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Abstract We consider the existence of the ground states solutions to the following Schrödinger equation:

−Δu+ V (x)u = f(u), u ∈ H1(RN ),

where N � 3 and f has critical growth. We generalize an earlier theorem due to Berestycki and Lions about the

subcritical case to the current critical case.
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1 Introduction

In this paper, we are concerned with the following problem:

−Δu+ V (x)u = f(u), u ∈ H1(RN ), (1.1)

where N � 3. Such equations arise in various branches of mathematical physics and they have been the

subject of extensive study in recent years. We recall that u is said to be a ground state of (1.1) if and only

if u solves (1.1) and minimizes the functional associated with (1.1) among all possible nontrivial solutions.

The problem of finding such a type of solutions is a very classical problem. It has been introduced in [7].

Later, in the celebrated papers [5,6], almost necessary and sufficient conditions for the existence of ground

states to the problem

−Δu = h(u), u ∈ H1(RN ) (1.2)

are given by Berestycki and Lions [6] when N � 3 and Berestycki et al. [5] when N = 2. In [6], Berestycki

and Lions assumed that the following conditions hold for h:

(H1) h(s) ∈ C(R,R) is odd;

(H2) −∞ < lim infs→0
h(s)
s � lim sups→0

h(s)
s = −a < 0 for N � 3;

(H3) When N � 3, lim sups→∞
h(s)

|s|
N+2
N−2

� 0;

(H4) There exists ξ0 > 0 such that H(ξ0) =
∫ ξ0
0 h(s)ds > 0.

Under the above assumptions, they showed that problem (1.2) has a radial ground state.

Theorem (See [6]). Assume that (H1)–(H4) hold. Then the problem (1.1) admits a radial ground state.

∗Corresponding author
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WhenN = 2, a theorem due to Berestycki et al. can be seen in [5]. The nonlinearity h(s) is independent

of x ∈ R
N in both papers [5,6], which makes it possible to work in the space H1

r (R
N ) of radial symmetric

functions. More important, the imbedding H1
r (R

N ) → Lp(RN ) is compact for p ∈ (2, 2∗). Note that (H3)

characterizes the problem to be subcritical.

Now the problem arises: what happens when h(s) = h(x, s) is of critical growth and depending on x

non-radially? Essentially, this open problem has not been completely solved so far by variational methods.

In this paper, and try to complete the study for this question, we consider the case

h = h(x, u) = −V (x)u + f(u).

Firstly, we assume that the potential V (x) satisfies the following hypotheses:

(V1) V (x) ∈ C(RN ,R);

(V2) there exists V0 > 0 such that infx∈RN V (x) � V0;

(V3) V (x) � V∞ := lim|x|→∞ V (x) <∞ for all x ∈ R
N ;

(V4) there exists a function φ ∈ L2(RN ) ∩W 1,∞(RN ) such that |x||∇V (x)| � φ2(x), ∀ x ∈ R
N .

The nonlinear term f(t) verifies the following conditions:

(f1) f ∈ C(R+,R);

(f2) f(t) = o(t) as t→ 0+;

(f3) limt→+∞
f(t)

t
N+2
N−2

= K > 0;

(f4) there exist D > 0 and 2 < q < 2∗ such that f(t) � Kt
N+2
N−2 +Dtq−1 for t � 0, where 2∗ = 2N

N−2 ;

(f5) f ∈ C1(R+,R), |f ′(t)| � C(1 + |t| 4
N−2 ) for t � 0 and some C > 0.

The first result of the present paper is about the case of constant potential V ≡ constant (which satisfies

(V1)–(V4) automatically), which plays an important role for studying the case of critical-nonradial case.

For this particular case, some hypotheses above may be dropped.

Theorem 1.1. Assume N = 3 with q > 4, or N � 4. If V (x) ≡ V > 0 and (f1)–(f4) hold, then the

problem (1.1) has a ground state.

This theorem can be regarded as a form of generalization of the Berestycki-Lions theorem to the critical

case. The ideas for proving Theorem 1.1 will play a key role for the following main theorem of this paper,

which concerns with the non-radial potential V and critical nonlinear term f :

Theorem 1.2. Assume N = 3 with q > 4, or N � 4. If (V1)–(V4) and (f1)–(f5) hold, then the problem

(1.1) has a ground state.

Theorem 1.2 can be regarded as a form of generalization of the Berestycki-Lions theorem to the critical

and non-radial case. The conditions (f3) and (f4) characterize the equation (1.1) to be the critical growth

case. The condition (f4) plays an important role to ensure the existence of ground states. Without (f4),

Theorem 1.1 may not hold. For example, if we consider f(t) = (t+)2
∗−1, where t+ = max{t, 0}, then f(t)

satisfies (f1)–(f3). The Pohozǎev type identity implies that there exists no nontrivial solution to (1.1).

However, (f5) is a technical condition. Actually, (f5) is not necessary when V (x) ≡ V > 0. In particular,

we do not need the following (super) quadratic condition:

μ

∫ t

0

f(s)ds � tf(t) for some μ � 2 and ∀ t � 0.

Recently, in [1], the authors made an attempt to complete the study made in [5,6] by considering a class

of nonlinearities with critical growth in R
N (N � 2). More precisely, for N � 3, they studied the problem

(1.1) with V (x) ≡ V > 0 and assumed the following hypotheses on f :

(G1) f ∈ C(R,R);

(G2) f(t) = o(t) as t→ 0+;

(G3) limt→+∞
f(t)

t
N+2
N−2

� 1;

(G4) 2
∫ t

0
f(s)ds � tf(t) for t � 0;

(G5) there exist λ > 0 and 2 < p < 2∗ such that f(t) � λtp−1 for t � 0.

The existence of a ground state to (1.1) was obtained under the above conditions with λ sufficiently large.
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We should mention that in our paper [17], we remove the condition (G4). Moreover, the restriction for

λ in (G5) is weakened quite a lot. However, for small λ > 0, it is still unknown whether problem (1.1)

has a ground state. In our Theorem 1.1, instead of (G5), we use a different condition (f4), imposing no

restriction on D > 0. Observe that it is not sure whether (f4) is a stronger condition than (G5) with λ

sufficiently large. The condition (f4) is first introduced in [18], where the authors assumed V (x) ≡ V > 0,

f ∈ C(R,R) is odd and satisfies the conditions (f2)–(f4). The existence of a radial ground state to

(1.1) was established for N = 3 with q > 4, or N � 4. Compared with [18], in our Theorem 1.1, we

use a different method, imposing no radial restrictions. In fact, a global compactness theorem in the

critical case is established, which plays a crucial role in Theorems 1.1 and 1.2. We believe that the global

compactness theorem is important and can be used in similar problems. It is interesting to know whether

the ground state in Theorem 1.1 and the radial ground state obtained in [18] are the same. However, we

cannot answer the question now.

We would like to say a few words on the subcritical growth case. In the work of [9], the authors

established the existence of a positive solution for an asymptotically linear elliptic problem on R
N . We

also mention the article [12] where the authors considered a more general Schrödinger equation

−Δu+ V (x)u = f(x, u), u ∈ H1(RN ). (1.3)

By using the Nehari manifold method, a more natural super-quadratic condition was considered and the

existence of a ground state solution was obtained. For other related results, we refer the reader to [2–4,8,

14] and the references therein. In particular, the paper [11] considered the problem (1.1) forN � 2. In [11],

they imposed the similar assumptions to (V1)–(V4) above, but moreover, f ′(0) < inf σ(−Δ+V (x)), where

σ(−Δ+ V (x)) denotes the spectrum of the self-adjoint operator −Δ+ V (x) : H2(RN ) → L2(RN ). The

nonlinear term f is of subcritical. They showed that under the above assumptions, problem (1.1) has

a ground state. The main obstacle in treating this class of Schrödinger equations is the boundedness of

the Palais-Smale sequence because no global condition is required on f . To overcome the difficulty, the

authors introduced the condition (V4). Then the desired result was obtained by applying an indirect

approach developed in [10]. In this paper, we complete [11]’s work in the critical growth case for N � 3.

We note that the functional associated with (1.2) is

J(u) =
1

2

∫
RN

|∇u|2dx−
∫
RN

H(u)dx,

where u ∈ H1(RN ) and H(u) =
∫ u

0 h(s)ds. Then a natural method to solve (1.2) is to look for critical

points of the functional J on H1(RN ) directly. However, general assumptions imposed on the nonlinearity

bring on the obstacle in proving the boundedness of the Palais-Smale sequences. Moreover, the lack

of compactness due to the unboundedness of the domain prevents us from checking the Palais-Smale

condition. To avoid the difficulties mentioned above, in [6], the authors investigated the constraint

minimization problem

min

{
1

2

∫
RN

|∇u|2dx : u ∈ H1(RN ),

∫
RN

H(u)dx = 1

}
, (1.4)

where N � 3. The Schwarz symmetrization allows to work in the space H1
r (R

N ), where the compact

embedding holds. By a change of scale, the minimum of (1.4) gives rise to the existence of a radial ground

state for the problem (1.2). The critical exponential growth makes the problem on R
N (N � 3) more

complicated due to the loss of the compactness for the embedding H1
r (R

N ) ↪→ L2∗(RN ). To overcome the

difficulties, the authors in [1, 18] obtained the existence of ground states by modifying the minimization

methods with constraints used in [6]. It should be noted that in [1, 6, 18], the radial symmetry plays

an essential role. Therefore, their methods are invalid for the non-radial case. In this paper, we use

a different approach to deal with the critical problem, which has the advantages of treating radial and

non-radial cases in a unified frame work.

The outline of this paper is as follows: in Section 2, we establish some important lemmas. In Section 3,

we employ an indirect approach to prove Theorem 1.1. In Section 4, we prove Theorem 1.2.
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Notation: • C denotes a universal positive constant.

• Br(x0) denotes the open ball centered at x0 with radius r > 0.

• S denotes the best Sobolev constant:

S := inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2dx

(
∫
RN |u|2∗dx) 2

2∗
.

2 Preliminary lemmas

Because we look for positive solutions, we may assume that f(t) = 0 for all t � 0. LetH = {u ∈ H1(RN ) :∫
RN V (x)|u|2dx < ∞} be the Hilbert space equipped with the norm ‖u‖2 =

∫
RN (|∇u|2 + V (x)|u|2)dx.

The functional associated with (1.1) is

I(u) =
1

2
‖u‖2 −

∫
RN

F (u)dx, (2.1)

where u ∈ H , F (u) =
∫ u

0
f(t)dt. The conditions (f1)–(f3) imply that the functional I : H 
→ R is of class

C1. Moreover, the critical points of I are weak solutions to (1.1). For simplicity, we may assume that

K = 1. Set g(t) = f(t)− (t+)
N+2
N−2 , where t+ = max{t, 0}. Then

I(u) =
1

2
‖u‖2 −

∫
RN

G(u)dx− 1

2∗

∫
RN

(u+)2
∗
dx,

where u ∈ H , G(u) =
∫ u

0
g(t)dt. For λ ∈ [ 12 , 1], we consider the family of functionals Iλ : H 
→ R defined

by

Iλ(u) =
1

2
‖u‖2 − λ

∫
RN

F (u)dx. (2.2)

The following abstract result established in [10] will be needed.

Theorem 2.1. Let X be a Banach space equipped with a norm ‖ · ‖X and let J ⊂ R
+ be an interval.

We consider a family (Iλ)λ∈J of C1-functionals on X of the form

Iλ(u) = A(u)− λB(u), ∀λ ∈ J,

where B(u) � 0, ∀u ∈ X, and either A(u) → +∞ or B(u) → +∞ as ‖u‖X → ∞. We assume there are

two points v1, v2 in X such that

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(Γ(t)) > max{Iλ(v1), Iλ(v2)}, ∀ λ ∈ J,

where Γ = {γ ∈ C([0, 1], X); γ(0) = v1, γ(1) = v2}. Then, for almost every λ ∈ J , there is a sequence

{vn} ⊂ X such that

(i) {vn} is bounded,

(ii) Iλ(vn) → cλ,

(iii) I ′λ(vn) → 0 in X−1.

Moreover, the map λ→ cλ is continuous from the left-hand side.

Now, we give a lemma which will be used later.

Lemma 2.2. Assume (V1)–(V2) and (f1)–(f4). Then the conclusions of Theorem 2.1 hold. Moreover,

if V (x) ∈ L∞(RN ), then for N = 3 with q > 4, or N � 4,

cλ <
1

N

S
N
2

λ
N−2

2

. (2.3)

Proof. Set X = H , ‖ · ‖X = ‖ · ‖, J = [ 12 , 1], A(u) =
1
2‖u‖2 and B(u) =

∫
RN F (u)dx in Theorem 2.1. It

is easy to see that B(u) � 0, ∀ u ∈ H and A(u) → +∞ as ‖u‖ → ∞. On the other hand, the conditions
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(f1)–(f3) imply that ∀ ε > 0, there exists C(ε) > 0 such that |F (u)| � ε|u|2 + C(ε)|u|2∗ . Hence, there

exists r > 0 such that for ‖u‖ = r, Iλ(u) � α > 0, where r, α are independent of λ. From (f4),

Iλ(u) �
1

2
‖u‖2 − 1

2

1

2∗

∫
RN

(u+)2
∗
dx− D

2q

∫
RN

(u+)qdx.

Set ϕ ∈ H such that ϕ � 0, ϕ �= 0. Then limt→+∞ Iλ(tϕ) = −∞. Thus, there exists t0 > 0 such that

‖t0ϕ‖ > r and Iλ(t0ϕ) < 0 for all λ ∈ [ 12 , 1]. We also have Iλ(0) = 0. Set v1 = 0, v2 = t0ϕ. Then the

conclusions of Theorem 2.1 hold. For ε, r > 0, define

uε(x) =
ψ(x)ε

N−2
4

(ε+ |x|2)N−2
2

, (2.4)

where ψ ∈ C∞
0 (B2r(0)) such that 0 � ψ(x) � 1 and ψ(x) = 1 on Br(0). It is well known that S is

attained by the functions ε
N−2

4

(ε+|x|2)N−2
2

. A direct calculation can derive that

∫
RN

|∇uε|2dx = (N − 2)2
∫
RN

|x|2
(1 + |x|2)N dx+O(ε

N−2
2 ) =: K1 +O(ε

N−2
2 ), (2.5)

∫
RN

|uε|2∗dx =

∫
RN

1

(1 + |x|2)N dx =: K2 +O(ε
N
2 ), (2.6)

∫
RN

|uε|tdx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kε
2N−(N−2)t

4 , t >
N

N − 2
,

Kε
N
4 | ln ε|, t =

N

N − 2
,

Kε
t(N−2)

4 , t <
N

N − 2
,

(2.7)

where K1, K2, K are positive constants. Moreover, S = K1

K
2
2∗
2

. By (2.5) and (2.6),

∫
RN |∇uε|2dx

(
∫
RN u2

∗
ε dx)

2
2∗

= S +O(ε
N−2

2 ). (2.8)

From the definition of cλ, it can be derived that cλ � supt�0 Iλ(tuε). Define y(t) := 1
2 t

2‖uε‖2 −
λ
2∗ t

2∗
∫
RN u

2∗
ε dx. We note that y(t) attains its maximum at t0 = ( ‖uε‖2

λ
∫
RN

|uε|2∗dx )
N−2

4 . Thus, y(t0) =

1
N [ ‖uε‖2

(λ
∫
RN

|uε|2∗dx)
2
2∗

]
N
2 . Observe that there exists t′ ∈ (0, 1) such that for ε < 1,

sup
0�t�t′

Iλ(tuε) � sup
0�t�t′

1

2
t2‖uε‖2 < 1

N

S
N
2

λ
N−2

2

. (2.9)

On the other hand, by (f4),

sup
t�t′

Iλ(tuε) � sup
t�0

y(t)− λ
D

q
(t′)q

∫
RN

uqεdx. (2.10)

For N > 4, we derive from (2.7), (2.8) and (2.10) that

sup
t�t′

Iλ(tuε) �
1

N

1

λ
N−2

2

S
N
2 +O(ε)− Cε

2N−(N−2)q
4 .

Observe that 2N−(N−2)q
4 < 1. Then there exists ε0 < 1 small enough such that for ε ∈ (0, ε0),

supt�t′ Iλ(tuε) <
1
N

1

λ
N−2

2

S
N
2 . Together with (2.9), we get (2.3) holds for N > 4. Similar argument

shows that (2.3) holds for N = 3 with q > 4 or N = 4.

Remark 2.3. In the present paper, we assume that for λ ∈ [ 12 , 1], if {un} ⊂ H is a sequence satisfying

‖un‖ <∞, Iλ(un) → cλ, I ′λ(un) → 0, (2.11)

then un � 0 in H . In fact, we have (I ′λ(un), u
−
n ) = o(1), where u−n = min{un, 0}. Thus, ‖u−n ‖ = o(1),

from which we can derive that ‖u+n ‖ <∞, Iλ(u
+
n ) → cλ and I ′λ(u

+
n ) → 0.
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We shall make use of the following Pohozǎev type identity. The proof can be done similarly to that

in [6] and details are omitted here.

Lemma 2.4. For λ ∈ [ 12 , 1], if uλ is a critical point of Iλ, then uλ satisfies

N − 2

2N

∫
RN

|∇uλ|2dx+
1

2N

∫
RN

∇V (x) x u2λdx =

∫
RN

[
λF (uλ)− 1

2
V (x)u2λ

]
dx. (2.12)

Remark 2.5. Standard argument shows that if (V1)–(V2) and (f1)–(f3) hold, then there exists β > 0

independent of λ ∈ [ 12 , 1] such that any nontrivial critical point uλ of Iλ satisfies ‖uλ‖ � β > 0.

Motivated by the ideas in [11], we establish the following lemma, which plays a fundamental role in

our proof. We emphasize that the argument in [11] cannot be applied directly. New techniques must be

developed to overcome the difficulty caused by the critical growth.

Lemma 2.6. Assume V (x) ≡ V > 0 and (f1)–(f4) hold. For λ ∈ [ 12 , 1], let {un} ⊂ H be a sequence

such that un � 0, ‖un‖ < ∞, Iλ(un) → cλ and I ′λ(un) → 0. Moreover, cλ <
1
N

1

λ
N−2

2

S
N
2 . Then there

exists a subsequence of {un}, still denoted by {un}, an integer k ∈ N ∪ {0} and wj
λ ∈ H for 1 � j � k

such that

(i) un → uλ weakly in H with I ′λ(uλ) = 0,

(ii) wj
λ �= 0, wj

λ � 0 and I ′λ(w
j
λ) = 0 for 1 � j � k,

(iii) cλ = Iλ(uλ) +
∑k

j=1 Iλ(w
j
λ),

where we agree that in the case k = 0, the above hold without wj
λ.

Proof. We will take five steps to finish the proof.

Step 1. ‖un‖ <∞ implies that up to a subsequence, un → uλ weakly in H . It is not difficult to check

that I ′λ(uλ) = 0. Thus, (i) holds.

Set v1n = un − uλ.

Step 2. If limn→∞ supz∈RN

∫
B1(z)

|v1n|2dx = 0, then un → uλ in H and Lemma 2.6 holds with k = 0.

Applying the Lions lemma in [13], we obtain that

v1n → 0 in Lt(RN ), ∀ t ∈ (2, 2∗). (2.13)

A direct calculation shows that

‖v1n‖2 = (I ′λ(un), v
1
n) + λ

∫
RN

(f(un)− f(uλ))v
1
ndx

= λ

∫
RN

(g(un)− g(uλ))v
1
ndx+ λ

∫
RN

(|un|2∗−2un − |uλ|2∗−2uλ)v
1
ndx + o(1).

Note that (f1)–(f3) imply that ∀ ε > 0, there exists C(ε) > 0 such that

|g(u)| � ε(|u|+ |u|2∗−1) + C(ε)|u|q−1. (2.14)

Combining (2.13) with (2.14), ‖v1n‖2 = λ
∫
RN (|un|2∗−2un− |uλ|2∗−2uλ)v

1
ndx+ o(1). By elliptic estimates,

uλ ∈ L∞(RN ). From [16, Lemma 8.9],

∣∣∣∣
∫
RN

[|un|2∗−2un − |uλ|2∗−2uλ − |un − uλ|2∗−2(un − uλ)]ϕdx

∣∣∣∣ = o(1)‖ϕ‖, ∀ϕ ∈ H. (2.15)

Thus,

‖v1n‖2 = λ

∫
RN

|v1n|2
∗
dx+ o(1). (2.16)

On the other hand, by the Brezis-Lieb lemma, we obtain that

‖v1n‖2 = ‖un‖2 − ‖uλ‖2 + o(1) (2.17)
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and ∫
RN

|v1n|2
∗
dx =

∫
RN

|un|2∗dx−
∫
RN

|uλ|2∗dx+ o(1). (2.18)

We claim that ∫
RN

G(v1n)dx =

∫
RN

G(un)dx−
∫
RN

G(uλ)dx+ o(1). (2.19)

In fact, by (2.14) and the mean value theorem,

|G(un)−G(v1n)| � C[(|v1n|+ |uλ|) + (|v1n|+ |uλ|)2∗−1]|uλ|.

For R > 0, by Hölder’s inequality,

∫
|x|�R

|G(un)−G(v1n)|dx

� C

(∫
|x|�R

|v1n|2dx
) 1

2
(∫

|x|�R

|uλ|2dx
) 1

2

+ C

∫
|x|�R

|uλ|2dx

+ C

(∫
|x|�R

|v1n|2
∗
dx

) 2∗−1
2∗

(∫
|x|�R

|uλ|2∗dx
) 1

2∗

+ C

∫
|x|�R

|uλ|2∗dx. (2.20)

From (f1)–(f3), we also have

∫
|x|�R

|G(uλ)|dx � C

∫
|x|�R

|uλ|2dx+ C

∫
|x|�R

|uλ|2∗dx. (2.21)

By (2.20) and (2.21), ∀ ε > 0, there exists R > 0 such that

∫
|x|�R

|G(un)−G(v1n)−G(uλ)|dx � ε. (2.22)

On the other hand, observe that limt→∞
G(t)

|t|2∗ = 0. We also have
∫
RN |un|2∗dx <∞. From the compactness

lemma of Strass [15],

lim
n→∞

∫
|x|�R

|G(un)−G(uλ)|dx = 0. (2.23)

Similarly,

lim
n→∞

∫
|x|�R

|G(v1n)|dx = 0. (2.24)

It follows from (2.22)–(2.24) that (2.19) holds. Combining (2.17)–(2.19), there holds

cλ − Iλ(uλ) =
1

2
‖v1n‖2 − λ

∫
RN

G(v1n)dx− λ

2∗

∫
RN

|v1n|2
∗
dx+ o(1). (2.25)

From (2.13), (2.14) and (2.25),

cλ − Iλ(uλ) =
1

2
‖v1n‖2 −

λ

2∗

∫
RN

|v1n|2
∗
dx+ o(1). (2.26)

Since I ′λ(uλ) = 0, by Lemma 2.4, Iλ(uλ) � 0. Thus, cλ − Iλ(uλ) <
1
N

1

λ
N−2

2

S
N
2 . We may assume that

‖v1n‖2 → l � 0. Then λ
∫
RN |v1n|2

∗
dx → l. If l > 0, then Sobolev embedding theorem implies that S �

‖v1
n‖2

(
∫
RN

|v1
n|2∗dx)

2
2∗

, from which we conclude that l � 1

λ
N−2

2

S
N
2 . Thus, by (2.26), cλ − Iλ(uλ) � 1

N
1

λ
N−2

2

S
N
2 ,

a contradiction. Therefore, ‖v1n‖ → 0 and Step 2 is completed.

Step 3. If ∃ {zn} ⊂ R
N such that

∫
B1(zn)

|v1n|2dx → d > 0, then, after extracting a subsequence if

necessary, the following hold

(1) |zn| → ∞,
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(2) un(·+ zn) → wλ �= 0 weakly in H ,

(3) wλ � 0 and I ′λ(wλ) = 0.

Note that (1) and (2) are obvious. For (3), set ũn(·) = un(· + zn). We note that ũn � 0 in H and

I ′λ(ũn) = o(1). Then (3) holds.

Step 4. If there exist m � 1, {ykn} ⊂ R
N , wk

λ ∈ H for 1 � k � m such that

(i) |ykn| → ∞, |ykn − yk
′

n | → ∞, if k �= k′,
(ii) un(·+ ykn) → wk

λ �= 0 weakly in H , ∀ 1 � k � m,

(iii) wk
λ � 0 and I

′
λ(w

k
λ) = 0, ∀ 1 � k � m,

then one of the following conclusions must hold:

(1) If supz∈RN

∫
B1(z)

|un − u0 −
∑m

k=1 w
k
λ(· − ykn)|2dx→ 0, then

∥∥∥∥un − u0 −
m∑

k=1

wk
λ(· − ykn)

∥∥∥∥ → 0.

(2) If ∃ (zn) ⊂ R
N such that

∫
B1(zn)

∣∣∣∣un − u0 −
m∑

k=1

wk
λ(· − ykn)

∣∣∣∣
2

dx→ d > 0,

then, after extracting a subsequence if necessary, the following hold:

(i) |zn| → ∞, |zn − ykn| → ∞ for all 1 � k � m,

(ii) un(·+ zn) → wm+1
λ �= 0 weakly in H ,

(iii) wm+1
λ � 0 and I ′λ(w

m+1
λ ) = 0.

Assume that (1) holds. Set ξn = un − uλ −∑m
k=1 w

k
λ(· − ykn). The Lions lemma implies that

ξn → 0 in Lt(RN ), ∀ t ∈ (2, 2∗). (2.27)

A direct calculation shows that

‖ξn‖2 = (I ′λ(un), ξn) + λ

∫
RN

(f(un)− f(uλ))ξndx− λ
m∑

k=1

∫
RN

f(wk
λ)ξn(·+ ykn)dx.

Together with (2.14) and (2.27), there holds

‖ξn‖2 = λ

∫
RN

(|un|2∗−2un − |uλ|2∗−2uλ)ξndx− λ
m∑

k=1

∫
RN

|wk
λ|2

∗−2wk
λξn(·+ ykn)dx + o(1).

Similar to (2.15), we obtain that

‖ξn‖2 = λ

∫
RN

|un − uλ|2∗−2(un − uλ)ξndx − λ

∫
RN

|w1
λ|2

∗−2w1
λξn(·+ y1n)dx

− λ
m∑

k=2

∫
RN

|wk
λ|2

∗−2wk
λξn(·+ ykn)dx + o(1)

= λ

∫
RN

|un(·+ y1n)− uλ(·+ y1n)|2
∗−2(un(·+ y1n)− uλ(·+ y1n))ξn(·+ y1n)dx

− λ

∫
RN

|w1
λ|2

∗−2w1
λξn(·+ y1n)dx− λ

m∑
k=2

∫
RN

|wk
λ|2

∗−2wk
λξn(·+ ykn) + o(1).

Since |y1n| → ∞ and un(·+ y1n) → w1
λ weakly in H , we have un(·+ y1n)− uλ(·+ y1n) → w1

λ weakly in H .

Thus,

‖ξn‖2 = λ

∫
RN

|un(·+ y1n)− uλ(·+ y1n)− w1
λ|2

∗−2(un(·+ y1n)− uλ(·+ y1n)− w1
λ)ξn(·+ y1n)dx
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− λ
m∑

k=2

∫
RN

|wk
λ|2

∗−2wk
λξn(·+ ykn) + o(1).

Continuing this process, we obtain that

‖ξn‖2 = λ

∫
RN

|ξn|2∗dx+ o(1). (2.28)

On the other hand, since un(·+ y1n)− uλ(·+ y1n) → w1
λ weakly in H , arguing as Step 2, we obtain that

cλ − Iλ(uλ) =
1

2
‖un − uλ‖2 − λ

∫
RN

G(un − uλ)dx− λ

2∗

∫
RN

|un − uλ|2∗dx+ o(1)

=
1

2
‖un(·+ y1n)− uλ(·+ y1n)− w1

λ‖2 − λ

∫
RN

G(un(·+ y1n)− uλ(·+ y1n)− w1
λ)dx

− λ

2∗

∫
RN

|un(·+ y1n)− uλ(·+ y1n)− w1
λ|2

∗
dx + Iλ(w

1
λ) + o(1).

Continuing this process, we obtain that

cλ − Iλ(uλ)−
m∑

k=1

Iλ(w
k
λ) =

1

2
‖ξn‖2 − λ

∫
RN

G(ξn)dx− λ

2∗

∫
RN

|ξn|2∗dx+ o(1). (2.29)

Together with (2.27), there holds

cλ − Iλ(uλ)−
m∑

k=1

Iλ(w
k
λ) =

1

2
‖ξn‖2 − λ

2∗

∫
RN

|ξn|2∗dx+ o(1). (2.30)

Because (2.28) and (2.30) hold, arguing as Step 2, we conclude that ‖ξn‖ → 0.

Now we assume that (2) holds. The argument is standard, we omit it.

Step 5. Conclusion. By Step 1, Lemma 2.6(i) holds. If the assumption of Step 2 holds, then Lemma 2.6

holds with k = 0. Otherwise, the assumption of Step 3 holds. Set {y1n} = {zn} and w1
λ = wλ in Step 4.

If (1) of Step 4 holds with m = 1, from (2.34), we obtain the conclusions of Lemma 2.6. If not, (2) of

Step 4 holds. Set {y2n} = {zn}, w2
λ = w2

λ and iterate Step 4. Observe that

lim
n→∞

(
‖un‖2 − ‖uλ‖2 −

m∑
k=1

‖wk
λ‖2

)
= lim

n→∞

∥∥∥∥un − uλ −
m∑

k=1

wk
λ(· − ykn)

∥∥∥∥
2

.

Remark 2.5 implies that ‖wk
λ‖ � β > 0 independent of λ. Thus, (1) in Step 4 must occur after a finite

number of iterations. Together with (2.34), we conclude that Lemma 2.6 holds.

3 Proof of Theorem 1.1

Lemma 3.1. Assume the assumptions of Theorem 1.1 hold. Then for almost every λ ∈ [ 12 , 1], Iλ has

a positive critical point.

Proof. By Lemma 2.2, for almost every λ ∈ [ 12 , 1], there is a sequence {un} ⊂ H such that (2.11) holds.

Moreover, cλ ∈ (0, 1
N

S
N
2

λ
N−2

2

). From Remark 2.3, we may assume that un � 0 in H . Then there exists a

subsequence of {un}, still denoted by {un}, satisfying un → uλ weakly in H . If uλ �= 0, then Lemma 3.1

holds obviously. Thus, we may assume that un → 0 weakly in H . We claim that there exists δ > 0 such

that

lim
n→∞ sup

y∈RN

∫
B1(y)

|un|2dx � δ > 0. (3.1)

Otherwise, limn→∞ supy∈RN

∫
B1(y)

|un|2dx = 0. Applying the Lions lemma, we obtain that

un → 0 in Lt(RN ), ∀ t ∈ (2, 2∗). (3.2)
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From (2.14) and (3.2), there hold
∫
RN G(un)dx = o(1) and

∫
RN g(un)undx = o(1). Together with (2.11),

we obtain that
1

2
‖un‖2 − λ

2∗

∫
RN

u2
∗

n dx = cλ + o(1) (3.3)

and

‖un‖2 − λ

∫
RN

u2
∗

n dx = o(1). (3.4)

Note that cλ > 0, we may assume that ‖un‖2 → l > 0. Sobolev embedding theorem implies that

l � S
N
2

λ
N−2

2

. Thus, cλ � 1
N

S
N
2

λ
N−2

2

, a contradiction with cλ ∈ (0, 1
N

S
N
2

λ
N−2

2

). Therefore, we have (3.1), which

implies that there exists yn ∈ R
N , |yn| → ∞ such that

∫
B1(yn)

|un|2dx � δ
2 > 0. Set vn = un(· + yn).

In view of (2.11), we derive that Iλ(vn) → cλ and I ′λ(vn) → 0. Moreover, vn → vλ �= 0 weakly in H .

Standard argument shows that vλ > 0 in H . Thus, the proof is completed.

Proof of Theorem 1.1. In view of the proof of Lemma 3.1, for almost every λ ∈ [ 12 , 1], there is a

sequence {un} ⊂ H such that un � 0 in H , Iλ(un) → cλ, I
′
λ(un) → 0 and un → uλ > 0 weakly in

H . Moreover, cλ ∈ (0, 1
N

1

λ
N−2

2

S
N
2 ). From Lemma 2.6, cλ = Iλ(uλ) +

∑k
j=1 Iλ(w

j
λ), I

′
λ(uλ) = 0 and

I ′λ(w
j
λ) = 0, j = 1, . . . , k. By Lemma 2.4, we have Iλ(uλ) > 0 and Iλ(w

j
λ) � 0, j = 1, . . . , k. Hence,

there holds cλ � Iλ(uλ) > 0. Therefore, there exist λn ∈ [ 12 , 1], cλn ∈ (0, 1
N

1

λ
N−2

2
n

S
N
2 ) and uλn ∈ H

satisfying λn → 1, uλn > 0, I ′λn
(uλn) = 0 and 0 < Iλn(uλn) � cλn . By I ′λn

(uλn) = 0 and Lemma 2.4,

we have cλn � Iλn(uλn) =
1
N

∫
RN |∇uλn |2dx > 0. Thus, by the Sobolev embedding theorem, there holds∫

RN |uλn |2
∗
dx < ∞. From (f1)–(f3) and Lemma 2.4, we obtain that ∀ ε > 0, there exists C(ε) > 0 such

that

N − 2

2N

∫
RN

|∇uλn |2dx+
1

2

∫
RN

V |uλn |2dx = λn

∫
RN

F (uλn)dx � ε

∫
RN

|uλn |2dx+ C(ε)

∫
RN

|uλn |2
∗
dx.

Hence, there holds ‖uλn‖ <∞. Without loss of generality, we may assume that limn→∞ Iλn(uλn) exists.

By Theorem 2.1, λ → cλ is continuous from the left. Then there holds 0 � limn→∞ Iλn(uλn) � c1 <
1
N S

N
2 . Observing that I(uλn) = Iλn(uλn)+ (λn−1)

∫
RN F (uλn)dx, together with ‖uλn‖ <∞, there hold

0 � lim
n→∞ I(uλn) � c1 <

1

N
S

N
2 (3.5)

and

lim
n→∞ I ′(uλn) = 0. (3.6)

By Remark 2.5, ‖uλn‖ � β > 0, where β > 0 is independent of λn. Note that ‖uλn‖ < ∞. Then

following the same lines as in the proof of Lemma 3.1, we can obtain that (1.1) has a positive solution

u0. Moreover, by Lemma 2.6, I(u0) � limn→∞ I(uλn) � c1 <
1
N S

N
2 . Let

m = inf{I(u) : u ∈ H,u �= 0, I ′(u) = 0}.

Since I ′(u0) = 0, m � I(u0) <
1
N S

N
2 . Lemma 2.4 implies that m � 0. Hence, 0 � m � I(u0) <

1
N S

N
2 .

By the definition of m, there exists {un} ⊂ H such that un �= 0, I(un) → m and I ′(un) = 0. Remark 2.5

implies that ‖un‖ � β > 0. It is easy to check that ‖un‖ < ∞. From Remark 2.3, we may assume

that un � 0 in H . Then following the same lines as in the proof of Lemma 3.1, we know that there

exists {vn} ⊂ H such that vn � 0 in H , vn → v0 > 0 weakly in H , I(vn) → m and I ′(vn) = 0. From

Lemma 2.6, I ′(v0) = 0 and m � I(v0). I
′(v0) = 0 implies that I(v0) � m. Therefore, v0 > 0 satisfies

I(v0) = m and I ′(v0) = 0. �

4 Proof of Theorem 1.2

In view of Theorem 1.1, we may assume that V (x) is not identical to V∞ in this section.
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For λ ∈ [ 12 , 1], consider the family of functionals I∞λ : H 
→ R defined by

I∞λ (u) =
1

2

∫
RN

(|∇u|2 + V∞|u|2)dx− λ

∫
RN

F (u)dx. (4.1)

Similar argument as in [9] can derive the following result.

Lemma 4.1. For λ ∈ [ 12 , 1], if wλ ∈ H is a nontrivial critical point of I∞λ , then there exists γλ ∈
C([0, 1], H) such that γλ(0) = 0, I∞1

2

(γλ(1)) < 0, wλ ∈ γλ[0, 1] and maxt∈[0,1] I
∞
λ (γλ(t)) = I∞λ (wλ).

Moreover, 0 /∈ γλ((0, 1]).

Remark 4.2. From Theorem 1.1, we know that if (f1)–(f4) hold, then for λ ∈ [ 12 , 1], I
∞
λ has a ground

state.

Lemma 4.3. Assume the assumptions of Theorem 1.2, we obtain that for almost every μ ∈ [12 , 1], Iμ
has a positive critical point.

Proof. From Lemma 2.2 and Remark 2.3, we may assume that for almost every μ ∈ [ 12 , 1], there exists

a sequence {un} ⊂ H , un � 0 such that un → uμ weakly in H , Iμ(un) → cμ and I ′μ(un) → 0. Moreover,

cμ ∈ (0, 1
N

S
N
2

μ
N−2

2

). We claim that uμ �= 0. Otherwise, uμ = 0. Similar to the proof of Lemma 3.1, there

exists yn ∈ R
N such that |yn| → ∞ and vn = un(·+ yn) → vμ �= 0 weakly in H . On the other hand, since

un → 0 weakly in H , there hold I∞μ (un) → cμ and I∞
′

μ (un) → 0. Thus, I∞μ (vn) → cμ and I∞
′

μ (vn) → 0.

Since vn → vμ �= 0 weakly in H , there holds I∞
′

μ (vμ) = 0. From Lemma 2.6, cμ � I∞μ (vμ). Remark 4.2

implies that I∞μ has a ground state wμ. Thus, cμ � I∞μ (wμ). By Lemma 4.1, cμ � maxt∈[0,1] I
∞
μ (γμ(t)),

where γμ ∈ C([0, 1], H) such that γμ(0) = 0, I∞1
2

(γμ(1)) < 0. Moreover, 0 /∈ γμ((0, 1]). From (V3),

Iμ(γμ(t)) < I∞μ (γμ(t)) for all t ∈ (0, 1]. Set v1 = 0 and v2 = γμ(1) in Theorem 2.1. Thus, the definition

of cμ implies that cμ � maxt∈[0,1] Iμ(γμ(t)) < maxt∈[0,1] I
∞
μ (γμ(t)) � cμ, a contradiction. Then we obtain

that uμ �= 0. Standard argument shows that uμ > 0. Thus, Lemma 4.3 holds.

We need the following lemma which is the key to our proof of Theorem 1.2.

Lemma 4.4. Assume (V1)–(V3) and (f1)–(f5) hold. For λ ∈ [ 12 , 1], let {un} ⊂ H be a sequence such

that un � 0, ‖un‖ < ∞, Iλ(un) → cλ and I ′λ(un) → 0. Moreover, cλ <
1
N

1

λ
N−2

2

S
N
2 . Then there exists a

subsequence of {un}, still denoted by {un}, such that

(i) un → uλ weakly in H with I ′λ(uλ) = 0,

(ii) cλ � Iλ(uλ).

Proof. Since ‖un‖ <∞, we may assume that un → uλ weakly in H . It is easy to see that I ′λ(uλ) = 0.

Thus, (i) holds. Set w1
n = un − uλ. Arguing as Lemma 2.6, there holds

cλ − Iλ(uλ) =
1

2
‖w1

n‖2 − λ

∫
RN

G(w1
n)dx − λ

2∗

∫
RN

|w1
n|2

∗
dx + o(1). (4.2)

We claim that ∣∣∣∣
∫
RN

(g(un)− g(uλ)− g(w1
n))ϕdx

∣∣∣∣ = o(1)‖ϕ‖, ∀ ϕ ∈ H. (4.3)

In fact, by (f5) and the mean value theorem, we have

|g(un)− g(w1
n)| � C[1 + (|w1

n|+ |uλ|) 4
N−2 ]|uλ|.

For R > 0, by Hölder’s inequality,

∫
|x|�R

|g(un)− g(w1
n)||ϕ|dx � C

(∫
|x|�R

|uλ|2dx
) 1

2

‖ϕ‖+ C

(∫
|x|�R

|uλ|2∗dx
)N+2

2N

‖ϕ‖

+ C

(∫
|x|�R

|w1
n|2

∗
dx

) 2
N
(∫

|x|�R

|uλ|2∗dx
) 1

2∗

‖ϕ‖. (4.4)
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We also have ∫
|x|�R

|g(uλ)||ϕ|dx � C

∫
|x|�R

|uλ||ϕ|dx+ C

∫
|x|�R

|uλ|2∗−1|ϕ|dx

� C

(∫
|x|�R

|uλ|2dx
) 1

2

‖ϕ‖+
(∫

|x|�R

|uλ|2∗dx
) 2∗−1

2∗

‖ϕ‖. (4.5)

By (4.4) and (4.5), we obtain that ∀ ε > 0, there exists R > 0 such that

∣∣∣∣
∫
|x|�R

(g(un)− g(uλ)− g(w1
n))ϕdx

∣∣∣∣ � ε‖ϕ‖. (4.6)

On the other hand,

∫
|x|�R

|g(un)− g(uλ)||ϕ|dx �
(∫

|x|�R

|g(un)− g(uλ)| 2∗
2∗−1 dx

) 2∗−1
2∗

(∫
|x|�R

|ϕ|2∗
) 1

2∗

.

Observe that limt→∞
g(t)

2∗
2∗−1

t2∗ = 0. We also have
∫
RN |un|2∗dx < ∞. From the compactness lemma of

Strass [15],

lim
n→∞

∫
|x|�R

|g(un)| 2∗
2∗−1 dx =

∫
|x|�R

|g(uλ)| 2∗
2∗−1 dx.

Thus, by Lebesgue’s dominated convergence theorem,

∫
|x|�R

|g(un)− g(uλ)||ϕ|dx = o(1)‖ϕ‖. (4.7)

Similarly, ∫
|x|�R

|g(w1
n)||ϕ|dx = o(1)‖ϕ‖. (4.8)

It follows from (4.6)–(4.8) that (4.3) holds. For λ ∈ [ 12 , 1], define

Hλ(u) =
1

2
‖u‖2 − λ

∫
RN

G(u)dx− λ

2∗

∫
RN

|u|2∗dx, u ∈ H,

H∞
λ (u) =

1

2

∫
RN

(|∇u|2 + V∞u2)dx − λ

∫
RN

G(u)dx − λ

2∗

∫
RN

|u|2∗dx, u ∈ H,

Jλ(u) =
1

2

∫
RN

(|∇u|2 + V∞u2)dx− λ

2∗

∫
RN

|u|2∗dx, u ∈ H.

From (4.2),

cλ − Iλ(uλ) = Hλ(w
1
n) + o(1). (4.9)

By (2.15) and (4.3),

|(I ′λ(un)− I ′λ(uλ), ϕ)− (H ′
λ(w

1
n), ϕ)| = o(1)‖ϕ‖, ∀ ϕ ∈ H. (4.10)

That is,

H ′
λ(w

1
n) = o(1). (4.11)

Since w1
n → 0 weakly in H , we obtain that

cλ − Iλ(uλ) = H∞
λ (w1

n) + o(1) (4.12)

and

H∞′
λ (w1

n) = o(1). (4.13)

We will consider two cases.
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Case 1. limn→∞ supy∈RN

∫
B1(y)

|w1
n|2dx = 0.

The Lions lemma implies that

w1
n → 0 in Lt(RN ), ∀ t ∈ (2, 2∗). (4.14)

Combining (2.13), (2.14) and (4.12)–(4.14), there hold cλ − Iλ(uλ) = Jλ(w
1
n) + o(1) and J ′

λ(w
1
n) = o(1).

Then cλ − Iλ(uλ) =
λ
N

∫
RN |w1

n|2
∗
dx+ o(1). Hence, cλ − Iλ(uλ) � 0.

Case 2. There exists γ1 > 0 such that

lim
n→∞ sup

y∈RN

∫
B1(y)

|w1
n|2dx � γ1 > 0.

Then there exists y1n ∈ R
N , |y1n| → ∞ such that

∫
B1(y1

n)
|w1

n|2dx � γ1

2 > 0, from which we derive that

w1
n(·+ y1n) → w1

λ �= 0 weakly in H ,

cλ − Iλ(uλ) = H∞
λ (w1

n(·+ y1n)) + o(1) (4.15)

and

H∞′
λ (w1

n(·+ y1n)) = o(1). (4.16)

Thus, H∞′
λ (w1

λ) = 0. If cλ − Iλ(uλ) <
1
N

1

λ
N−2

2

S
N
2 , then Lemma 4.4 follows from the argument of

Lemma 2.6. Otherwise, set w2
n = w1

n(·+ y1n)− w1
λ. Similar to the argument of (4.9) and (4.11), we have

cλ − Iλ(uλ)−H∞
λ (w1

λ) + o(1) = H∞
λ (w2

n) (4.17)

and

H∞′
λ (w2

n) = o(1). (4.18)

Then either

lim
n→∞ sup

y∈RN

∫
B1(y)

|w2
n|2dx = 0, (4.19)

or there exists γ2 > 0 such that

lim
n→∞ sup

y∈RN

∫
B1(y)

|w2
n|2dx � γ2 > 0. (4.20)

If (4.19) holds, by Case 1, we have cλ − Iλ(uλ) − H∞
λ (w1

λ) � 0. By Lemma 2.4, H∞
λ (w1

λ) � 0. Thus,

cλ − Iλ(uλ) � 0. So we may assume (4.20) holds. Continuing this process, we obtain wi
n ∈ H , yin ∈ R

N ,

|yin| → ∞, i ∈ N such that wi
n(·+ yin) → wi

λ �= 0 weakly in H , H∞′
λ (wi

λ) = 0,

cλ − Iλ(uλ)−
j∑

i=1

H∞
λ (wi

λ) + o(1) = H∞
λ (wj+1

n ) (4.21)

and

H∞′
λ (wj+1

n ) = o(1), (4.22)

where wj+1
n = wj

n(·+ yjn)− wj
λ, j ∈ N . Since H∞′

λ (wi
λ) = 0, from Lemma 2.4, we have

H∞
λ (wi

λ) =
1

N

∫
RN

|∇wi
λ|2dx. (4.23)

We claim that there exists γ > 0 independent of i such that∫
RN

|∇wi
λ|2dx � γ > 0. (4.24)

From (f1)–(f3), we obtain that ∀ ε > 0, there exists C(ε) > 0 such that∫
RN

(|∇wi
λ|2 + V∞|wi

λ|2)dx � ε

∫
RN

|wi
λ|2dx+ C(ε)

∫
RN

|wi
λ|2

∗
dx.



554 Zhang J et al. Sci China Math March 2014 Vol. 57 No. 3

Thus,
∫
RN |∇wi

λ|2dx � C
∫
RN |wi

λ|2
∗
dx. Sobolev embedding theorem implies that (4.24) holds. By (4.23)

and (4.24), we have cλ − Iλ(uλ)−
∑j

i=1H
∞
λ (wi

λ) <
1
N

1

λ
N−2

2

S
N
2 at some j = k. Then Lemma 4.4 follows

from Lemma 2.6.

Proof of Theorem 1.2. In view of the proof of Lemma 4.3, for almost every λ ∈ [ 12 , 1], there is a

sequence {un} ⊂ H such that Iλ(un) → cλ, I
′
λ(un) → 0 and un → uλ �= 0 weakly in H . Moreover,

cλ ∈ (0, 1
N

1

λ
N−2

2

S
N
2 ). Then Lemma 4.4 holds. Thus, I ′λ(uλ) = 0, cλ � Iλ(uλ). Therefore, there exist

λn ∈ [ 12 , 1], cλn ∈ (0, 1
N

1

λ
N−2

2
n

S
N
2 ) and uλn ∈ H satisfying λn → 1, uλn �= 0, I ′λn

(uλn) = 0 and Iλn(uλn) �

cλn . We claim that ‖uλn‖ <∞. The proof can be done similarly to Proposition 4.2 in [11] and details are

omitted here. Set I(uλn) = Iλn(uλn)+(λn−1)
∫
RN F (uλn)dx. Then we have limn→∞ I(uλn) � c1 <

1
N S

N
2

and limn→∞ I ′(uλn) = 0. By Remark 2.5, ‖uλn‖ � β > 0, where β > 0 is independent of λn. Note that

‖uλn‖ <∞. Then following the same lines as in the proof of Lemma 4.3, we can obtain that un → u0 �= 0

weakly in H . By Lemma 4.4, I ′(u0) = 0, I(u0) � limn→∞ I(uλn) � c1 <
1
N S

N
2 . Let

m = inf{I(u) : u ∈ H,u �= 0, I ′(u) = 0}.

Since I ′(u0) = 0, m � I(u0) <
1
N S

N
2 . By the definition of m, there exists {vn} ⊂ H such that vn �= 0,

I(vn) → m and I ′(vn) = 0. Remark 2.5 implies that ‖vn‖ � β > 0. Similar to [11, Proposition 4.2],

we have ‖vn‖ < ∞. Thus, m > −∞. Following the same lines as in the proof of Lemma 4.3, we have

vn → v0 �= 0 weakly in H . From Lemma 4.4, I ′(v0) = 0, I(v0) � m. I ′(v0) = 0 implies that I(v0) � m.

Therefore, v0 �= 0 satisfies I(v0) = m and I ′(v0) = 0. �
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Anal Non-linéaire, 2006, 23: 829–837

13 Lions P L. The concentration-compactness principle in the calculus of variations: The locally case. Part II. Ann Inst
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