, we

obtain that ‖H̃n‖Lp(Rn,|x|α)→Lp(Rn,|x|α) = pωn

pn−n−α and ‖H̃n

∗‖Lp(Rn,|x|α)→Lp(Rn,|x|α) = pωn

n+α , which is a

main theorem in [6].

Remark 3.4. If �α = (0, 0, . . . , 0), then we obtain the results on the Lebesgue space Lp(Rn). We

omit the details. If m = 1, then we obtain that the sharp bounds of H̃Ψ on weighted Lebesgue space

Lp(Rn, |x|α) is ∫
Rn Ψ(x)|x|α+n

p −ndx. It is exactly the sharp bound for H̃Ψ in [2].

To prove Theorem 3.1, we need the following lemma.

Lemma 3.5. Suppose �δ is a vector in Rm. Let

g(x) =

m∏
i=1

1

ωni

∫
Sn1−1

∫
Sn2−1

· · ·
∫
Snm−1

f(|x1|x′
1, |x2|x′

2 · · · |xm|x′
m)dσ(x′

1)dσ(x
′
2) · · · dσ(x′

m),

where ωni(i = 1, . . . ,m) is the area of the unit sphere Sni−1. Then it is easy to see that g is a radial

function of f , and we have

(1)

Hm
Ψ f(x) = Hm

Ψ g(x);

(2)
‖Hm

Ψ f‖Lp(Rn,|x|�δ)
‖f‖Lp(Rn,|x|�δ)

�
‖Hm

Ψ g‖Lp(Rn,|x|�δ)
‖g‖Lp(Rn,|x|�δ)

.

Proof. The main idea of this proof comes from [6]. For (1), by the definition of g and Fubini’s theorem,

we have

Hm
Ψ g(x) =

∫
Rn

Ψ( x1

|u1| ,
x2

|u2| , . . . ,
xm

|um|)

|u1|n1 |u2|n2 · · · |um|nm
g(u1, u2, . . . , um)du1du2 · · · dum
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=

∫
Rn

Ψ( x1

|u1| ,
x2

|u2| , . . . ,
xm

|um|)

|u1|n1 |u2|n2 · · · |um|nm

m∏
i=1

1

ωni

×
∫
Sn−1

f(|u1|u′
1, |u2|u′

2, . . . , |um|u′
m)dσ(u′

1)dσ(u
′
2) · · · dσ(u′

m)du1du2 · · · dum

=
m∏
i=1

1

ωni

∫
Sn−1

∫
Rn

Ψ( x1

|u1| ,
x2

|u2| , . . . ,
xm

|um| )

|u1|n1 |u2|n2 · · · |um|nm

× f(u1, u2, . . . , um)du1du2 · · · dumdσ(u′
1)dσ(u

′
2) · · · dσ(u′

m)

=

∫
Rn

Ψ( x1

|u1| ,
x2

|u2| , . . . ,
xm

|um|)

|u1|n1 |u2|n2 · · · |um|nm
f(u1, u2, . . . , um)du1du2 · · · dum

= Hm
Ψ f(x).

For (2), using the generalized Minkowski inequality, we have

‖g‖Lp(Rn,|x|�δ) =
m∏
i=1

1

ωni

(∫
Rn

∫
Sn−1

|f(|x1|x′
1, |x2|x′

2, . . . , |xm|x′
m)

× dσ(x′
1)dσ(x

′
2) · · · dσ(x′

m)|p|x|�δdx1dx2 · · · dxm

) 1
p

�
m∏
i=1

1

ωni

∫
Sn−1

(∫
Rn

|f(x1, x2, . . . , xm)|p

× |x|�δdx1dx2 · · · dxm

) 1
p

dσ(x′
1)dσ(x

′
2) · · · dσ(x′

m)

=

(∫
Rn

|f(x1, x2, . . . , xm)|p|x|�δdx1dx2 · · · dxm

) 1
p

= ‖f‖Lp(Rn,|x|�δ).

So, we can conclude that
‖Hm

Ψ f‖Lp(Rn,|x|�δ)
‖f‖Lp(Rn,|x|�δ)

�
‖Hm

Ψ g‖Lp(Rn,|x|�δ)
‖g‖Lp(Rn,|x|�δ)

.

The proof is complete.

Now let us prove Theorem 3.1.

Proof of Theorem 3.1. For convenience, we suppose m = 2. For m > 2, we can prove the theorem

similarly without any essential difficulty. Lemma 3.5 implies that the operator Hm
Ψ and its restriction to

radial functions have the same ‖ · ‖Lp(Rn,|x|�δ) norm. So, without loss of generality, we assume that f is a

radial function. By the polar decomposition and Fubini’s theorem, we have

‖H2
Ψf‖Lq(Rn1×Rn2 ,|x|�δ) =

(∫
Rn1

∫
Rn2

∣∣∣∣
∫
Rn1

∫
Rn2

Ψ( |x1|
|u1| ,

|x2|
|u2|)

|u1|n1 |u2|n2
f(u1, u2)du1du2

∣∣∣∣q|x|�δdx
) 1

q

=

(∫
Sn1−1

∫
Sn2−1

∫ ∞

0

∫ ∞

0

∣∣∣∣
∫
Sn1−1

∫
Sn2−1

∫ ∞

0

∫ ∞

0

Ψ( t1s1 ,
t2
s2
)

sn1
1 sn2

2

× f(s1, s2)s
n1−1
1 sn2−1

2 ds1ds2dσ(θ1)dσ(θ2)

∣∣∣∣qt�δ+n−1dtdσ(ξ1)dσ(ξ2)

) 1
q

= ω
1+ 1

q
n1 ω

1+ 1
q

n2

(∫ ∞

0

∫ ∞

0

∣∣∣∣
∫ ∞

0

∫ ∞

0

Ψ( t1s1 ,
t2
s2
)

s1s2
f(s1, s2)ds

∣∣∣∣qt�δ+n−1dt

) 1
q

= ω
1+ 1

q
n1 ω

1+ 1
q

n2 ‖HΨf‖Lq((0,∞)×(0,∞),t�δ+n−1).



576 Wu X M et al. Sci China Math March 2014 Vol. 57 No. 3

By Theorem 2.1, the equalities 1
q + 1 = 1

p + 1
r ,

�γ+n
p =

�δ+n
q , by substituting variables and polar decom-

position again, we get that

‖H2
Ψf‖Lq(Rn1×Rn2 ,|x|�δ) � ω

1+ 1
q

n1 ω
1+ 1

q
n2

(∫ ∞

0

∫ ∞

0

|Ψ(t)|rt r(�δ+n)
q −1dt

) 1
r
(∫ ∞

0

∫ ∞

0

|f(s)|ps(�γ+n−1)ds

) 1
p

=

(∫
Sn1−1

∫
Sn2−1

∫ ∞

0

∫ ∞

0

|Ψ(t1, t2)|rt
r(�δ+n)

q −1dtdσ(ξ1)dσ(ξ2)

) 1
r

×
(∫

Sn1−1

∫
Sn2−1

∫ ∞

0

∫ ∞

0

|f(s1, s2)|ps(�γ+n−1)dsdσ(ζ1)dσ(ζ2)

) 1
p

=

(∫
Rn1×Rn2

|f(x1, x2)|p|x|�γdx
) 1

p
(∫

Rn1×Rn2

|Ψ(x)|r |x| r(
�δ+n)
q −ndx

) 1
r

.

Consequently,

‖H2
Ψf‖Lq(Rn1×Rn2 ,|x|�δ) � C‖f‖Lp(Rn1×Rn2 ,|x|�γ).

This finishes the proof.

Now we are in a position to prove Theorem 3.2.

Proof of Theorem 3.2. The first part of the theorem is a special case of Theorem 3.1. So, we only need

to prove the second part of the theorem. As the proof of Theorem 3.1, we also assume m = 2 and f is a

radial function. Let

fk(x) = |x|−
�α+n+ 1

k
p χ{|x|1>1}(x).

A normal computation by polar transformation shows that

‖fk‖Lp(Rn1×Rn2 ,|x|�α) = ω
1
p
n1ω

1
p
n2k

2
p .

By polar decomposition again and a changing of variables, we get

H2
Ψfk(x) =

∫
Rn1

∫
Rn2

Ψ( |x1|
|u1| ,

|x2|
|u2| )

|u1|n1 |u2|n2
fk(u1, u2)du1du2

=

∫
Rn1

∫
Rn2

Ψ( |x1|
|u1| ,

|x2|
|u2| )

|u1|n1 |u2|n2
|u|−

�α+n+ 1
k

p χ{|u|1>1}(u)du1du2

=

∫
|u1|>1

∫
|u2|>1

Ψ( |x1|
|u1| ,

|x2|
|u2| )

|u1|n1 |u2|n2
|u1|−

α1+n1+
1
k

p |u2|−
α2+n2+ 1

k
p du1du2

=

∫ ∞

1

∫ ∞

1

∫
Sn1−1

∫
Sn2−1

Ψ( |x1|
t1

, |x2|
t2

)

t1t2
t
−α1+n1+ 1

k
p

1 t
−α2+n2+

1
k

p

2 dσ(u′
1)dσ(u

′
2)dt1dt2

= ωn1ωn2

∫ |x2|

0

∫ |x1|

0

Ψ(s1, s2)s
α1+n1+ 1

k
p −1

1 s
α2+n2+ 1

k
p −1

2 |x|−
�α+n+ 1

k
p ds1ds2.

Thus, we obtain that

‖H2
Ψfk‖Lp(Rn1×Rn2 ,|x|�α)

=

(∫
Rn1

∫
Rn2

|H2
Ψfk(x)|p|x|�αdx

) 1
p

= ωn1ωn2

(∫
Rn1

∫
Rn2

∣∣∣∣
∫ |x2|

0

∫ |x1|

0

Ψ(s1, s2) · s
α1+n1+ 1

k
p −1

1 s
α2+n2+ 1

k
p −1

2 |x|−
�α+n+ 1

k
p ds1ds2

∣∣∣∣p|x|�αdx
) 1

p

� ωn1ωn2

(∫
|x1|�k

∫
|x2|�k

∣∣∣∣
∫ k

0

∫ k

0

Ψ(s1, s2) · s
α1+n1+

1
k

p −1

1 s
α2+n2+ 1

k
p −1

2 ds1ds2

∣∣∣∣p|x|−n− 1
k dx

) 1
p
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= ωn1ωn2

(∫
|x1|�k

∫
|x2|�k

|x|−n− 1
k dx

) 1
p

·
∫ k

0

∫ k

0

Ψ(s1, s2)s
α1+n1+

1
k

p −1

1 s
α2+n2+ 1

k
p −1

2 ds1ds2.

By polar decomposition, we can calculate that

(∫
|x1|�k

∫
|x2|�k

|x|−n− 1
k dx

) 1
p

= ω
1
p
n1ω

1
p
n2k

2
p k−

1
k · 2p = k−

1
k · 2p ‖fk‖Lp(Rn1×Rn2 ,|x|�α).

Thus,

‖H2
Ψfk‖Lp(Rn1×Rn2 ,|x|�α) � k−

1
k · 2p ‖fk‖Lp(Rn1×Rn2 ,|x|�α)

× ωn1ωn2

∫ k

0

∫ k

0

Ψ(s1, s2)s
α1+n1+

1
k

p −1

1 s
α2+n2+ 1

k
p −1

2 ds1ds2

= k−
1
k · 2p ‖fk‖Lp(Rn1×Rn2 ,|x|�α)

∫
Sn1−1

∫
Sn2−1

∫ k

0

∫ k

0

Ψ(s1, s2)

× s
α1+n1+ 1

k
p −n1

1 s
α2+n2+ 1

k
p −n2

2 sn−1ds1ds2dσ(ξ1)dσ(ξ2)

= k−
1
k · 2p ‖fk‖Lp(Rn1×Rn2 ,|x|�α)

∫
|x|<k

Ψ(x)|x|
�α+n+ 1

k
p −ndx.

Consequently,

‖H2
Ψ‖Lp(Rn1×Rn2 ,|x|�α)→Lp(Rn1×Rn2 ,|x|�α) � k−

1
k · 2p

∫
|x|<k

Ψ(x)|x|
�α+n+ 1

k
p −ndx.

Letting k → ∞, we get

‖H2
Ψ‖Lp(Rn1×Rn2 ,|x|�α)→Lp(Rn1×Rn2 ,|x|�α) �

∫
Rn

Ψ(x)|x| �α+n
p −ndx.

So,

‖H2
Ψ‖Lp(Rn1×Rn2 ,|x|�α)→Lp(Rn1×Rn2 ,|x|�α) =

∫
Rn

Ψ(x)|x| �α+n
p −ndx.

This completes the proof.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

11271330 and 10931001), Education Foundation of Zhejiang Province (Grant No. Y201225707) and Natural

Science Foundation of Zhejiang Province of China (Grant No. Y604563).

References
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