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1 Introduction

This paper is concerned with the initial problem for the following stochastic semilinear equation,⎧⎪⎨
⎪⎩

(
∂

∂t
−A

)
u(t, x) = − ∂

∂x
q(t, x, u(t, x)) + ẆH(t, x), in [0, T ]× R,

u(0, ·) = u0(·), x ∈ R,

(1.1)

on the given domain [0, T ]×R with Lp(R) initial condition with p � 2, where A is a symmetric integro-

differential operator, the L2(R)-generator of a symmetric, nonlocal, regular Dirichlet form which generates

a strong Feller semigroup {esA}s>0 with transition density kernel G. Here, q : [0, T ] × R × R → R

is measurable and corresponds to the “nonlinearity”, and ẆH(t, x) is the so-called double-parameter

fractional noises (see Section 2 for the definition).

Recently, there has been increasing interest in studying integro-differential scalar conservation laws of

nonlocal type involving generators of Lévy type (see Biler et al. [4–6] and references therein) as well as in

studying white noise perturbations of Burgers-type nonlinear partial differential equations with random

initial data, see e.g., Bertoin [3], Giraud [13], Wehr et al. [34], Winkel [36] and references therein, or

white noise driven stochastic Burgers and fractal Burgers equations, respectively in [30] and [31] where

the mild solution is investigated in the initial problem for both the stochastic Burgers and stochastic

fractal Burgers equation with Lévy time-space white noise.
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On the other hand, there also has been more and more studies on stochastic partial differential equation

driven by fractional noises. Hu [15] proposed the multiple stochastic integral with respect to multiple-

parameter fractional noises, then showed via chaos expansion the existence and uniqueness of the solution

of a class of second-order stochastic heat equation, and further estimated the Lyapunov exponents of the

solutions. Linear stochastic evolution equations in a Hilbert space driven by an additive cylindrical

fractional Brownian motion with Hurst parameter H were studied by Duncan et al. [12] in the case

H ∈ (1/2, 1) and by Tindel et al. [29] in the general case, where they provided necessary and sufficient

conditions for the existence and uniqueness of an evolution solution. Nualart and Ouknine [28] discussed

the existence and uniqueness of the mild solutions to a class of second-order heat equations with additive

fractional noises (fractional in time and white in space) with the Hurst parameter H > 1/2 under some

restrictive conditions. Hu and Nualart [16] studied the d-dimensional stochastic heat equation with a

multiplicative Gaussian noise which is white in space and has the covariance of a fractional Brownian

motion with Hurst parameter H ∈ (0, 1) in time. First they considered the equation in the Itô-Skorohod

sense, and later in the Stratonovich sense. An explicit chaos expansion for the solution was obtained.

Moreover, the moments of the solution are expressed in terms of the exponential moments of some

weighted intersection local time of the Brownian motion. Bo et al. [7,8], Jiang et al. [17,18,20] andWei [35]

studied a class of four-order stochastic partial differential equations (including the Anderson models

and the Cahn-Hilliard equations among others) with fractional noises, where the existence, uniqueness,

regularity and the absolute continuity of the solutions were established. Liu et al. [25] studied a jump-

type stochastic fractional partial differential equation with fractional noises and proved the existence

and uniqueness of the global mild solution by the fixed point principle under some suitable assumptions.

Jiang et al. [19] studied a class of stochastic heat equation with first order fractional noises and modeled

the term structure for forward rate with such a solution.

Motivated by the above results, in this paper, we consider a semilinear stochastic partial differential

equation driven by double-parameter fractional noises, i.e., (1.1) and we will prove that there exists a

unique mild solution to (1.1). Moreover, we investigated the Hölder regularity and absolute continuity of

the law of the solution.

Throughout this paper, we always consider (1.1) under the following assumptions on the coefficient q

and the initial condition u0 and then as “Assumption A” in the sequel.

(A1) For each T > 0, there exists a constant C > 0 such that for (t, x) ∈ [0, T ]× R and u, v ∈ R,

|q(t, x, y)| � C(1 + |y|), (1.2)

|q(t, x, u)− q(s, y, v)| � C(|t− s|+ |x− y|+ |u− v|). (1.3)

(A2) For some p � 2,

sup
x∈R

E(|u0(x)|p) <∞. (1.4)

(A3) For some p � 2, there exists some θ ∈ (0, 1) such that for pθ < 1,

sup
x∈R

E(|u0(x+ y)− u0(x)|p) < Cp|y|pθ. (1.5)

The rest of the paper is organized as follows. In Section 2, we present some preliminaries on the integro-

differential operator A, the double-parameter fractional noises and Malliavin calculus with respect to the

double-parameter fractional noise. Section 3 is devoted to proving the existence and uniqueness of the

mild solution to (1.1). The Hölder regularity of the solution u(t, x) to (1.1) is investigated in Section 4.

In Section 5, we prove the existence of the density and established that the law of the solution to (1.1)

is absolutely continuous with respect to Lebesgue measure on R by estimates of Malliavin derivative and

the divergence operator.

Note. Most of the estimates in this paper contain unspecified constants. An unspecified positive and

finite constant will be denoted by C, which may not be the same in each occurrence. Sometimes we shall

emphasize the dependence of these constants upon parameters.
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2 Preliminaries

In this section, we will present the symmetric integro-differential operators, double-parameter fractional

noises and Malliavin calculus with respect to double-parameter fractional noises.

2.1 Symmetric integro-differential operators

According to, e.g., Komatsu [22] and Stroock [37], a Lévy type operator A is a second-order elliptic

pseudo-differential operator having the following representation

(Aϕ)(x) = σ2(x)ϕ′′(x) + b(x)ϕ′(x) +
∫
R\{0}

[
ϕ(x+ z)− ϕ(x) − zϕ′(x)1{|z|<1}(z)

1 + |z|2
]
μ(x, dz),

for certain suitable function ϕ : R → R (for example, ϕ could be a Schwartz test function on R), where

σ, b : R → R, and μ(x, dz) is the so-called Lévy kernel, i.e., ∀x ∈ R, μ(x, dz) satisfies∫
R\{0}

(|z|2 ∧ 1)μ(x, dz) <∞.

In this paper, we are interested in a special class of Lévy type operators. Namely, we consider only

the integral part of the Lévy type operators

(Aϕ)(x) =
∫
R\{0}

[
ϕ(x+ z)− ϕ(x) − zϕ′(x)1{|z|<1}(z)

1 + |z|2
]
μ(x, dz), (2.1)

and

μ(x, dz) =
c(x, x+ z)dz

|z|1+α
,

for α ∈ (0, 2), where c : R×R → [d1, d2] is a symmetric, measurable function with certain given constants

d2 � d1 > 0. In this case, the integro-differential operator A is symmetric with respect to L2(R).

Moreover, from the theory of Dirichlet forms, there is a Feller semigroup, denoted by {esA}s�0. A typical

example of a symmetric integro-differential operatorA is the (one-dimensional) fractional Laplacian which

can be defined as follows (see Albeverio et al. [1], Truman and Wu [32] and the references therein for

more details). Let c(x, y) = 1. Then

A = ρα(−Δ)
α
2 = ρα

(
− d2

dx2

)α
2

,

with the symmetric stable semigroup as its Feller semigroup, where ρα is a negative constant deter-

mined by

ρα =

∫
R\{0}

(cos z − 1)
1

|z|1+α
dz.

The particular case when α = 1 corresponds to the Cauchy semigroup. More examples and information

of Lévy type operators in terms of pseudo-differential can be found in Komatsu [23], Truman and Wu [32]

and etc.

2.2 Double-parameter fractional noises

A one-dimensional fractional Brownian motion BH = {BH
t , t ∈ [0, T ]} with Hurst parameter H ∈ (0, 1)

in [0, T ] is a centered Gaussian process on some probability space (Ω,F , (Ft)t�0, P ) with covariance

E[BH
t B

H
s ] =

1

2
(t2H + s2H − |t− s|2H).

Hu [15] (see also Wei [35] and Jiang et al. [20]) introduced a double-parameter fractional Brownian field
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Definition 2.1. A one-dimensional double-parameter fractional Brownian fieldWH ={WH(t, x), (t, x)

∈ [0, T ]×R} with double-parameterH = (H1, H2) for Hi ∈ (0, 1), i = 1, 2, is a centered Gaussian random

field on some probability space (Ω,F , (Ft)t�0, P ) with covariance

R(t, s;x, y) = E[WH(t, x)WH(s, y)]

=
1

4
(|t|2H1 + |s|2H1 − |t− s|2H1)(|x|2H2 + |y|2H2 − |x− y|2H2),

for all s, t ∈ [0, T ] and x, y ∈ R.

We denote by E the set of step functions on [0, T ] × R. Let L2
Ψ be the Hilbert space defined as the

closure of E with respect to the scalar product

〈1[0,t]×[0,x], 1[0,s]×[0,y]〉L2
Ψ
= R(t, s;x, y).

Thus, the mapping 1[0,t]×[0,x] 	→ WH([0, t] × [0, x]) is an isometry between E and the linear space span

of {WH([0, t]× [0, x]), (t, x) ∈ [0, T ]× R}. Moreover, the mapping can be extended to an isometry from

L2
Ψ to a Gaussian space associated with WH . This isometry will be denoted by ϕ 	→WH(ϕ) for ϕ ∈ L2

Ψ.

Therefore, we can regard WH(ϕ) as the stochastic integral with respect to WH . In general, we use the

notation

WH(ϕ) =

∫ T

0

∫
R

ϕ(s, y)WH(ds, dy), ϕ ∈ L2
Ψ.

The following embedding property from Bo et al. [7], Wei [35] and Jiang et al. [20] enables us to define

the integral for ψ ∈ L2
Ψ with respect to WH .

Proposition 2.2. For h > 1
2 we have

L2([0, T ]× R) ⊂ L
1
h ([0, T ]× R) ⊂ L2

Ψ.

For any 0 � s < t � T and x, y ∈ R, let

ΨH(t, s;x, y) = 4H1H2(2H1 − 1)(2H2 − 1)|t− s|2H1−2|x− y|2H2−2. (2.2)

Furthermore, the following properties hold.

Proposition 2.3. For f, g ∈ L2
Ψ, we have

E

[∫ t

0

∫
R

f(s, y)WH(dx, ds)

]
= 0,

and

E

[∫ t

0

∫
R

f(s, x)WH(dx, ds)

∫ t

0

∫
R

g(s, x)WH(dx, ds)

]

=

∫
[0,t]2

∫
R2

Ψh(u, v;x, y)f(u, x)g(v, y)dydxdvdu.

Proposition 2.4. If h ∈ (1/2, 1) and f, g ∈ L
1
h ([a, b]), then

∫ b

a

∫ b

a

f(u)g(v)|u− v|2h−2dudv � Ch‖f‖
L

1
h ([a,b])

‖g‖
L

1
h ([a,b])

,

where Ch > 0 is a constant depending only on h.
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2.3 Malliavin calculus with respect to double-parameter fractional noises

Since WH(t, x), (t, x) ∈ [0, T ] × R is Gaussian, we might develop the Malliavin calculus (refer to Nu-

alart [27] for more details) with respect to double-parameter fractional noises in order to prove the

existence of the density of the law of the solutions to stochastic partial differential equation driven by

double-parameter fractional noises.

Let WH(ϕ) =
∫ T

0

∫
R
ϕ(t, x)WH(dt, dx) for ϕ ∈ L2

Ψ, and let S be the class of smooth and cylindrical

random variables of the form

F = f(WH(ϕ1), . . . ,W
H(ϕn)),

where f ∈ C∞
b (Rn) (the set of all functions with bounded derivatives of all orders) and ϕi ∈ L2

Ψ (i =

1, . . . , n and n ∈ N). For each F ∈ S, define the derivative Dt,xF by

Dt,xF :=

n∑
i=1

∂f

∂x
(WH(ϕ1), . . . ,W

H(ϕn))ϕi(t, x).

Let D1,2 be the completion of S under the norm

‖F‖21,2 = E[|F |2 + ‖DF‖2L2
Ψ
].

Then D
1,2 is the domain of the closed operator D on L2(Ω) with the domain Dh being the closure of S

under the norm

‖F‖2h = E[|F |2 + |DhF |2].
Let {hn, n � 1} be an orthonormal basis of L2

Ψ. Then F ∈ D
1,2 if and only if F ∈ Dhn for each n ∈ N

and
∑∞

n=1E|DhnF |2 <∞. In this case, DhF = 〈DF, h〉L2
Ψ
.

On the other hand, the divergence operator δ is the adjoint of the derivative operatorD characterized by

E〈DF, u〉L2
Ψ
= E(Fδ(u)), for any F ∈ S,

where u ∈ L2(Ω;L2
Ψ). Then Dom(δ), the domain of δ, is the set of all functions u ∈ L2(Ω, L2

Ψ) such that

E|〈DF, u〉L2
Ψ
| � C(u)‖F‖L2(Ω),

where C(u) is some constant depending on u.

The following propositions that can be found in Wei [35] and Jiang et al. [20] ensure us to use Malliavin

calculus with respect to fractional noises to deduce the laws for solutions to the corresponding stochastic

partial differential equations.

Proposition 2.5. Let FA := σ{WH(B), B ⊂ A} for A ∈ B([0, T ]× R). If F is a square integrable

random variable that is measurable with respect the σ-field FAc , then

DF1A = 0, a.s.

Remark 2.6. Let {u(t, x), (t, x) ∈ [0, T ]×R} be an {Ft, t ∈ [0, T ]}-adapted random field. By Propo-

sition 2.5, we have Ds,yu(t, x) = 0, a.s. for any 0 � s < t � T and x, y ∈ R.

Proposition 2.7. Given F ∈ D
1,2, if ‖DF‖2

L2
Ψ
> 0 a.s., then the distribution of the random variable F

is absolutely continuous with respect to Lebesgue measure.

Remark 2.8. Propositions 2.5 and 2.7 can be proved similarly as in Nualart [27] with Wiener white

noise replaced by the fractional noise.

3 Existence and uniqueness of the solution

Let (Ω,F ,Ft, P ) be given as in the previous section. In this section, we will study the Cauchy problem

for the stochastic semilinear equation (1.1).
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Following Walsh [33], let us introduce a notation of mild solution to (1.1) in terms of the fundamental

solution G(s, z; t, x) for A. An Lp(Ω) Ft-adapted process u : [0, T ]× R× Ω → R is a solution to (1.1) if

u(t, x) =

∫
R

G(0, y; t, x)u0(y)dy +

∫ t

0

∫
R

G(s, y; t, x)WH(ds, dy)

+

∫ t

0

∫
R

[∂yG(s, y; t, x)]q(s, y, u(s, y))dyds, (3.1)

where G(s, y; t, x) stands for the fundamental solution starting from (s, y) ∈ [0,∞) × R, i.e., satisfying

the following system ⎧⎨
⎩

∂

∂t
v(t, y) = (Av)(t, y), (t, y) ∈ (s,∞)× R,

v(s, y) = δ(y − x), y ∈ R.
(3.2)

We then summarize the following nice estimates for Green function G as follows (see Bass and Levin [2],

Chen and Kumagai [10], Komatsu [23], Kolokoltsov [21] and Truman and Wu [32] for more details). There

exists a constant C only depending on α ∈ (0, 2) such that for any 0 � s < t and x, y ∈ R, the following

estimates hold:

(t− s)1/α(1 + (t− s)−1−1/α|x− y|1+α)G(s, y; t, x) � C, (3.3)∣∣∣∣∂G(s, y; t, x)∂x

∣∣∣∣ � C(t− s)−1−2/α|x− y|α(1 + (t− s)−1−1/α|x− y|1+α)−2, (3.4)∣∣∣∣∂G(s, y; t, x)∂t

∣∣∣∣ � C
(t− s)−1− 1

α

1 + (t− s)−1− 1
α |x− y|1+α

. (3.5)

We have the following main result in this section.

Theorem 3.1. Under the assumptions (A1) and (A2), for α ∈ (1, 2) and some p � 2, then there exists

a unique solution u = {u(t, x), (t, x) ∈ [0, T ]× R} to (3.1) satisfying

sup
(t,x)∈[0,T ]×R

E|u(t, x)|p <∞,

for all T > 0.

Proof. We use the Picard iteration scheme to get a solution to (3.1). Define

u(0)(t, x) =

∫
R

G(0, y; t, x)u0(y)dy, (3.6)

u(n+1)(t, x) = u(0)(t, x) +

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q(s, y, u(n)(s, y))dyds

+

∫ t

0

∫
R

G(s, y; t, x)WH(dy, ds). (3.7)

Firstly, we will prove that

sup
n∈N∪{0}

sup
(t,x)∈[0,T ]×R

E|u(n)(t, x)|p <∞.

Apply Hölder’s inequality on the measure G(0, y; t, x)dy, then

E|u(0)(t, x)|p �
(∫

R

|G(0, y; t, x)|dy
)p−1

E

(∫
R

|G(0, y; t, x)| · |u0(y)|pdy
)

� sup
x∈R

E|u0(x)|p
(∫

R

|G(0, y; t, x)|dy
)p

<∞. (3.8)
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This shows that sup(t,x)∈[0,T ]×R
E|u(0)(t, x)|p <∞. On the other hand, it follows from (3.7) that for each

n ∈ N,

E|u(n+1)(t, x)|p � Cp(E|u(0)(t, x)|p +A(n)
p (t, x) +B(n)

p (t, x)), (3.9)

where

A(n)
p (t, x) = E

∣∣∣∣
∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q(s, y, u(n)(s, y))dyds

∣∣∣∣
p

,

and

B(n)
p (t, x) = E

∣∣∣∣
∫ t

0

∫
R

G(s, y; t, x)WH(dy, ds)

∣∣∣∣
p

.

Note that, by Hölder’s inequality,

A(n)
p (t, x) � Cp

(∫ t

0

∫
R

∣∣∣∣∂G∂y (s, y; t, x)
∣∣∣∣ dyds

)p−1

× E

(∫ t

0

∫
R

|q(s, y, u(n)(s, y))|p ·
∣∣∣∣∂G∂y (s, y; t, x)

∣∣∣∣ dyds
)

� CpE

[∫ t

0

∫
R

(1 + |u(n)(s, y)|p) ·
∣∣∣∣∂G∂y (s, y; t, x)

∣∣∣∣ dyds
]

� Cp

∫ t

0

(
1 + sup

y∈R

E|u(n)(s, y)|p
)(∫

R

∣∣∣∣∂G∂y (s, y; t, x)
∣∣∣∣ dy

)
ds. (3.10)

For the term B
(n)
p (t, x), from Proposition 2.2 and (3.3), one can obtain

B(n)
p (t, x) = E

∣∣∣∣
∫ t

0

∫
R

G(r, z; t, x)WH(dr, dz)

∣∣∣∣
p

� C

(∫ t

0

∫ t

0

∫
R

∫
R

G(r1, z1; t, x)Ψ(r1, r2, z1, z2)G(r2, z2; t, x)dz1dz2dr1dr2

) p
2

= C

(∫
[0,t]2

|r1 − r2|2H1−2

∫
R2

|z1 − z2|2H2−2G(r1, z1; t, x)G(r2, z2; t, x)dz1dz2dr1dr2

) p
2

� C

(∫
[0,t]2

|r1 − r2|2H1−2‖G(r1, ·; t, x)‖
L

1
H2 (R)

‖G(r2, ·; t, x)‖
L

1
H2 (R)

dr1dr2

) p
2

� C

(∫ t

0

(‖G(r, ·; t, x)‖
L

1
H2 (R)

)
1

H1 ds

)pH1

� C

(∫ t

0

|t− r|H2−1
αH1 dr

)pH1

� Ct
p
α (αH1+H2−1) <∞, if α ∈ (1, 2), (3.11)

where we have used the following fact,

‖G(s, ·; t, x)‖
L

1
H2 (R)

=

(∫
R

G(s, y; t, x)
1

H2 dy

)H2

� C

(∫
R

( |t− s|− 1
α

1 + |t− s|−1− 1
α |x− y|1+α

) 1
H2

dy

)H2

= C|t− s|H2
α − 1

α

(∫
R

(
1

1 + |y|1+α

) 1
H2

dy

)H2

= C|t− s|H2
α − 1

α

(
2

∫ 1

0

(
1

1 + y1+α

) 1
H2

dy + 2

∫ +∞

1

(
1

1 + y1+α

) 1
H2

dy

)H2

� C|t− s|H2
α − 1

α . (3.12)
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Hence (3.9) implies that

sup
x∈R

E|u(n+1)(t, x)|p � Cp +

∫ t

0

(
1 + sup

y∈R

E|u(n)(s, y)|p
)
fx(t− s)ds, (3.13)

where fx(t− s) =
∫
R
|∂G∂y (s, y; t, x)|dy and

∫
R

∣∣∣∣∂G∂y (s, y; t, x)
∣∣∣∣ dy � C

∫
R

|t− s|−1− 2
α |x− y|α

(1 + |t− s|− 1+α
α |x− y|1+α)2

dy

� C|t− s|− 1
α

∫
R

|z|α
(1 + |z|1+α)2

dz

� C|t− s|− 1
α . (3.14)

Moreover,
∫ T

0
fx(t− s)ds <∞ if α ∈ (1, 2). By Lemma 15 in Dalang [11], one can obtain

sup
n∈N∪{0}

sup
(t,x)∈[0,T ]×R

E|u(n)(t, x)|p <∞. (3.15)

Next let us prove that {u(n)(t, x)}n�0 converges in Lp(Ω). As for n � 2,

E(|u(n+1)(t, x) − u(n)(t, x)|p)

= E

(∣∣∣∣
∫ t

0

∫
R

∂G

∂y
(s, y; t, x)[q(s, y, u(n)(s, y))− q(s, y, u(n−1)(s, y))]dyds

∣∣∣∣
p)

� Cp

∫ t

0

E|u(n)(s, y)− u(n−1)(s, y)|p
∫
R

∣∣∣∣∂G∂y (s, y; t, x)
∣∣∣∣dyds

� Cp

∫ t

0

sup
y∈R

E|u(n)(s, y)− u(n−1)(s, y)|pfx(t− s)ds, (3.16)

and

sup
x∈R

E|u(1)(s, y)− u(0)(s, y)|p � Cp(E|u(0)(s, y)|p + E|u(1)(s, y)|p) <∞.

Then Gronwall’s lemma yields that∑
n�0

sup
(t,x)∈[0,T ]×R

E(|u(n+1)(t, x) − u(n)(t, x)|p) <∞. (3.17)

Hence, {u(n)(t, x)}n�0 is a Cauchy sequence in Lp(Ω). Let

u(t, x) = lim
n→∞ u(n)(t, x).

Then for each (t, x) ∈ [0, T ]× R,

sup
(t,x)∈[0,T ]×R

E|u(t, x)|p <∞. (3.18)

Take n→ ∞ in Lp(Ω) at both sides of (3.7). Then, it shows that u(t, x); (t, x) ∈ [0, T ]×R satisfies (3.1).

Finally, we have to prove the uniqueness of the solution. Let u and ũ be the two solutions of (3.1),

then

E(|u(t, x)− ũ(t, x)|p) = E

(∣∣∣∣
∫ t

0

∫
R

∂G

∂y
(s, y; t, x)[q(s, y, u(s, y))− q(s, y, ũ(s, y))]dyds

∣∣∣∣
p)

� Cp

∫ t

0

E |u(s, y)− ũ(s, y)|p
∫
R

∣∣∣∣∂G∂y (s, y; t, x)
∣∣∣∣ dyds

� Cp

∫ t

0

sup
y∈R

E |u(s, y)− ũ(s, y)|p fx(t− s)ds. (3.19)
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Then Gronwall’s lemma shows that

sup
(t,x)∈[0,T ]×R

E |u(t, x)− ũ(t, x)|p = 0. (3.20)

This completes the proof of this theorem.

Remark 3.2. In the case α ∈ (0, 1), our method used here does not work.

4 Hölder regularity of the solution

This section is devoted to studying the Hölder regularity of the solution u = {u(t, x), (t, x) ∈ [0, T ]× R}
to (3.1). Actually, we will have the following theorem.

Theorem 4.1. Let α ∈ (1, 2) and H1, H2 ∈ (
1
2 , 1

)
such that αH1 < 2 − H2. If Assumption A is

satisfied, then there exists a continuous modification of u(t, x) (for convenience, we still denote by u(t, x))

which is β-Hölder continuous in t with β ∈ (0,min{ θ
α ,

αH1+H2−1
α }) and γ-Hölder continuous in x with

γ ∈ (0,min{θ, αH1 +H2 − 1}).

Proof. As for each x ∈ R and 0 � s < t � T , we have

|u(t, x)− u(s, x)| �
∣∣∣∣
∫
R

[G(0, y; t, x)−G(0, y; s, x)]u0(y)dy

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
R

∂G

∂y
(r, y; t, x)q(r, y, u(r, y))dydr −

∫ s

0

∫
R

∂G

∂y
G(r, y; s, x)q(r, y, u(r, y))dydr

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
R

G(r, y; t, x)WH(dy, dr) −
∫ s

0

∫
R

G(r, y; s, x)WH(dy, dr)

∣∣∣∣
=:

2∑
j=0

|Aj(t, s, x)|. (4.1)

By the semigroup property, (3.3) and Hölder’s inequality,

E|A0(t, s, x)|p = E

(∣∣∣∣
∫
R

∫
R

G(0, z; t− s, y)G(0, y; s, x)u0(z)dydz −
∫
R

G(0, y; s, x)u0(y)dy

∣∣∣∣
)p

= E

∣∣∣∣
∫
R

G(0, z; t− s, 0)

∫
R

G(0, y; s, x)(u0(y − z)− u0(y))dydz

∣∣∣∣
p

� Cp

∫
R

|G(0, z; t− s, 0)|
∫
R

G(0, y; s, x)E|u0(y − z)− u0(y)|pdydz

� Cp

∫
R

|G(0, y; s, x)|dy
∫
R

|t− s| pθα |z|pθ
1 + |z|1+α

dz

� Cp|t− s| pθα
(∫ 1

0

zpθ

1 + z1+α
dz +

∫ ∞

1

zpθ

1 + z1+α
dz

)
� Cp|t− s| pθα , if α > pθ. (4.2)

Next, we consider A1(t, s, x). Let r
′ = r − (t− s). Then

|A1(t, s, x)| �
∫ s

0

∫
R

∂yG(r, y; s.x)[q(r + t− s, y, u(r + t− s, y))− q(r, y, u(r, y))]dydr

+

∫ t−s

0

∫
R

∂yG(r, y; t, x)q(r, y, u(r, y))dydr

=: |A1,1(t, s, x)| + |A1,2(t, s, x)|. (4.3)
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Then, by Hölder’s inequality and (A1),

E (|A1,1(t, s, x)|p) � Cp

∣∣∣∣
∫ s

0

∫
R

∂yG(r, y; s, x)E|q(r + t− s, y, u(r + t− s, y))− q(r, y, u(r, y))|pdydr

×
[∫ s

0

∫
R

∂yG(r, y; s, x)dydr

]p−1 ∣∣∣∣
� Cp

[
|t− s|p +

∫ s

0

sup
y∈R

E|u(r + t− s, y)− u(r, y)|pdr
]
. (4.4)

And by (A1), we also have

E (|A1,2(t, s, x)|p) � Cp

∫ t−s

0

∫
R

∂yG(r, y; t, x)E|q(r, y, u(r, y))|pdydr

×
[ ∫ t−s

0

∫
R

∂G

∂y
(r, y; t, x)dydr

]p−1

� Cp|t− s|p
[
1 + sup

(t,x)∈[0,T ]×R

E|u(t, x)|p
]

� Cp|t− s|p. (4.5)

Then by (4.3)–(4.5), we have

E|A1(t, s, x)|p � Cp

(
|t− s|p +

∫ s

0

sup
y∈R

E|u(r + t− s, y)− u(r, y)|pdr
)
. (4.6)

Next, we want to estimate A2(t, s, x). Note that

|A2(t, s, x)| �
∣∣∣∣
∫ s

0

∫
R

(G(r, z; t, x)−G(r, z; s, x))WH(dz, dr)

∣∣∣∣
+

∣∣∣∣
∫ t

s

∫
R

G(r, z; t, x)WH(dz, dr)

∣∣∣∣
= |A2,1(t, s, x)| + |A2,2(t, s, x)|. (4.7)

Let β ∈ (0, αH1+H2−1
α ) ⊂ (0, 1). For the first term |A2,1(t, s, x)|, we have

E|A2,1(t, s, x)|p � Cp‖G(·, ·; t, x)−G(·, ·; s, x)‖p
L2

Ψ

� Cp,β(‖|G(·, ·; t, x)−G(·, ·; s, x)|β · |G(·, ·; t, x)−G(·, ·; s, x)|1−β‖2L2
Ψ
)

p
2

� Cp,β(‖|G(·, ·; t, x)−G(·, ·; s, x)|β · |G(·, ·; t, x)|1−β‖2L2
Ψ

+ ‖|G(·, ·; t, x)−G(·, ·; s, x)|β · |G(·, ·; s, x)|1−β‖2L2
Ψ
)

p
2

≡ Cp,β(|A2,1,1(t, s, x)|+ |A2,1,2(t, s, x)|).

Then using (3.3), (3.5), Proposition 2.4 and the mean-value theorem, for ξ ∈ (s, t), one can get

|A2,1,1(t, s, x)| =
(∥∥∥∥

∣∣∣∣∂G∂t (·, ·; ξ, x)
∣∣∣∣
β

|t− s|β |G(·, ·; t, x)|1−β

∥∥∥∥
2

L2
Ψ

) p
2

= |t− s|pβ
(∫

[0,t]2

∫
R2

∣∣∣∣∂G∂t (r1, z1; ξ, x)
∣∣∣∣
β

|G(r1, z1; t, x)|1−β

×ΨH(r1, r2, z1, z2)

∣∣∣∣∂G∂t (r2, z2; ξ, x)
∣∣∣∣
β

|G(r2, z2; t, x)|1−βdz1dz2dr1dr2

) p
2

� C|t− s|pβ
(∫ T

0

(∫
R

(∣∣∣∣∂G(r, z; t, x)∂t

∣∣∣∣
β

· |G(r, z; t, x)|1−β

) 1
H2

dz

)H2
H1

dr

)pH1
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� C|t− s|pβ . (4.8)

In fact

∫
R

( ∣∣∣∣∂G(r, z; t, x)∂t

∣∣∣∣
β

· |G(r, z; t, x)|1−β

) 1
H2

dz

� C

∫
R

(∣∣∣∣ (t− r)−1− 1
α

1 + (t− r)−1− 1
α |x− z|1+α

∣∣∣∣
β

·
∣∣∣∣ |t− r|− 1

α

1 + (t− r)−1− 1
α |x− z|1+α

∣∣∣∣
1−β) 1

H2

dz

= C|t− r|
H2−1−αβ

αH2

∫
R

1

(1 + |y|1+α)
1

H2

dy

= C|t− r|
H2−1−αβ

αH2 .

Then

(∫ T

0

(∫
R

(∣∣∣∣∂G(r, z; t, x)∂t

∣∣∣∣
β

· |G(r, z; t, x)|1−β

) 1
H2

dz

)H2
H1

dr

)pH1

� C

(∫ T

0

|t− r|H2−1−αβ
αH1 dr

)pH1

� C,

if 1 + H2−1−αβ
αH1

> 0, i.e., β < αH1+H2−1
α .

Similarly, one can prove that

|A2,1,2(t, s, x)| � C|t− s|pβ .
Then, it follows that

E|A2,1(t, s, x)|p � C|t− s|pβ , with β ∈
(
0,
αH1 +H2 − 1

α

)
. (4.9)

On the other hand, we have

E|A2,2(t, s, x)|p = E

∣∣∣∣
∫ t

s

∫
R

G(r, z; t, x)WH(dr, dz)

∣∣∣∣
p

� C

(∫ t

s

∫ t

s

∫
R

∫
R

G(r1, z1; t, x)Ψ(r1, r2, z1, z2)G(r2, z2; t, x)dz1dz2dr1dr2

) p
2

= C

(∫
[s,t]2

|r1 − r2|2H1−2

∫
R2

|z1 − z2|2H2−2G(r1, z1; t, x)G(r2, z2; t, x)dz1dz2dr1dr2

) p
2

� C

(∫
[s,t]2

|r1 − r2|2H1−2‖G(r1, ·; t, x)‖
L

1
H2 (R)

‖G(r2, ·; t, x)‖
L

1
H2 (R)

dr1dr2

) p
2

� C

(∫ t

s

(‖G(r, ·; t, x)‖
L

1
H2 (R)

)
1

H1 dr

)pH1

� C

(∫ t

s

|t− r|
H2−1
αH1 dr

)pH1

� C|t− s| p
α (αH1+H2−1), (4.10)

where we have used the following fact

‖G(s, ·; t, x)‖
L

1
H2 (R)

=

(∫
R

G(s, y; t, x)
1

H2 dy

)H2

� C

(∫
R

( |t− s|− 1
α

1 + |t− s|−1− 1
α |x− y|1+α

) 1
H2

dy

)H2
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= C|t− s|H2
α − 1

α

(∫
R

(
1

1 + |y|1+α

) 1
H2

dy

)H2

= C|t− s|H2
α − 1

α

(
2

∫ 1

0

(
1

1 + y1+α

) 1
H2

dy + 2

∫ +∞

1

(
1

1 + y1+α

) 1
H2

dy

)H2

� C|t− s|H2
α − 1

α . (4.11)

Thus from the above estimates (4.2), (4.6), (4.9) and (4.10), we have

E|u(t, x)− u(s, x)|p � C

[
|t− s|pβ +

∫ s

0

sup
y∈R

E|u(r + t− s, y)− u(r, y)|pdr
]
.

Hence Gronwall’s lemma yields that

E|u(t, x)− u(s, x)|p � C|t− s|pβ , (4.12)

with β ∈ (0,min{ θ
α ,

αH1+H2−1
α }).

Next, we consider the space variable. For each t ∈ [0, T ] and x, y ∈ R,

|u(t, x)− u(t, y)| �
∣∣∣∣
∫
R

[G(0, z; t, x)−G(0, z; t, y)]u0(z)dz

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
R

[∂zG(r, z; t, x)− ∂zG(r, z; t, y)]q(r, z, u(r, z))dzdr

∣∣∣∣
+

∣∣∣∣
∫ t

0

∫
R

[G(r, z; t, x)−G(r, z; t, y)]WH(dz, dr)

∣∣∣∣
=:

2∑
k=0

|Bk(t, x, y)|.

First, set z′ = z − (x− y). Then

E|B0(t, x, y)|p = E

(∣∣∣∣
∫
R

G(0, z; t, x)[u0(z + x− y)− u0(z)]dz

∣∣∣∣
p)

� sup
z∈R

E|u0(z + x− y)− u0(z)|p ·
∣∣∣∣
∫
R

G(0, z; t, x)dz

∣∣∣∣
p

� C|x− y|pθ. (4.13)

Now we turn to |B1(t, x, y)|. By Hölder’s inequality and (A1), we have

E|B1(t, x, y)|p � CpE

( ∣∣∣∣
∫ t

0

∫
R

∣∣∣∣∂G∂z (r, z; t, x)
∣∣∣∣ [q(r, z + x− y, u(r, z + x− y))− q(r, z, u(r, z))]dzdr

∣∣∣∣
p )

� Cp

[∫ t

0

∫
R

∣∣∣∣∂G∂z (r, z; t, x)
∣∣∣∣E|q(r, z + x− y, u(r, z + x− y))− q(r, z, u(r, z))|pdzdr

×
∣∣∣∣
∫ t

0

∫
R

∣∣∣∣∂G∂z (r, z; t, x)
∣∣∣∣ dzdr

∣∣∣∣
p−1 ]

� Cp

∣∣∣∣
∫ t

0

(
|x− y|p + sup

z∈R

E|u(r, z + x− y)− u(r, z)|p
)(∫

R

∣∣∣∣∂G∂z (r, z; t, x)
∣∣∣∣ dz

)
dr

∣∣∣∣
� Cp,T

[
|x− y|p +

∫ t

0

sup
z∈R

E|u(r, z + x− y)− u(r, z)|pdr
]
. (4.14)

Finally, let us consider the term B2(t, x, y). Let γ ∈ (0, αH1 +H2 − 1) ⊂ (0, 1). Then

E|B2(t, x, y)|p � Cp

(
E

∣∣∣∣
∫ t

0

∫
R

[G(r, z; t, x)−G(r, z; t, y)]WH(dr, dz)

∣∣∣∣
2 ) p

2
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= Cp

(∫
[0,t]2

∫
R2

|G(r1, z1; t, x)−G(r1, z1; t, y)|ΨH(r1, r2; z1, z2)

× |G(r2, z2; t, x)−G(r2, z2; t, y)|dz1dz2dr1dr2
) p

2

= Cp‖G(·, ·; t, x)−G(·, ·; t, y)‖p
L2

Ψ

= Cp‖|G(·, ·; t, x)−G(·, ·; t, y)|γ · |G(·, ·; t, x) −G(·, ·; t, y)|1−γ‖p
L2

Ψ

� C(p, γ)‖|G(·, ·; t, x)−G(·, ·; t, y)|γ · |G(·, ·; t, x)|1−γ‖p
L2

Ψ

+ C(p, γ)‖|G(·, ·; t, x) −G(·, ·; t, y)|γ · |G(·, ·; t, y)|1−γ‖p
L2

Ψ

≡ C(p, γ)(B2,1(t, x, y) +B2,2(t, x, y)).

Using (3.3), (3.4), Proposition 2.4 and the mean-value theorem, one can get

B2,1(t, x, y) =

∥∥∥∥
∣∣∣∣∂G(·, ·; t, ξ)∂x

∣∣∣∣
γ

· |x− y|γ · |G(·, ·; t, x)|1−γ

∥∥∥∥
p

L2
Ψ

� Cp|x− y|pγ
(∫

[0,T ]2

∫
R2

∣∣∣∣∂G(r1, z1; t, ξ)∂x

∣∣∣∣
γ

· |G(r1, z1; t, x)|1−γΨH(r1, r2, z1, z2)

×
∣∣∣∣∂G(r2, z2; t, ξ)∂x

∣∣∣∣
γ

· |G(r2, z2; t, x)|1−γdz1dz2dr1dr2

) p
2

� C|x− y|pγ
(∫ T

0

(∫
R

(∣∣∣∣∂G(r, z; t, x)∂x

∣∣∣∣
γ

· |G(r, z; t, x)|1−γ

) 1
H2

dz

)H2
H1

dr

)pH1

� C|x− y|pγ .
In fact, ∫

R

(∣∣∣∣∂G(r, z; t, x)∂x

∣∣∣∣
γ

· |G(r, z; t, x)|1−γ

) 1
H2

dz

�
∫
R

( |t− r|(−1− 2
α )γ |x− z|αγ

(1 + |t− r|− 1+α
α |x− z|1+α)2γ

· |t− r|− (1−γ)
α

(1 + |t− r|− 1+α
α |x− z|1+α)1−γ

) 1
H2

dz

= |t− r|H2−γ−1
αH2

∫
R

|y| αγ
H2

(1 + |y|1+α)
γ+1
H2

dy

� C|t− r|
H2−γ−1

αH2

(∫ 1

0

y
γα
H2 dy +

∫ +∞

1

y
−1−γ−α

H2 dy

)

≡: C(α,H2, γ)|t− r|
−γ−1+H2

αH2 .

Then (∫ T

0

(∫
R

(∣∣∣∣∂G(r, z; t, x)∂x

∣∣∣∣
γ

· |G(r, z; t, x)|1−γ

) 1
H2

dz

)H2
H1

dr

)pH1

� C

(∫ T

0

|t− r|
−γ−1+H2

αH1 dr

)pH1

� C(H1, H2, γ, T ),

if γ < αH1 +H2 − 1. So

E|B2,1(t, x, y)
p � C(H1, H2, γ, T )|x− y|pγ .

Similarly,

E|B2,2(t, x, y)|p � C(H1, H2, γ, T )|x− y|pγ .
From the above estimates, it follows that

E|B2(t, x, y)|p � C(H1, H2, γ, T )|x− y|pγ , γ ∈ (0, αH1 +H2 − 1) ⊂ (0, 1). (4.15)
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Together with (4.13)–(4.15), for γ ∈ (0,min{θ, αH1 +H2 − 1}), we have

E|u(t, x)− u(t, y)|p � C

[
|x− y|pθ + |x− y|p +

∫ t

0

sup
z∈R

E|u(r, z + x− y)− u(r, z)|pdr + |x− y|pγ
]

� C

[
|x− y|pγ +

∫ t

0

sup
z∈R

E|u(r, z + x− y)− u(r, z)|pdr
]
.

Then Gronwall’s lemma yields

E|u(t, x)− u(t, y)|p � C|x− y|pγ , with γ ∈ (0,min{θ, αH1 +H2 − 1}). (4.16)

This completes the proof.

5 Existence of the density of the law of the solution

In this section, we shall prove the absolute continuity of the law of the solution {u(t, x) : (t, x) ∈ [0, T ]×R}
given in Section 3. We first prove u(t, x) ∈ D

1,2 and then the derivative Du(t, x).

Proposition 5.1. Under the assumptions in Theorem 3.1, if we further assume that q(s, y, ·) ∈
C1

b ([0, T ]× R× R), then for (t, x) ∈ [0, T ]× R, the solution u(t, x) ∈ D
1,2 and

Dv,zu(t, x) =

∫ t

v

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))Dv,zu(s, y)dyds+G(v, z; t, x), (5.1)

for all v � t and z ∈ R.

Proof. Let u(n) be the solution of the following stochastic partial differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u0(t, x) =

∫
R

G(0, y; t, x)u0(y)dy,

u(n+1)(t, x) = u0(t, x) +

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q(s, y, u(n)(s, y))dyds

+

∫ t

0

∫
R

G(s, y; t, x)WH(s, y).

(5.2)

Then a similar argument to that in Zhang and Zheng [38] shows that for each n ∈ N and h ∈ L2
Ψ,

u(n)(t, x) ∈ Dh and it satisfies that

Dhu
(n)(t, x) =

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(n−1)(s, y))Dhu

(n−1)(s, y)dyds+ 〈G(·, ·; t, x), h〉L2
Ψ
. (5.3)

Since u(n)(t, x) → u(t, x) as n → ∞ in Lp(Ω) sense, there exists a random field uh(t, x) such that

Dhu
(n)(t, x) → uh(t, x) as n→ ∞ uniformly on (t, x) ∈ [0, T ]× R, and the latter satisfies that

uh(t, x) =

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))uh(s, y)dyds+ 〈G(·, ·; t, x), h〉L2

Ψ
. (5.4)

Hence, from the closeness of the operator Dh, it follows that u(t, x) ∈ Dh, Dhu(t, x) = uh(t, x) and

Dhu(t, x) =

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))Dhu(s, y)dyds+ 〈G(·, ·; t, x), h〉L2

Ψ
. (5.5)

Next, we proceed to prove that u(t, x) ∈ D
1,2. Recall {hn, n � 1} in Section 2. By (5.5),

E|Dhnu(t, x)|2 = E

∣∣∣∣
∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))Dhnu(s, y)dyds+ 〈G(·, ·; t, x), hn〉L2

Ψ

∣∣∣∣
2
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� CE

[ ∫ t

0

∫
R

(
∂G

∂y
(s, y; t, x)

)2

(Dhnu(s, y))
2dyds

]
+ C〈G(·, ·; t, x), hn〉2L2

Ψ
, (5.6)

where C > 0 is a constant that may change from line to line in this section. Set

Um(t) = sup
x∈R

E
m∑

n=1

|Dhnu(t, x)|2.

Then by (5.6) and Hölder’s inequality with p = q = 2, we have

Um(t) � CE

[ ∫ t

0

∫
R

(
∂G

∂y
(s, y; t, x)

)2

Um(s)dyds

]
+ C‖G(·, ·; t, x)‖2L2

Ψ

� C

∫ t

0

∫
R

(t− s)−2− 4
α |x− y|2α

(1 + (t− s)
1+α
α |x− y|1+α)4

Um(s)dyds+ C‖G(·, ·; t, x)‖2
L

1
H ([0,t]×R)

� C + C

∫ t

0

(t− s)−
3
αUm(s)ds. (5.7)

Then the Gronwall’s lemma yields that

Um(t) � CeCT 1− 3
α ,

where C is independent of m. Let m→ ∞, to get

sup
x∈R

E

∞∑
n=1

|Dhnu(t, x)|2 <∞.

That means that u(t, x) ∈ D
1,2.

Since u(t, x) is Ft-adapted, there exists a measurable functionDv,zu(t, x) ∈ L2
Ψ such thatDv,zu(t, x) = 0

if v > t and for any h ∈ L2
Ψ,

Dhu(t, x) = 〈Du(t, x), h〉L2
Ψ
. (5.8)

From (5.5), (5.8) and Fubini theorem, it follows that

〈Du(t, x), h〉L2
Ψ
=

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))Dhu(s, y)dyds+ 〈G(·, ·; t, x), h〉L2

Ψ

=

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))〈Du(s, y), h〉L2

Ψ
dyds+ 〈G(·, ·; t, x), h〉L2

Ψ

=

∫ t

0

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))dyds

×
∫
[0,s]2

∫
R2

Dv,zu(s, y)h(v
′, z′)ΨH(v, v′; z, z′)dzdz′dvdv′ + 〈G(·, ·; t, x), h〉L2

Ψ

=

∫
[0,t]2

∫
R2

h(v′, z′)ΨH(v, v′; z, z′)dzdz′dvdv′

×
∫ t

v

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))dyds+ 〈G(·, ·; t, x), h〉L2

Ψ
.

Therefore

Dv,zu(t, x) =

∫ t

v

∫
R

∂G

∂y
(s, y; t, x)q′(s, y, u(s, y))Dv,zu(s, y)dyds+G(v, z; t, x).

Thus the proof of the proposition is completed.

Theorem 5.2. Under the conditions in Theorem 3.1 and furthermore assume that q(s, y, ·) ∈ C1
b ([0, T ]

× R × R). Then for (t, x) ∈ [0, T ] × R, the law of the solution u(t, x) of (3.1) is absolutely continuous

with respect to Lebesgue measure.
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In order to prove Theorem 5.2, we firstly give a useful lemma.

Lemma 5.3. For ε ∈ (0, t), then there exists some constant C > 0 such that

sup
(s,y)∈[t−ε,t]×R

E

(∫ t

t−ε

∫
R

|Dv,zu(s, y)|2dzdv
)
< Cε. (5.9)

Proof. For s ∈ [t− ε, t], set

Lε(s, y) = E

(∫ s

t−ε

∫
R

|Dv,zu(s, y)|2dzdv
)
.

Then from the proof of Proposition 5.1, we get that

sup
(s,y)∈[0,T ]×R

Lε(s, y) <∞.

Recall (5.1), and then

Lε(s, y) � 2

[∫ s

t−ε

∫
R

|G(v, z; s, y)|2dzdv

+ E

∫ s

t−ε

∫
R

∣∣∣∣
∫ s

v

∫
R

∂G

∂y
(r1, z1; s, y)q(r1, z1, u(r1, z1))Dv,zu(r1, z1)dz1dr1

∣∣∣∣
2

dzdv

]
=: 2(Lε,1(s, y) + Lε,2(s, y)). (5.10)

With (3.3), it is easy to check that

Lε,1(s, y) � C

∫ s

t−ε

∫
R

(s− v)−
2
α

(1 + (s− v)−
1+α
α |y − z|1+α)2

dzdv

� C

∫ s

t−ε

(s− v)−
1
α dv

∫
R

1

(1 + |z|1+α)2
dz

� Cε1−
1
α , (5.11)

and

Lε,2(s, y) � C

∫ s

t−ε

sup
z1∈R

Lε(r1, z1)dr1 � Cε1−
1
α + C

∫ s

t−ε

sup
z1∈R

Lε,2(r1, z1)dr1. (5.12)

Then by Gronwall’s lemma, we get (5.9).

Proof of Theorem 5.2. To prove Theorem 5.2, we will adopt a technical argument, which was proposed

by Cardon-Weber [9].

By Proposition 2.7, it suffices to prove that

‖Du(t, x)‖L2
Ψ
> 0, a.s.

Notice that

‖Du(t, x)‖L2
Ψ
> 0 ⇔ ‖Du(t, x)‖L2([0,T ]×R) > 0.

Hence, we only need to prove that ‖Du(t, x)‖L2([0,T ]×R) > 0 a.s. For 0 < ε < t, recall (5.1), and we have∫ t

0

∫
R

|Dr,zu(t, x)|2dzdr �
∫ t

t−ε

∫
R

|Dr,zu(t, x)|2dzdr � C(I1(t, x, ε)− I2(t, x, ε)), (5.13)

where

I1(t, x, ε) =

∫ t

t−ε

∫
R

|G(r, z; t, x)|2dzdr

and

I2(t, x, ε) =

∫ t

t−ε

∫
R

∣∣∣∣
∫ t

r

∫
R

∂G

∂z1
(r1, z1; t, x)q

′(r1, z1, u(r1, z1))Dr,zu(r1, z1)dz1dr1

∣∣∣∣ dzdr.
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Similar to the proof of (5.11), there exists a constant K > 0 such that

I1(t, x, ε) = Kε1−
1
α . (5.14)

By (3.14) and Lemma 5.3, one gets

E|I2(t, x, ε)| �
∫ t

t−ε

∫
R

∂G

∂z1
(r1, z1; t, x)E

(∫ r1

t−ε

∫
R

|Dr,zu(r1, z1)|2dzdr
)
dz1dr1

� Cε

∫ t

t−ε

∫
R

∂G

∂z1
(r1, z1; t, x)dz1dr1

� Cε2−
1
α . (5.15)

Then for each ε0 > 0, according to (5.13)–(5.15),

P

(∫ t

0

∫
R

|Dr,zu(t, x)|2dzdr > 0

)
� sup

ε∈(0,ε0]

P (C(I1(t, x, ε)− I2(t, x, ε)) > 0)

� sup
ε∈(0,ε0]

P (I2(t, x, ε) � CI1(t, x, ε))

� 1− inf
ε∈(0,ε0]

{
1

Cε1−
1
α

E|I2(t, x, ε)|
}

� 1− inf
ε∈(0,ε0]

Cε = 1. (5.16)

Thus the proof of the theorem is complete.
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14 Gyöngy I, Nualart D. On the stochastic Burgers equation in the real line. Ann Probab, 1999, 27: 782–802

15 Hu Y. Heat equations with fractional white noise potentials. Appl Math Optim, 2001, 43: 221–243

16 Hu Y, Nualart D. Stochastic heat equation driven by fractional noise and local time. Probab Theory Related Fields,

2009, 143: 285–328

17 Jiang Y, Shi K, Wang Y. Large deviation principle for the fourth-order stochastic heat equations with fractional noises.

Acta Math Sin Engl Ser, 2010, 26: 89–106

18 Jiang Y, Shi K, Wang Y. Stochastic fractional Anderson models with fractional noises. Chin Ann Math Ser B, 2010,

31: 101–118

19 Jiang Y, Wang X, Wang Y. On a stochastic heat equation with first order fractional noises and applications to finance.

J Math Anal Appl, 2012, 396: 656–669

20 Jiang Y, Wei T, Zhou X. Stochastic generalized Burgers equations driven by fractional noises. J Differential Equations,

2012, 252: 1934–1961

21 Kolokoltsov V. Symmetric stable laws and stable-like jump-diffusions. Proc London Math Soc, 2000, 80: 725–768

22 Komatsu T. Markov processes associted with certain integro-differential operators. Osaka J Math, 1973, 10: 271–303

23 Komatsu T. Uniform estimates of fundamental solutions associted with non-local Dirichlet forms. Osaka J Math, 1995,

32: 833–860
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