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Abstract It is well known that the doubly weighted Hardy-Littlewood-Sobolev inequality is as follows,

∣∣∣∣
∫
Rn

∫
Rn

f(x)g(y)

|x|α|x− y|λ|y|β dxdy

∣∣∣∣ � B(p, q, α, λ, β, n)‖f‖Lp(Rn)‖g‖Lq(Rn).

The main purpose of this paper is to give the sharp constants B(p, q, α, λ, β, n) for the above inequality for three

cases: (i) p = 1 and q = 1; (ii) p = 1 and 1 < q � ∞, or 1 < p � ∞ and q = 1; (iii) 1 < p, q < ∞ and 1
p
+ 1

q
= 1.

In addition, the explicit bounds can be obtained for the case 1 < p, q < ∞ and 1
p
+ 1

q
> 1.
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1 Introduction

A classical inequality that was obtained by Hardy and Littlewood [5] when n = 1 and by Sobolev [8] for

general n, called Hardy-Littlewood-Sobolev inequality, states that
∣∣∣∣
∫
Rn

∫
Rn

f(x1)g(x2)

|x1 − x2|λ
dx1dx2

∣∣∣∣ � B(p, q, λ, n)‖f‖Lp(Rn)‖g‖Lq(Rn),

with 1 < p, q < ∞, 0 < λ < n and 1
p + 1

q + λ
n = 2.

Stein and Weiss [9] obtained the doubly weighted Hardy-Littlewood-Sobolev inequality, i.e., the fol-

lowing inequality
∣∣∣∣
∫
Rn

∫
Rn

f(x)g(y)

|x|α|x− y|λ|y|β dxdy
∣∣∣∣ � B(p, q, α, λ, β, n)‖f‖Lp(Rn)‖g‖Lq(Rn)

holds, provided that the following three conditions,

1

p
+

1

q
+

α+ λ+ β

n
= 2, (1.1)

α+ β � 0, α <
n

p′
, β <

n

q′
, λ < n, (1.2)
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and
1

p
+

1

q
� 1 (1.3)

hold simultaneously.

Recently, some related developments for the weighted Hardy-Littlewood-Sobolev inequalities in the

Heisenberg group have been established by [4].

In order to further study Hardy-Littlewood-Sobolev inequality from the operator’s point of view, we

first give a definition.

Definition 1. The bilinear integral operator Tα,λ,β on Lp(Rn)× Lq(Rn) (0 < p, q � ∞) is defined as

Tα,λ,β(f, g)(x, y) :=
f(x)g(y)

|x|α|x− y|λ|y|β . (1.4)

The operator Tα,λ,β is defined by

Tα,λ,βg(x) :=
1

|x|α
∫
Rn

g(y)

|x− y|λ|y|β dy. (1.5)

Let T t
α,λ,β denote the transpose operator of Tα,λ,β . Obviously, we have

T t
α,λ,βf(y) =

1

|y|β
∫
Rn

f(x)

|x|α|x− y|λ dx. (1.6)

Note that the boundedness of Tα,λ,β from Lp(Rn) × Lq(Rn) to L1(Rn × R
n) is equivalent to that of

Tα,λ,β from Lq(Rn) to Lp′
(Rn), and also is equivalent to that of T t

α,λ,β from Lp(Rn) to Lq′(Rn) with

1 � p, q � ∞.

Wu et al. [10] considered the doubly weighted Hardy-Littlewood-Sobolev inequality for the whole ranges

of p and q, i.e., 0 < p � ∞ and 0 < q � ∞ and characterized the sufficient and necessary conditions,

which ensure validity of the doubly weighted Hardy-Littlewood-Sobolev inequality.

The following results are obtained in [10].

Theorem A. Let 1 < p, q < ∞. The operator Tα,λ,β defined by (1.4) is bounded from Lp(Rn)×Lq(Rn)

to L1(Rn × R
n), if and only if the three conditions (1.1)–(1.3) hold simultaneously.

Theorem B. Let 1 < p � ∞ and q = 1. The operator Tα,λ,β is bounded from Lp(Rn) × L1(Rn) to

L1(Rn × R
n), if and only if

1

p
+

α+ λ+ β

n
= 1, (1.7)

and

β < 0, α+ β > 0, α <
n

p′
. (1.8)

Theorem C. Let p = q = 1. The operator Tα,λ,β is bounded from L1(Rn)× L1(Rn) to L1(Rn × R
n),

if and only if α = λ = β = 0.

Theorem D. Suppose that the condition I is 0 < p < 1 or 0 < q < 1 and the condition II is p = ∞ and

1 < q � ∞. If one of the condition I and the condition II holds, then the operator Tα,λ,β is not bounded

from Lp(Rn)× Lq(Rn) to L1(Rn × R
n) for every real numbers α, β and γ.

In fact, we can use Figure 1 to indicate a domain where the operator Tα,λ,β may be bounded from

Lp(Rn)×Lq(Rn) to L1(Rn×R
n). Theorems A, B, C and D clearly imply that the domain is just the closed

triangle area denoted by �EFG. Consequently, the point ( 1p ,
1
q ) ∈ �EFG is only necessary condition

which makes the operator Tα,λ,β be bounded from Lp(Rn)×Lq(Rn) to L1(Rn ×R
n). An important and

interesting question is how to find the sharp bound of the operator Tα,λ,β.
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Figure 1 The set of points ( 1
p
, 1
q
)

In 1983, Lieb [6] obtained the sharp constants only when one of p and q equals 2 or p = q. When

1 < p, q < ∞ and 1
p + 1

q = 1 hold, the sharp constant is given by Beckner in [1] and [2].

In this paper, we use the Selberg integral formula to give the sharp constants B(p, q, α, λ, β, n) as long

as the point ( 1p ,
1
q ) is on the boundary of �EFG. In addition, the explicit bounds can be obtained for

the case 1 < p, q < ∞ and 1
p + 1

q > 1. It should be pointed out that for the case 1 < p, q < ∞ and
1
p + 1

q = 1, we use a novel method to give the sharp constants.

For convenience, we denote p′ as the dual number of p, the point e1 := (1, 0, . . . , 0) ∈ R
n and define a

constant Cd1,d2,n related to d1, d2 and n as follows.

Definition 2. Let d1 < n, d2 < n and d1 + d2 > n. Define

Cd1,d2,n := π
n
2
Γ(n−d1

2 )Γ(n−d2

2 )Γ(d1+d2−n
2 )

Γ(d1

2 )Γ(d2

2 )Γ(n− d1+d2

2 )
. (1.9)

Obviously, we have Cd1,d2,n = Cd2,d1,n.

Definition 3. Suppose that the operator Tα,λ,β is bounded from Lp(Rn) × Lq(Rn) to L1(Rn × R
n).

The norm of the operator Tα,λ,β is defined by

‖Tα,λ,β‖Lp(Rn)×Lq(Rn)→L1(Rn×Rn) = sup
‖f‖Lp(Rn) �=0,‖g‖Lp(Rn) �=0

‖Tα,λ,β(f, g)‖L1(Rn×Rn)

‖f‖Lp(Rn)‖g‖Lq(Rn)
.

Now we formulate our main results as follows.

Theorem 1.1. If 1 < p � ∞, q = 1, and the two conditions (1.7) and (1.8) hold, then we have

‖Tα,λ,β‖Lp(Rn)×L1(Rn)→L1(Rn×Rn) = (Cp′α,p′λ,n)
1
p′ .

Theorem 1.2. Let 1
p + 1

q = 1, 1 < p < ∞. If the two conditions (1.1) and (1.2) are satisfied, then we

have

‖Tα,λ,β‖Lp(Rn)×Lq(Rn)→L1(Rn×Rn) = Cα+ n
p
,λ,n = Cβ+n

q
,λ,n.

Theorem 1.3. If p = q = 1, then the norm of operator Tα,λ,β is satisfied as follows,

‖Tα,λ,β‖L1(Rn)×L1(Rn)→L1(Rn×Rn) = 1.

For the case 1 < p, q < ∞, we obtain an explicit upper bound estimate of the operator Tα,λ,β.

Theorem 1.4. Let 1 < p, q < ∞, 1
p + 1

q > 1 and α + β > 0. If the conditions (1.1) and (1.2) hold,

then

‖Tα,λ,β‖Lp(Rn)×Lq(Rn)→L1(Rn×Rn) � (Cα
θ + n

p0
,λθ ,n

)θ = (Cβ
θ +

n
q0

,λθ ,n)
θ,

where p0 = 1 + q′

p′ , q0 = 1 + p′

q′ and θ = 1
p′ +

1
q′ .
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2 Some lemmas

To prove our theorems, we first provide some lemmas which will be used in the following.

Lemma 2.1. If 1 � p, q � ∞, then we have

‖Tα,λ,β‖Lp(Rn)×Lq(Rn)→L1(Rn×Rn) = ‖Tα,λ,β‖Lq(Rn)→Lp′(Rn) = ‖T t
α,λ,β‖Lp(Rn)→Lq′ (Rn).

Lemma 2.2 (See [3]). Let fd(x) := |x|−d, x ∈ R
n. If d1 < n, d2 < n and d1 + d2 > n, then we have

fd1 ∗ fd2(x) = Cd1,d2,n|x|−d1−d2+n. (2.1)

Lemma 2.3 (See [3]). Let (X,μ) and (Y, ν) be two σ-finite measure spaces, where μ and ν are positive

measures. Let 1 < p < ∞ and 0 < A < ∞. Suppose that T is the linear operator defined by

T f(x) =

∫
Y

K(x, y)f(y)dν(y)

and T t is transpose operator of T ,

T tg(y) =

∫
X

K(x, y)g(x)dμ(x),

where K(·, ·) is a nonnegative measurable function on X × Y .

To avoid trivialities, we assume that there is a compactly supported, bounded, and positive ν-a.e.

function h1 on Y such that T (h1) > 0 μ-a.e. Then the following three statements are equivalent:

(I) T maps Lp(Y ) into Lp(X) with norm at most A;

(II) For all B > A there is a measurable function h on Y that satisfies 0 < h < ∞ ν-a.e., 0 < T (h) < ∞
μ-a.e., and such that

T t(T (h)
p
p′ ) � Bph

p
p′ ;

(III) For all B > A there are measurable functions u on X and v on Y such that 0 < u < ∞ μ-a.e.,

0 < v < ∞ ν-a.e., and such that

T (vp
′
) � Bup′

and T t(up) � Bvp.

We remark that the proof of Lemma 2.1 immediately follows from the elementary properties of func-

tional analysis. The proof of Lemma 2.2 can be found in [3]. Lemma 2.3 is also called Schur’s lemma,

and its proof can be found in [3].

Lemma 2.4. If d1, d2, d3 < n and d1 + d2 + d3 = 2n, then

Cd1,d2,n = Cd1,d3,n = Cd2,d3,n. (2.2)

Proof. The equality (2.2) immediately follows from Definition 2.

3 The proofs of theorems

Proof of Theorem 1.1. Without loss of generality, we always let f, g � 0. We conclude that

‖Tα,λ,β(f, g)‖L1(Rn×Rn) =

∣∣∣∣
∫
Rn

∫
Rn

f(x)g(y)

|x|α|x− y|λ|y|β dxdy
∣∣∣∣

� ‖g‖L1(Rn)

∥∥∥∥
∫
Rn

f(x)

|x|α|x− ·|λ| · |β dx
∥∥∥∥
L∞(Rn)

� ‖f‖Lp(Rn)‖g‖L1(Rn)

∥∥∥∥
(∫

Rn

1

|x|p′α|x− ·|p′λ| · |p′β dx

) 1
p′
∥∥∥∥
L∞(Rn)

.
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Since the conditions (1.7) and (1.8) are satisfied, we obtain that

p′α < n, p′λ = n− p′(α+ β) < n, p′α+ p′λ = n− p′β > n

and

p′α+ p′λ+ p′β = n.

Thus it follows from Lemma 2.2 that∫
Rn

1

|x|p′α|x− y|p′λ|y|p′β dx = |y|−p′βCp′α,p′λ,n|y|−p′α−p′β+n = Cp′α,p′λ,n.

Therefore, we have

‖Tα,λ,β(f, g)‖L1(Rn×Rn) � (Cp′α,p′λ,n)
1
p′ ‖f‖Lp(Rn)‖g‖L1(Rn),

which implies that

‖Tα,λ,β‖Lp(Rn)×L1(Rn)→L1(Rn×Rn) � (Cp′α,p′λ,n)
1
p′ . (3.1)

Now we will prove the inverse inequality.

We consider the question for two cases: p = ∞ and 1 < p < ∞, respectively.

For the case p = ∞, set f ≡ 1. Then it follows from Lemma 2.2 that

‖T t
α,λ,β1‖L∞(Rn) = Cα,λ,n.

This means that

‖T t
α,λ,β‖L∞(Rn)→L∞(Rn) � Cα,λ,n. (3.2)

For the case 1 < p < ∞, let

hy(x) :=
1

|x|α|x− y|λ|y|β .

A direct calculation leads to

‖he1‖Lp′(Rn) = C
1
p′
p′α,p′λ,n.

Let f(x) = (he1(x))
p′−1. We easily have ‖f‖Lp(Rn) = (Cp′α,p′λ,n)

1
p < ∞. It follows that T t

α,λ,βf(e1) =

Cp′α,p′λ,n. Now we consider the continuous property of

T t
α,λ,βf(y) =

∫
Rn

hy(x)f(x)dx

on the point e1.

We deduce from Hölder’s inequality that

|T t
α,λ,βf(y)| � ‖f‖Lp(Rn)‖hy‖Lp′(Rn) = ‖f‖Lp(Rn)(Cp′α,p′λ,n)

1
p′ = Cp′α,p′λ,n. (3.3)

Let y tend to e1. Then it implies from Fatou’s lemma that

lim inf
y→e1

T t
α,λ,βf(y) �

∫
Rn

f(x) lim inf
y→e1

hy(x)dx =

∫
Rn

f(x)he1 (x)dx = Cp′α,p′λ,n. (3.4)

By (3.3) and (3.4), we have T t
α,λ,βf(y) is continuous on e1 and thus

‖T t
α,λ,βf‖L∞(Rn) = Cp′α,p′λ,n.

Consequently, we have that

‖T t
α,λ,β‖Lp(Rn)→L∞(Rn) �

‖T t
α,λ,βf‖L∞(Rn)

‖f‖Lp(Rn)
� (Cp′α,p′λ,n)

1
p′ . (3.5)



968 Wu D et al. Sci China Math May 2014 Vol. 57 No. 5

Thus, combining the inequality (3.2) with (3.5) yields that

‖T t
α,λ,β‖Lp(Rn)→L∞(Rn) � (Cp′α,p′λ,n)

1
p′ . (3.6)

It immediately follows from Lemma 2.1 and the inequality (3.6) that

‖Tα,λ,β‖Lp(Rn)×L1(Rn)→L1(Rn×Rn) � (Cp′α,p′λ,n)
1
p′ . (3.7)

Consequently, both the inequalities (3.1) and (3.7) evidently imply that

‖Tα,λ,β‖Lp(Rn)×L1(Rn)→L1(Rn×Rn) = (Cp′α,p′λ,n)
1
p′ .

Proof of Theorem 1.2. Since 1
p + 1

q = 1, by Lemma 2.1, we merely show that

‖Tα,λ,β‖Lq(Rn)→Lq(Rn) = Cα+ n
p
,λ,n = Cβ+n

q
,λ,n.

We choose two functions

u(x) = |x|− n
pq and v(y) = |y|− n

pq .

We easily check that u and v satisfy (III) of Lemma 2.3. In fact, we have

Tα,λ,β(vq
′
) = Cβ+n

q ,λ,nu
q′ , (3.8)

and

T t
α,λ,β(u

q) = Cα+n
p
,λ,nv

q. (3.9)

Since the two conditions (1.1) and (1.2) are satisfied, and 1 < p = q′ < ∞, we can obtain that

0 < α+
n

p
, and λ < n, β +

n

q
< n.

Since (
n

p
+ α

)
+ λ+

(
n

q
+ β

)
= 2n,

it follows from Lemma 2.4 that Cβ+n
q ,λ,n = Cα+n

p ,λ,n.

Thus Lemma 2.3 implies that Tα,λ,β is bounded from Lq(Rn) to itself and

‖Tα,λ,β‖Lq(Rn)→Lq(Rn) � Cβ+n
q ,λ,n = Cα+ n

p ,λ,n. (3.10)

To complete the proof of Theorem 1.2, we have to show the inverse inequality.

Set

gε(y) = χ|y|�1(y)|y|−
n
q +ε

with ε > 0. For any fixed x ∈ R
n\{0}, there must exist a rotation transformation denoted by Ax such

that

Axe1 =
x

|x| .

By means of variable substitution, we can get that

Tα,λ,βgε(x) = |x|−α

∫
|y|�1

|x− y|−λ|y|−n
q −β+εdy

= |x|−α

∫
||x|Axy|�1

||x|Axe1 − |x|Axy|−λ||x|Axy|−
n
q −β+εd(|x|Axy)

= |x|−α−λ−β− n
q +n+ε

∫
|y|� 1

|x|

|y − e1|−λ|y|−n
q −β+εdy

= |x|− n
q +ε

∫
|y|� 1

|x|

|y − e1|−λ|y|−n
q −β+εdy.
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Now fix a δ with 0 < δ < 1. We conclude that

‖Tα,λ,βgε‖qLq(Rn)

‖gε‖qLq(Rn)

�
‖Tα,λ,βgε‖qLq(Bδ(0))

‖gε‖qLq(Rn)

�
∫
|x|�δ(|x|

− n
q +ε

∫
|y|� 1

δ
|y − e1|−λ|y|−

n
q −β+εdy)qdx

‖gε‖qLq(Rn)

=

∫
|x|�δ

|x|−n+εqdx

‖gε‖qLq(Rn)

(∫
|y|� 1

δ

|y − e1|−λ|y|−
n
q −β+εdy

)q

= δεq
(∫

|y|� 1
δ

|y − e1|−λ|y|−
n
q −β+εdy

)q

. (3.11)

It follows from Fadou’s lemma and the inequality (3.11) that

lim inf
ε→0+

‖Tα,λ,βgε‖qLq(Rn)

‖gε‖qLq(Rn)

�
(∫

|y|� 1
δ

|y − e1|−λ|y|−n
q −βdy

)q

.

Letting δ → 0 and using Lemma 2.2, we conclude that

‖Tα,λ,β‖Lq(Rn)→Lq(Rn) � lim inf
ε→0+

‖Tα,λ,βgε‖Lq(Rn)

‖gε‖Lq(Rn)
�

∫
Rn

|y − e1|−λ|y|−n
q −βdy = Cβ+n

q
,λ,n. (3.12)

Consequently, combining the inequality (3.10) with the inequality (3.12) immediately yields that

‖Tα,λ,β‖Lp(Rn)×Lq(Rn)→L1(Rn×Rn) = ‖Tα,λ,β‖Lq(Rn)→Lq(Rn) = Cα+n
p
,λ,n = Cβ+n

q
,λ,n.

This finishes the proof of Theorem 1.2.

Proof of Theorem 1.3. According to Theorem C and the boundedness of the operator Tα,λ,β from

L1(Rn)× L1(Rn) to L1(Rn × R
n), we have that α = λ = β = 0. Evidently, we have that

‖Tα,λ,β‖L1(Rn)×L1(Rn)→L1(Rn×Rn) = ‖T0,0,0‖L1(Rn)×L1(Rn)→L1(Rn×Rn) = 1.

Proof of Theorem 1.4. Without loss of generality, we let f, g � 0. Let p0 = 1 + q′

p′ , q0 = 1 + p′

q′ and

θ = 1
p′ +

1
q′ . Obviously we have that

1

p0
+

1

q0
= 1, (1− θ) +

θ

p0
=

1

p
and (1− θ) +

θ

q0
=

1

q
.

Rewrite Tα,λ,β(f, g) as

Tα,λ,β(f, g)(x, y) = |f(x)|p(1−θ)|g(y)|q(1−θ) |f(x)|
pθ
p0 |g(y)|

qθ
q0

|x|α|x− y|λ|y|β .

Notice that

0 < θ =
1

p′
+

1

q′
= 2− 1

p
− 1

q
< 1.

It follows from Hölder’s inequality that

‖Tα,λ,β(f, g)‖L1(Rn×Rn) � ‖fpgq‖1−θ
L1(Rn×Rn)

(∫
Rn

∫
Rn

|f(x)|
p
p0 |g(y)|

q
q0

|x|αθ |x− y|λθ |y| βθ
dxdy

)θ

= ‖f‖p(1−θ)
Lp(Rn)‖g‖

q(1−θ)
Lq(Rn)

(∫
Rn

∫
Rn

|f(x)|
p
p0 |g(y)|

q
q0

|x|αθ |x− y|λθ |y| βθ
dxdy

)θ

. (3.13)

Setting F = f
p
p0 and G = g

q
q0 , we have

‖F‖Lp0(Rn) = ‖f‖
p
p0

Lp(Rn) and ‖G‖Lq0 (Rn) = ‖g‖
q
q0

Lq(Rn).
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Since p0 = 1+ q′

p′ , q0 = 1+ p′

q′ and θ = 1
p′ +

1
q′ and the conditions (1.1) and (1.2) hold, a straightforward

calculation shows that

α

θ
+

λ

θ
+

β

θ
= n,

α

θ
=

αp′q′

p′ + q′
< n

q′

p′ + q′
=

n

q0
=

n

p′0

and
β

θ
=

βp′q′

p′ + q′
< n

p′

p′ + q′
=

n

p0
=

n

q′0
.

Set α′ = α
θ , λ

′ = λ
θ and β′ = β

θ . We clearly have that

1

p0
+

1

q0
= 1, (3.14)

1

p0
+

1

q0
+

α′ + λ′ + β′

n
= 2, (3.15)

α′ + β′ > 0, α′ <
n

p′0
, β′ <

n

q′0
, λ′ < n. (3.16)

Clearly by (3.14)–(3.16), we can easily verify that the functions F , G and the indexes p0, q0, α
′, λ′

and β′ satisfy all the conditions in Theorem 1.2, so we conclude from the inequality (3.13) that

‖Tα,λ,β(f, g)‖L1(Rn×Rn) � (Cα
θ + n

p0
,λθ ,n)

θ‖f‖p(1−θ)
Lp(Rn)‖g‖

q(1−θ)
Lq(Rn)‖F‖θLp0(Rn)‖G‖θLq0(Rn)

= (Cα
θ + n

p0
,λθ ,n)

θ‖f‖p(1−θ)
Lp(Rn)‖g‖

q(1−θ)
Lq(Rn)‖f‖

pθ
p0

Lp(Rn)‖g‖
qθ
q0

Lq(Rn)

= (Cα
θ + n

p0
,λθ ,n)

θ‖f‖Lp(Rn)‖g‖Lq(Rn).

This means that

‖Tα,λ,β‖Lp(Rn)×Lq(Rn)→L1(Rn×Rn) � (Cα
θ + n

p0
,λθ ,n

)θ = (Cβ
θ +

n
q0

,λθ ,n)
θ.

This completes the proof of Theorem 1.4.
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