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Abstract This paper is concerned with the multidimensional asymptotic stability of V-shaped traveling fronts

in the Allen-Cahn equation under spatial decaying initial values. We first show that V-shaped traveling fronts

are asymptotically stable under the perturbations that decay at infinity. Then we further show that there exists

a solution that oscillates permanently between two V-shaped traveling fronts, which indicates that V-shaped

traveling fronts are not always asymptotically stable under general bounded perturbations. Our main technique

is the supersolutions and subsolutions method coupled with the comparison principle.
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1 Introduction

In this paper, we consider the large time behavior of solutions to the following Allen-Cahn equation:⎧⎨
⎩
∂u

∂t
= Δu+ f(u), x ∈ R

n−2, y ∈ R, z ∈ R, t > 0,

u(x, y, z, 0) = u0(x, y, z), x ∈ R
n−2, y ∈ R, z ∈ R,

(1.1)

where the initial value u0 is assumed to be smooth and bounded, and the function f ∈ C1(R) satisfies

the following hypotheses:

(F1) f(−1) = f(1) = 0, f ′(−1) < 0, f ′(1) < 0.

(F2)
∫ 1

−1
f(s)ds > 0.

(F3) f(s) > 0 and f ′(s) < 0 for s < −1; f(s) < 0 and f ′(s) < 0 for s > 1.

By the continuity of f and the hypotheses (F1), there exist some positive constants δ± such that

f > 0 in (−∞,−1) ∪ (1− δ−, 1) and f < 0 in (−1,−1 + δ+) ∪ (1,∞). (1.2)

A typical example of such f is

f(u) = (u+ 1)(u− a)(1− u),

where |a| < 1 is a given number.
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It is known from [37] that the one-dimensional Allen-Cahn equation has a traveling front under the

bistable assumption on f . Namely, there exist a unique function φ : R → R and a unique constant l ∈ R

such that {
−φ′′ − lφ′ − f(φ) = 0,

φ(−∞) = 1 and φ(∞) = −1.
(1.3)

This function φ is called the planar traveling front of (1.1) on R, which has been extensively studied

since the pioneer works of Fisher [6] and Kolmogrov et al. [18]. One can refer to [1, 2, 5, 21, 37, 40] and

the references therein for the existence, uniqueness and stability of the planar traveling front in one or

higher dimensions. Here, it should be emphasized that the stability of planar fronts in multidimensional

spaces has recently been studied by many authors. For example, Matano et al. [25] first considered

the asymptotic stability of planar traveling fronts in R
N under the spatial decaying and non-decaying

(almost periodic perturbations) perturbations, then Matano and Nara [24] further studied how a planar

front behaves when arbitrarily large (but bounded) perturbation is given near the front region. They

showed that the behavior of the disturbed front can be approximated by that of the mean curvature flow

with a drift term for all large time t up to +∞. Roquejoffre et al. [30] studied the large time behavior

of planar traveling fronts and showed that the dynamics of planar fronts are similar to that of the heat

equation. For earlier related results, we refer to [17, 20, 41]. In addition, we also refer to [22, 23] for

monostable reaction-diffusion equations.

Recently, the study on nonplanar traveling fronts has attracted much attention. For example, Ninomiya

and Taniguchi [28, 29] studied the existence, uniqueness and asymptotic stability of V-shaped traveling

fronts to (1.1) in R
2; Taniguchi [35, 36] considered a pyramidal traveling front in R

3 which is uniquely

determined and asymptotically stable. For other related results on nonplanar traveling fronts, we refer

to [3, 4, 8–15, 19, 30, 34, 38] for autonomous reaction-diffusion equations and [31, 39] for non-autonomous

equations (i.e., f = f(u, t)).

In this paper, we are interested in the multidimensional stability of nonplanar traveling fronts in R
n.

In particular, we deal with the stability of V-shaped traveling fronts to the Cauchy problem (1.1), where

a V-shaped traveling front is referred to V (y, s) = V (y, z−ct) for some positive constant c. For simplicity,

we still denote V (y, s) by V (y, z). We remark here that the profile equation for V is

Vyy + Vzz + cVz + f(V ) = 0. (1.4)

Just as Volpert et al. [37] pointed out that the stability of nonplanar traveling fonts is an important

problem, which has been already investigated by some authors. See [10] for the conical-shaped traveling

fronts with combustion nonlinearity; [16] for the Fisher-KPP equation; [28,29] and [35,36] for the Allen-

Cahn equation. It should be remarked that the exponential stability of V-shaped traveling fronts recently

has been established by Sheng et al. [32, 33] by employing the squeezing technique combined with the

comparison principle.

However, as far as we know, there are no results devoted to the multidimensional stability of V-shaped

traveling fronts in multidimensional spaces. It is then natural to ask what about the stability of V-

shaped traveling fronts under appropriate perturbations in multidimensional space. Inspired by [24, 25],

we first show that the V-shaped traveling front is asymptotic stable with the algebraic convergence rate

under spatially decaying initial perturbations, then we further prove that the V-shaped traveling front

is not asymptotically stable under general bounded initial perturbations. The main technique we use

is the supersolution and subsolution method coupled with the comparison principle. To the best of our

knowledge this is probably the first time that the multidimensional asymptotic stability of V-shaped

traveling fronts is considered.

The main results are as follows.

Theorem 1.1. Assume that (F1)–(F3) hold. Assume further that the initial value u0(x, y, z) of (1.1)

satisfies

lim
R→∞

sup
|x|+|y|+|z|�R

|u0(x, y, z)− V (y, z)| = 0.
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Then the solution u(x, y, z, t) to (1.1) satisfies

lim
t→∞ sup

(x,y,z)∈Rn

|u(x, y, z, t)− V (y, z − ct)| = 0. (1.5)

Theorem 1.1 shows that the V-shaped traveling front is asymptotically stable under the initial pertur-

bations that decay at infinity. The following theorem gives the convergence rate for (1.5) when the initial

perturbations belong to L1 in a certain sense.

Theorem 1.2. Assume that (F1)–(F3) hold. Assume further that the initial value u0(x, y, z) of (1.1)

is given by

u0(x, y, z) = V (y, z − v0(x)), (1.6)

for some smooth function v0 ∈ L1(Rn−2) ∩ L∞(Rn−2). Then the solution u(x, y, z, t) to (1.1) satisfies

sup
(x,y,z)∈Rn

|u(x, y, z, t)− V (y, z − ct)| � Ct−
n−2
2 , t > 0, (1.7)

where C > 0 is a constant depending on f , ‖v0‖L1(Rn−2) and ‖v0‖L∞(Rn−2).

The following proposition shows that the convergence rate (1.7) is optimal in some sense.

Proposition 1.3. Let u0 be defined as in (1.6) and assume that either v0 � 0, v0 �≡ 0 or v0 � 0,

v0 �≡ 0. Then there exist constants C1 > 0 and C2 > 0 such that

C1

(1 + t)
n−2
2

� sup
(x,y,z)∈Rn

|u(x, y, z, t)− V (y, z − ct)| � C2

t
n−2
2

, t � 0. (1.8)

Remark 1.4. It is known from [28, 29] that the V-shaped traveling front of (1.1) is asymptotically

stable in R
2. However, the large time behavior of V-shaped traveling fronts of (1.1) is unknown in R

n

with n � 3. Our Theorems 1.1 and 1.2 show that the V-shaped traveling front is not only asymptotic

stable, but also is algebraic stable under certain perturbations. In particular, our Proposition 1.3 further

implies that this convergence rate is optimal in some sense. Comparing these results with those of [32]

highlights the gap between the dynamics in dimension 2 and dimension n with n � 3.

Next, we present a result on the existence of a solution to (1.1) that oscillates permanently between

two V-shaped traveling fronts.

Theorem 1.5. Let n = 3 and (F1)–(F3) hold. Then there exists a bounded function v∗0(x) on R with

‖v∗0‖L∞(R) = δ such that the solution u(x, y, z, t) to (1.1) with u(x, y, z, 0) = V (y, z − v∗0(x)) satisfies

lim
m→∞ sup

|x|�m!−1,(y,z)∈R2

|u(x, y, z, tm)− V (y, z − ctm + (−1)mδ)| = 0,

where tm = m(m!)2/4.

Remark 1.6. In fact, Roquejoffre and Roussier-Michon [30] showed that the asymptotic stability of

conical traveling fronts breaks down as soon as the assumptions are relaxed as low as the initial value

of (1.1) lies between two conical fronts. Our result further showed that the ω-limit set of (1.1) is nontrivial

in general. In particular, we find two ω-limit points of (1.1).

This paper is organized as follows. We summarize some preliminaries including some known results of

the curvature flow problem in Section 2. Section 3 is due to prove Theorems 1.1 and 1.2 by constructing

various type of supersolutions and subsolutions. In the proof, we will express the solution u(x, y, z, t) in

a moving frame with speed c, so that the V-shaped traveling front can be viewed as stationary state. Let

u(x, y, z, t) = w(x, y, s, t), s = z − ct.

Then the equation (1.1) is rewritten as

wt = Δw + cws + f(w), x ∈ R
n−2, y ∈ R, z ∈ R, t > 0,
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where Δ := ∂2/∂x2
1 + · · · + ∂2/∂x2

n−2 + ∂2/∂y2 + ∂2/∂s2. For simplicity, we denote w(x, y, s, t) as

u(x, y, z, t) and consider the problem of the form

ut = Δu+ cuz + f(u), x ∈ R
n−2, y ∈ R, z ∈ R, t > 0, (1.9)

u(x, y, z, 0) = u0(x, y, z), x ∈ R
n−2, y ∈ R, z ∈ R. (1.10)

In Section 4, by using the supersolutions and subsolutions constructed in Section 3, we prove that the

V-shaped traveling front is not always asymptotically stable, i.e., we prove Theorem 1.5. We give some

discussions in the last section.

2 Preliminaries

In this section, we state some known results of the curvature flow problem [26,27] and give the definition

of the supersolution and subsolution.

The mean curvature flow for a graphical surface u(x, t) on R
n−2 is given by the following Cauchy

problem:

vt√
1 + |∇v|2 = div

( ∇v√
1 + |∇v|2

)
, x ∈ R

n−2, t > 0, (2.1)

v(x, 0) = v0(x), x ∈ R
n−2. (2.2)

Taking some constant k > 0 large, we obtain

0 = vt −
√
1 + |∇v|2 · div

( ∇v√
1 + |∇v|2

)

= vt −Δv −
n−2∑
i,j=1

vxivxjvxixj√
1 + |∇v|2

� vt −Δv − k|∇v|2, (2.3)

under the assumption that the first and the second derivatives of u with respect to x are all bounded on

R
n−2. It is obvious from (2.3) that v(x, t) is a subsolution to the following Cauchy problem:

v+t = Δv+ + k|∇v+|2, x ∈ R
n−2, t > 0,

v+(x, 0) = u0(x), x ∈ R
n−2.

Taking the Cole-Hopf transformation w(x, t) = exp(kv(x, t)), we have

wt = Δw, x ∈ R
n−2, t > 0,

w(x, 0) = exp(ku0(x)), x ∈ R
n−2.

This is a standard heat equation and the solution is given by

w(x, t) =

∫
Rn−2

Γ(x− η, t) exp(ku0(η))dη, (2.4)

where Γ is defined by

Γ(ξ, τ) :=
1

(4πτ)
n−2

2

exp

(−|ξ|2
4τ

)
.

Thus, the explicit expression for v+(x, t) is given by

v+(x, t) =
1

k
ln

(∫
Rn−2

Γ(x− η, t) exp(ku0(η))dη

)
, (2.5)
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which gives an upper estimate for u(x, t) to (2.1) and (2.2). The lower estimate can be obtained in a

similar way by considering the equation

v−t = Δv− − k|∇v−|2, x ∈ R
n−2, t > 0

with initial value v−(x, 0) = u0(x).

Now, we introduce a lemma which gives the large time behavior of solutions to

v±t = Δv± ± k|∇v±|2, x ∈ R
n−2, t > 0.

Lemma 2.1 (See [25, Lemmas 2.4 and 2.5]). Let k > 0 be any constant and v±(x, t) be solutions to

the following Cauchy problems:

v±t = Δv± ± k|∇v±|2, x ∈ R
n−2, t > 0,

v±(x, 0) = v0(x).

If the initial value v0(x) is bounded and continuous on R
n−2 and satisfies lim|x|→∞ |v0(x)| = 0, then the

solutions v±(x, t) satisfy

lim
t→∞ sup

x∈Rn−2

|v±(x, t)| = 0, (2.6)

respectively. Moreover, if we further assume that v0 ∈ L1(Rn−2), then we have

sup
x∈Rn−2

|v±(x, t)| � 1

k
‖ exp(kv0)− 1‖L1(Rn−2) · t−

n−2
2 , t > 0. (2.7)

Next, we give the definition of the supersolution and subsolution.

Definition 2.2. A function u+(x, y, z, t) ∈ C2,1(Rn × (0,∞)) is called a supersolution to (1.9), if it

satisfies
∂u+

∂t
� Δu+ + cu+

z + f(u+), (x, y, z) ∈ R
n, t > 0. (2.8)

Similarly, we can define a subsolution u−(x, y, z, t) by reversing the inequality in (2.8).

3 Asymptotic stability under spatially decaying initial perturbations

In this section, we first show that the second derivative of the V-shaped traveling front with respect to

the variable z can be dominated by its first derivative. Then we prove that the functions defined by

u±(x, y, z, t) := V (y, z − v±(x, t))

are a supersolution and a subsolution to (1.9) and (1.10), respectively. Finally, we give proofs of Theo-

rems 1.1 and 1.2 and Proposition 1.3.

We begin with a lemma which shows the monotonicity of V-shaped traveling fronts.

Lemma 3.1 (See [28, Lemmas 4.3 and 4.4] and [32, Lemma 2.2]). Let V (y, z) be a V-shaped traveling

front to (1.4). Then there exist a constant γ, δ0 > 0 and a constant R∗ > 0 such that

− Vz � γ > 0 if −1 + δ0 � V (y, z) � 1− δ0,

− Vz > 0, (y, z) ∈ R
2,

and

lim
R∗→∞

sup
|z−m∗|y||�R∗

|Vz | = 0, (y, z) ∈ R
2.

Now, we introduce a lemma which plays a key role in constructing supersolutions and subsolutions.



1974 Sheng W J et al. Sci China Math October 2013 Vol. 56 No. 10

Lemma 3.2. There exists a constant k > 0 which depends only on n, α and f such that

kVz(y, z) � Vzz(y, z) � −kVz(y, z). (3.1)

Proof. We note that the function V satisfy

ΔV + cVz + f(V ) = 0, (y, z) ∈ R
2.

Following this equation, we have

ΔVz + c(Vz)z + f ′(V )Vz = 0, (y, z) ∈ R
2. (3.2)

It follows from [7, Theorem 6.2] that

|Vz |∗2,α;B(x,2) � C1|Vz |0;B(x,2), (3.3)

where C1 is a constant depending on n, α and the coefficients of (3.2). Here

|Vz |∗k,α;B(x,2) := |Vz|∗k;B(x,2) + [Vz ]
∗
k,α;B(x,2),

|Vz |∗k;B(x,2) := |Vz|∗k,0;B(x,2) =

k∑
j=0

[Vz ]
∗
j,α;B(x,2),

[Vz ]
∗
k,α;B(x,2) := sup

x,y∈B(x,2),β=k

dk+α
x,y

|DβVz(x) −DβVz(y)|
|x− y|α , 0 < α � 1,

where

dx,y := min{dx, dy}
and

dx := dist(x, ∂B(x, 2)), dy := dist(y, ∂B(x, 2)).

In addition, if B(x, 1) ⊂⊂ B(x, 2) and ρ = dist(B(x, 1), ∂B(x, 2)), then it follows from these interior

norms that

min
{
1, ρk+α

} |Vz |k,α;B(x,1) � |Vz |∗k,α;B(x,2).

Thus, we have

|Vz |2,α;B(x,1) � |Vz|∗2,α;B(x,2). (3.4)

Combining (3.3) and (3.4), we get

|Vz |2,α;B(x,1) � C1|Vz |0;B(x,2).

Then the Harnack inequality implies that there exists another constant C′
1 such that

|Vz |2,α;B(x,1) � −C1C
′
1Vz,

because Vz < 0. Taking

k := C1C
′
1,

we get

|Vzz | � −kVz ,

which yields the conclusion of the lemma. The proof is complete.

Next, we show that the functions V (y, z − v±(x, t)) are a supersolution and a subsolution to (1.9)

and (1.10), respectively. In the sequel, the signal, Δx and ∇x denote the (n− 2)-dimensional Laplacian

and the (n− 2)-dimensional gradient operator, respectively.
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Lemma 3.3. Suppose that the functions v+(x, t) and v−(x, t) are the solutions to the following problem:

∂

∂t
v+(x, t) = Δxv

+ + k|∇xv
+|2, x ∈ R

n−2, t > 0, (3.5)

∂

∂t
v−(x, t) = Δxv

− − k|∇xv
−|2, x ∈ R

n−2, t > 0 (3.6)

with initial value, v+(x, 0) and v−(x, 0), respectively, where k > 0 is the constant defined in Lemma 3.2.

Let u(x, y, z, t) be a solution to (1.9) and (1.10) with the initial value u0(x, y, z) satisfying

V (y, z − v−(x, 0)) � u0(x, y, z) � V (y, z − v+(x, 0)), (x, y, z) ∈ R
n.

Then we have

V (y, z − v−(x, t)) � u(x, y, z, t) � V (y, z − v+(x, t)), (x, y, z) ∈ R
n, t � 0. (3.7)

Proof. We only show that the former inequality of (3.7) holds, since the latter case can be proven in a

similar way. In order to prove it, it needs only to show that the function u−(x, y, z, t) := V (y, z−v−(x, t))
is a subsolution from the comparison principle. Namely, it satisfies

L[u−] := u−
t −Δu− − cu−

z − f(u−) � 0. (3.8)

Indeed, we have

L[u−] = −v−t Vz −
n−2∑
i=1

(−v−xixi
Vz + (vxi)

2Vzz)− Vyy − Vzz − cVz − f(V )

= −v−t Vz +Δxv
−Vz − |∇xv

−|2Vzz

= |∇xv
−|2(kVz − Vzz) � 0.

In the second equality, we use the fact Vyy +Vzz + cVz + f(V ) = 0, and the last inequality is obtained by

using (3.6) and Lemma 3.2. The proof is complete.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Define the function v+(x, t) as in Lemma 3.3. It follows that

u(x, y, z, t) � V (y, z − v+(x, t)) � V (y, z) + ‖Vz‖L∞(R2) sup
x∈Rn−2

|v+(x, t)|.

Thus by Lemma 2.1, we have

u(x, y, z, t)− V (y, z) � Ct−
n−2
2 .

Similarly, we can use Lemma 2.1 to obtain

u(x, y, z, t)− V (y, z) � −Ct−
n−2
2 .

Combining these two inequalities, we prove Theorem 1.2. The proof is complete.

Now we prove Proposition 1.3.

Proof of Proposition 1.3. We only consider the case where v0 � 0, v0 �≡ 0, since the other case can be

discussed in a similar way. By Theorem 1.2 and (3.7), it needs only to show that the solution v(x, t) to

the problem

vt = Δv − k|∇xv|2, x ∈ R
n−2, t > 0, (3.9)

v(x, 0) = v0(x), x ∈ R
n−2 (3.10)
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satisfies v(0, t) � C(1 + t)−(n−2)/2 for some constant C > 0. Indeed, the first inequality of (3.7) yields

that

u(0, 0, 0, t) � V (0,−v(0, t))

� V (0, 0) + min
z∈[−‖v‖L∞(Rn−2),0]

|Vz(0, z)| · v(0, t)

� V (0, 0) + C ′(1 + t)−
n−2
2 , t � 0.

Similar to (2.5), we can obtain that the explicit expression of the solution to (3.9) and (3.10) is given by

v(x, t) = − 1

k
ln

(∫
Rn−2

Γ(x− η, t) exp(−kv0(η))dη

)
.

Since v0 � 0, v0 �≡ 0, there exist a constant δ > 0 and a nonempty open set D ⊂ R
n−2 such that v0 � δ

for x ∈ D. Thus, we have

v(x, t) � − 1

k
ln

(
1−

∫
D

Γ(x− η, t)(1 − exp(−kδ))dη

)

� − 1

k
ln
(
1− |D|(1− exp(−kδ)) ·min

η∈D
Γ(x− η, t)

)

� |D|
k

(1− exp(−kδ)) ·min
η∈D

Γ(x− η, t),

which implies v(0, t) � C ′(1 + t)−(n−2)/2. This completes the proof.

In order to prove Theorem 1.1, we construct some new types of supersolutions and subsolutions.

Lemma 3.4. Let k > 0 be defined as in Lemma 3.2. Then there exist some constants δ0 > 0, β > 0

and σ � 1 such that, for any δ ∈ (0, δ0] and any functions v±(x, t) satisfying

v±t = Δxv
± ± k|∇xv

±|2,
the functions defined by

u±(x, y, z, t) := V
(
y, z − v±(x, t)∓ σδ

(
1− e−βt

))± δe−βt (3.11)

are a supersolution and a subsolution to (1.9) and (1.10), respectively.

Proof. Indeed, we have

L[u+] = −v+t Vz − σδβe−βtVz − δβe−βt + (Δxv
+)Vz

− |∇xv
+|2Vzz − Vyy − Vzz − cVz − f(V + δe−βt)

= (−v+t +Δxv
+)Vz − |∇xv

+|2Vzz − σδβe−βtVz

− δβe−βt − f(V + δe−βt) + f(V )

� (−kVz − Vzz)|∇xv
+|2 − σδβe−βtVz − δβe−βt

− δe−βt

(∫ 1

0

f ′(V + τδe−βt)dτ

)

� δe−βt

(
− σβVz − β −

∫ 1

0

f ′(V + τδe−βt)dτ

)
.

From (F1) and (F3), there exist some constants k1 > 0 and δ0 > 0 such that

−f ′(s) � k1 > 0, s ∈ [−1− 2δ0,−1 + 2δ0] ∪ [1− 2δ0, 1 + 2δ0]. (3.12)

For −1 + δ0 � V (y, ξ(t)) � 1− δ0, where ξ(t) := z − v+(x, t) − σδ(1− e−βt), by Lemma 3.1 we have

−σβVz − β −
∫ 1

0

f ′(V + τδe−βt)dτ � β

(
γσ − 1− M

β

)
,
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where

M := max
−2�s�2

f ′(s). (3.13)

For V < −1 + δ0 or V > 1− δ0, it follows from Lemma 3.1 and (3.12) that

−σβVz − β −
∫ 1

0

f ′ (V + τδe−βt
)
dτ � k1 − β.

Taking β small and σ large as

0 < β < k1, σ >
β +M

βγ
,

we get L[u+] � 0. Namely, u+(x, y, z, t) is a supersolution to (1.9). Similarly, we can prove that

u−(x, y, z, t) is a subsolution of (1.9). This completes the proof.

To prove Theorem 1.1, we need another auxiliary lemma.

Lemma 3.5. Suppose that the initial value u0 satisfies

lim
R→∞

sup
|x|+|y|+|z|�R

|u0(x, y, z)− V (y, z)| = 0. (3.14)

Then, for any fixed T > 0, the solution to (1.9) and (1.10) satisfies

lim
R→∞

sup
|x|+|y|+|z|�R

|u(x, y, z, T )− V (y, z)| = 0.

Proof. Define a function w(x, y, z, t) as

w(x, y, z, t) := u(x, y, z, t)− V (y, z).

Then w(x, y, z, t) is the solution to the following Cauchy problem:

wt = Δw + cwz + f ′(V + θw)w, x ∈ R
n−2, y ∈ R, z ∈ R, t > 0, (3.15)

w(x, y, z, 0) = u0(x, y, z)− V (y, z), x ∈ R
n−2, y ∈ R, z ∈ R,

where θ(x, y, z, t) is a function that satisfies 0 � θ(x, y, z, t) � 1. In order to prove this lemma, it suffices

to consider the case where w(x, y, z, 0) � 0 and the case where w(x, y, z, 0) � 0. In the sequel, we assume

that w(x, y, z, 0) � 0, since the other cases can be treated in the same way.

By the assumption (F3), it is easy to find that there exists a constant K > 0 such that u(x, y, z, t) � K

for all (x, y, z) ∈ R
n, t > 0. Consequently, we have that there exists a positive constant N such that

|V + θ(x, y, z, t)w(x, y, z, t)| � N, x ∈ R
n−2, y ∈ R, z ∈ R, t > 0.

The maximum principle implies that w(x, y, z, t) � 0 since w(x, y, z, 0) � 0. By the assumptions (F1)

and (F3), and the boundedness of V + θw, there exists a constant M1 > 0 satisfying

wt = Δw + cwz + f ′(V + θw)w � Δw + cwz +M1w.

Then we have the estimate

w(x, y, z, t) � eM1t

∫
Rn−2

∫
R

∫
R

Z(x, y, z, ξ, η, ζ, t)(u0(ξ, η, ζ) − V (η, ζ))dξdηdζ,

where

Z(x, y, z, ξ, η, ζ, t) :=
1

(4πt)−
n
2
exp

(
− |x− ξ|2 + |y − η|2 + |z − ζ − ct|2

4t

)
.

It follows from (3.14) that, for any fixed ε > 0, there exists R such that

sup
|x|+|y|+|z|�R

|u0(x, y, z)− V (y, z)| < ε

2
e−M1T (3.16)
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for R > R. Direct calculations show that∫
Rn−2

∫
R

∫
R

Z(x, y, z, ξ, η, ζ, t)(u0(ξ, η, ζ) − V (η, ζ))dξdηdζ

=

∫
|ξ|+|η|+|ζ|�R

Z(x, y, z, ξ, η, ζ, t)(u0(ξ, η, ζ)− V (η, ζ))dξdηdζ

+

∫
|ξ|+|η|+|ζ|�R

Z(x, y, z, ξ, η, ζ, t)(u0(ξ, η, ζ) − V (η, ζ))dξdηdζ

:= I1 + I2.

Clearly, I1 � 1
2e

−M1T ε because of (3.16). On the other hand, since

lim
R→∞

sup
|x|+|y|+|z|�R

exp

(
− |x− ξ|2 + |y − η|2 + |z − ζ − cT |2

4T

)
= 0

for any |ξ|, |η|, |ζ| � R, there exists a constant R̂ > 0 such that I2 � 1
2e

−M1T ε for |x| + |y| + |z| � R̂.

Therefore, for R � max{R̂, R}, we have

sup
|x|+|y|+|z|�R

|w(x, y, z, T )| � eM1T (I1 + I2) � ε,

which implies that

lim
R→∞

sup
|x|+|y|+|z|�R

|w(x, y, z, T )| = 0 for any fixed T > 0.

The proof is complete.

Proof of Theorem 1.1. We only show the upper estimate, since the lower estimate can be proven sim-

ilarly. Take constants k > 0 as in Lemma 3.2 and σ � 1 as in Lemma 3.4. Set constants ε > 0 and

ε̂ = ε/(2‖Vz‖L∞(R2) + 1). Since f(s) < 0 for s > 1 by (F3), there exists a constant T1 � 0 such that

u(x, y, z, T1) � 1 +
ε̂

2σ
, (x, y, z) ∈ R

n.

Furthermore, Lemma 3.5 implies that there exists a constant R > 0 such that

sup
|x|+|y|+|z|�R

|u(x, y, z, T1)− V (y, z)| � ε̂

σ
, (x, y, z) ∈ R

n.

Then we can choose a function v0(x) � 0 satisfying lim|x|→∞ v0(x) = 0 and

u(x, y, z, T1) � V (y, z − v0(x)) +
ε̂

σ
, (x, y, z) ∈ R

n.

Let v(x, t) be the solution to the following equation:

vt = Δxv + k|∇xv|2, x ∈ R
n−2, t > 0,

v(x, 0) = v0(x), x ∈ R
n−2.

Then Lemma 2.1 implies that there exists a constant T2 > 0 satisfying v(x, t) � ε̂ for x ∈ R
n−2 and

t � T2. Consequently, by using the comparison principle and the supersolution constructed in Lemma 3.4,

we have

u(x, y, z, t) � V (y, z − v(x, t − T1)− ε̂(1− e−β(t−T1))) +
ε̂

σ
e−β(t−T1)

� V (y, z − 2ε̂) + ε̂

� V (y, z) + (2‖Vz‖L∞(R2) + 1)ε̂

� V (y, z) + ε

for t � T1 + T2. The proof is complete.
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4 Permanent oscillating solutions

In this section, we show that the V-shaped traveling fronts are not asymptotically stable under general

bounded perturbations. In fact, we prove that even very small perturbations to the V-shaped traveling

fronts can lead to permanent oscillation.

By combining Lemma 3.3 and the following Lemma 4.1, we construct a sequence of supersolutions

and a sequence of subsolutions that push the solution back and forth in the z-direction, thus forcing the

solution to oscillate permanently with non-decaying amplitude.

Lemma 4.1 (See [24, Lemmas 3.1 and 3.2]). Let k > 0 be defined as in Lemma 3.2 and v±(x, t) be

solutions to the following Cauchy problem:

v±t = v±xx ± kv±, x ∈ R, t > 0,

v±(x, 0) = v±0 (x), x ∈ R,

respectively. Suppose that initial values v±0 (x) are all bounded functions on R and satisfy

v+0 (x) � δ, x ∈ R,

v+0 (x) � −δ, |x| ∈ [m! + 1, (m+ 1)!− 1]

and

v−0 (x) � −δ, x ∈ R,

v−0 (x) � δ, |x| ∈ [m! + 1, (m+ 1)!− 1]

for some constant δ > 0 and some integer m � 2, respectively. Then there exists a constant C > 0 which

only depends on δ and k such that solutions v±(x, t) satisfying

sup
|x|�m!−1

v+(x, T ) � −δ + C

∫
|ζ|∈[0,2/

√
m]∪[

√
m,∞]

e−ζ2

dζ

and

sup
|x|�m!−1

v−(x, T ) � δ − C

∫
|ζ|∈[0,2/

√
m]∪[

√
m,∞]

e−ζ2

dζ,

respectively, where T = m(m!)2/4.

Proof of Theorem 1.5. Let

Im = [m! + 1, (m+ 1)!− 1], Ĩm = [0,m!] ∪ [(m+ 1)!,∞].

Define two sequences of smooth functions {v±0,i(x)}i=1,2,... such that

|v+0,i(x)| � δ, x ∈ R and v+0,i(x) =

{
−δ, |x| ∈ I2i,

δ, |x| ∈ Ĩ2i

and

|v−0,i(x)| � δ, x ∈ R and v−0,i(x) =

{
δ, |x| ∈ I2i+1,

−δ, |x| ∈ Ĩ2i+1,

respectively. Now we can choose a function v∗0(x) ∈ C∞(R) satisfying

v−0,i(x) � v∗0(x) � v+0,i(x) for all i � 1.

Let u∗(x, y, z, t) be the solution to (1.9) and (1.10) with u∗(x, y, z, 0) = V (y, z − v∗0(x)) and v+i (x, t) be

the solution to the following problem:

v+i,t = v+i,xx + k(v+i,x)
2, x ∈ R, t > 0,
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v+i (x, 0) = v+0,i(x), x ∈ R.

By the definition of the function v∗0(x), we have

V (y, z + δ) � V (y, z − v∗0(x)) � V (y, z − v+0,i(x)) � V (y, z − δ).

Thus Lemma 3.3 yields that

V (y, z + δ) � u∗(x, y, z, t) � V (y, z − v+i (x, t)) � V (y, z − δ).

It follows from Lemma 4.1 that

V (y, z + δ) � sup
|x|�(2i)!−1

u∗(x, y, z, t2i)

� sup
|x|�(2i)!−1

V (y, z − v+i (x, t2i))

� V (y, z + δ) + ‖Vz‖L∞(R2) · C
∫
|ζ|∈[0,2/

√
2i]∪[

√
2i,∞]

e−ζ2

dζ,

where t2i = (2i)((2i)!)2/4. This implies that

lim
i→∞

sup
(y,z)∈R2

sup
|x|�(2i)!−1

|u∗(x, y, z, t)− V (y, z + δ)| = 0. (4.1)

On the other hand, by using Lemma 4.1 again for v− and the inequality v∗0(x) � v−0,i(x) for i = 1, 2, . . . ,

we have

V (y, z − δ) � sup
|x|�(2i+1)!−1

u∗(x, y, z, t2i+1)

� sup
|x|�(2i+1)!−1

V (y, z − v−i (x, t2i+1))

� V (y, z − δ)− ‖Vz‖L∞(R2) · C
∫
|ζ|∈[0,2/

√
2i+1]∪[

√
2i+1,∞]

e−ζ2

dζ,

where t2i+1 = (2i+ 1)((2i+ 1)!)2/4. This yields that

lim
i→∞

sup
z∈R

sup
|x|�(2i+1)!−1

|u∗(x, y, z, t)− V (y, z − δ)| = 0. (4.2)

The conclusion of Theorem 1.5 then obviously follows from (4.1) and (4.2). The proof is complete.
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