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Abstract We are concerned with robust estimation procedures to estimate the parameters in partially linear

models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-

cave regularization method in the robust estimation procedure to select important covariates from the linear

component. We establish the consistency for both the linear and the nonlinear components when the covariate

dimension diverges at the rate of o(
√
n), where n is the sample size. We show that the robust estimate of

linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function

and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we

estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate

of nonlinear component performs asymptotically as well as if the linear component were known in advance.

Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample

performance of the proposed procedures.
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1 Introduction

Let Y be the response variable, x = (X1, . . . , Xpn)
� ∈ R

pn and z = (Z1, . . . , Zd)
� ∈ R

d be the associated

covariate vectors. Consider the partially linear model

Y = β�
n0x+ ν(z) + ε, (1.1)

where the random error ε satisfies E(ε|x, z) = 0. The subscript n in βn0 indicates that the dimension pn
of βn0 possibly depends on n. Model (1.1) contains both a linear component β�

n0x and a nonparametric

baseline function ν(z). It combines the flexibility of nonparametric regression and the parsimony and

interpretability of linear regression.
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As one of the most commonly used semiparametric regression models, the partially linear model has

received considerable attention in the last two decades. The existing literatures often assume a univariate

z and a finite-dimensional x (i.e., d = 1 and pn is fixed as n→ ∞). Examples for estimating βn0 include

the partial spline estimator [6, 15], and the partial residual estimator [5, 25, 26]. [26] and [12] proposed

respectively kernel regression and local linear regression to estimate the parameters and systematically

investigated the theoretical properties of the resulting estimators. For a comprehensive review on the

study of (1.1), one can refer to the monograph by [13] and references therein. In these studies, however,

either the dimension of the covariate vector x was fixed or the problem of variable selection in x via

penalization was not considered. In addition, these studies did not consider the issue of robust estimation.

In the presence of a large number of covariates in model (1.1), [10] considered variable selection in the

context of longitudinal data analysis, and [21] proposed penalized profile least squares to estimate the

parameters in partially linear models with measurement errors. Both assume a framework with a fixed

set of covariates as n increases. [32] established the consistency of penalized profile least squares estimate

when pn diverges at the rate of o (
√
n).

To handle non-normal or heavy-tailed errors in (1.1), [3] proposed a robust profile likelihood esti-

mation, [14] and [23] extended the robust likelihood procedure to longitudinal data. [21] considered

penalized quantile regression for partially linear models when the covariates are measured with addi-

tive errors. These robust estimation procedures are applicable for low-dimensional covariates, but they

become infeasible when the dimension of covariates is comparably large due to the curse of dimensionality.

In this paper, we propose several general robust procedures to estimate the parameters in model (1.1).

We allow the dimension pn of x to diverge with the sample size n. This strategy makes model (1.1)

more useful in usual practice [11, 32]. To estimate βn0 in (1.1), we follow the idea of “partial-residual”

estimation [5, 25, 26] and transform (1.1) into a linear model. We build a general robust estimation

procedure upon the transformed linear model. To enhance the interpretability, we then implement a

nonconcave regularization approach to select the important covariates from x. It is shown that the

penalized robust estimate of βn0 performs asymptotically as well as an oracle procedure when pn = o (
√
n).

This oracle property also extends the terminology of [9] in that the oracle procedure for (1.1) assumes

both the effects of z on both x and Y and the unimportant covariates amongst x were known in advance.

With a consistent estimate of βn0, we estimate the nonlinear component ν(z) in (1.1) by a robust

local linear estimation. We show that the robust local linear regression estimate of ν(z) based upon the

consistent estimate of βn0 has the same asymptotic bias and variance as the robust local linear regression

based upon the true value βn0. In other words, the robust local linear estimation of the nonlinear

component also has an oracle property asymptotically.

The rest of this paper is organized as follows. In Section 2, we propose a general robust estimation

procedure to estimate the linear and the nonlinear components for (1.1). To select important covariates

from the linear component, in Section 3 we implement a nonconcave penalty in the robust estimation

procedure. Some practical issues, including the optimization and tuning parameter selection, are also

discussed in this section. Comprehensive simulations are conducted in Section 4 to examine the per-

formance of the proposed procedures. The simulations demonstrate that the proposed procedures with

moderate sample size perform almost as well as the oracle estimators. In this section we also illustrate

our proposal through an empirical analysis of a real-world dataset. This article is concluded with a brief

discussion in Section 5. Regularity conditions and technical proofs are given in Appendix.

2 A robust estimation procedure

In this section, we suggest a general robust estimation procedure to estimate the linear component and

the nonparametric baseline function.

2.1 A robust estimate of βn0

We first discuss how to estimate βn0 in (1.1) following the idea of “partial-residual” estimation [5,25,26].

For notational clarity, we write x̃ = x−E(x|z) and Ỹ = Y −E(Y |z). We note that model (1.1) implies
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that

Ỹ = β�
n0x̃+ ε. (2.1)

The transformed model (2.1) enables us to estimate βn0 in the context of classical linear model. Specifi-

cally, we suppose that {(xi, zi, Yi), i = 1, . . . , n} is a random sample from (1.1). To get some insights into

the general estimation procedure, for now we assume that E(xi|zi) and E(Yi|zi), for i = 1, . . . , n, are

observable, which in turn implies that both x̃i’s and Ỹi’s are observable. We will discuss how to estimate

E(xi|zi) and E(Yi|zi) later. With {(x̃i, Ỹi), i = 1, . . . , n}, we can estimate βn0 by minimizing

n∑
i=1

ρ(Ỹi − x̃�
i βn) (2.2)

for a suitable choice of loss function ρ(·). In general, ρ(·) can be any convex function. Some important

examples include Huber’s estimate with ρ(r) = r2

2 1 (|r| � c) + (c|r| − c2

2 )1 (|r| > c) for some positive

constant c; the �q-regression estimate with ρ(r) = |r|q for some 1 � q � 2; the regression quantile with

ρ(r) = αr+ +(1−α)(−r)+, for 0 < α < 1, where r+ = max(r, 0). When q = 1 or α = 1/2, the minimizer

of (2.2) is called the least absolute deviation (LAD) estimate, which is a robust estimation; when c = +∞
or q = 2, it corresponds to the ordinary least squares estimate.

In practice, we must estimate E(Y |z) and E(x|z). This can be done through nonparametric regression

techniques such as kernel smoothing or local linear regression [7]. Denote the resulting estimates by

m̂x(zi) and m̂Y (zi) respectively. For example, we define

m̂x(zi) :=

∑n
j �=iKh1(zj − zi)xj∑n
j �=iKh1(zj − zi)

,

and

m̂Y (zi) :=

∑n
j �=iKh2(zj − zi)Yj∑n
j �=iKh2(zj − zi)

, (2.3)

where Khk
(·) = K(·/hk)/hk is a d-dimensional kernel function and hk is the bandwidth for k = 1, 2. Note

that m̂Y (·) is not a robust estimate of mY (·) when ε is heavy-tailed. However, it will not affect the final

estimate of βn0 because the issue of the presence of heavy-tailed errors will be taken into account when

we implement a robust procedure to estimate βn0. Let
̂̃xi = xi − m̂x(zi) and

̂̃
Y i = Yi − m̂Y (zi). Denote

β̂n0 := argmin
βn

n∑
i=1

ρ(
̂̃
Y i − ̂̃x�

i βn), (2.4)

which is the final robust estimate of βn0 at the sample level.

The following theorem states the convergence rate of the robust estimate.

Theorem 1. Suppose that ρ(·) and x̃ satisfy Conditions (C1)–(C2) and (C3)(i) in Appendix A. If

p2n/n→ 0, then there exists a robust estimator β̂n0 such that

‖β̂n0 − βn0‖ = OP (
√
pn/n),

where β̂n0 is defined in (2.4), and ‖ · ‖ stands for the Euclidean norm.

The following theorem presents the asymptotic normality of β̂n0 when pn diverges at the rate of o(n1/2).

It improves the rate of pn = o(n1/3) obtained by [17].

Theorem 2. Suppose Conditions (C1)–(C2) and (C3)(i) in Appendix A hold. If p2n/n→ 0, then

n1/2AnS
1/2
n (β̂n0 − βn0)

D→ N(0, γ−2σ2
0G)

where “
D→ ” stands for “convergence in distribution”; Sn = var (x̃) and x̃ = x−E (x|z) ; An is a q× pn

matrix such that AnA
�
n → G as n→ ∞, and G is a q×q nonnegative symmetric matrix; σ2

0 = E{ψ2(ε)}
where ψ(·) is defined in Condition (C1); γ is a constant defined in Condition (C2).
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This theorem implies that the general robust estimate of βn0, denoted by β̂n0, performs asymptotically

as well as if {(x̃i, Ỹi), i = 1, . . . , n} were observed a priori. In other words, even when the dimensionality

pn diverges at the rate of pn = o(n1/2), the robust estimate β̂n0 performs asymptotically as well as its

oracle counterpart which assumes the nonlinear effect of z on both x and Y were known in advance.

If ρ happens to be the least squares loss function, then γ−2σ2
0 = E(ε2). Thus, for a general loss

function ρ, the asymptotic relative efficiency (ARE) of the resulting robust estimator to the ordinary

least squares has the form of

ARE =
γ2E(ε2)

E{ψ2(ε)} .

2.2 A robust estimate of ν(·)
Next, we discuss how to estimate ν(z0) for any fixed z0 ∈ R

d when a consistent estimate of βn0 is available.

This can be done through using the idea of the local linear fit which approximates the unknown function

ν(z0) by a linear function ν(z) ≈ ν(z0) + (z − z0)
�
ν′(z0) =: a + (z − z0)

�
b for z in a neighborhood

of z0. Locally, estimating ν(z0) is equivalent to estimating the intercept term a. Therefore, we are

motivated to define an estimator ν̂(z0) = â, where

(â, b̂) =: argmin
a,b

n∑
i=1

ρ{Yi − β̂
�
n0xi − a− (z − z0)

� b}K
(
zi − z0
hn

)
, (2.5)

where K(·) is a d-dimensional kernel function. One can also refer to [8] for a motivation and a discussion

of this estimate.

The following theorem presents the asymptotic normality of ν̂(z0).

Theorem 3. In addition to conditions in Theorem 2, we assume that Conditions (C4)–(C7) hold. If

hn → 0 and nhdn → ∞, then

(nhdn)
1/2 {ν̂(z0)− ν(z0)− bias} D→ N

{
0,

∫
K2(v)dv

f(z0)

∫
G2 (y∗ − ν (z0)) g(y

∗|z0)dμ(y∗)
}
,

where bias = h2ntr {ν′′(z0)}
∫
v2K(v)dv/2; f(·) denotes the density function of z; and G(·) and g(·) are

defined in Condition (C6).

The above theorem indicates that the robust local linear regression estimate of ν(·) built upon the

consistent estimate β̂n0 has the same asymptotic bias and variance as that built upon the true value βn0.

This is not a very surprising result in that Theorem 2 states that the estimate of the linear component

has a faster convergence rate than that of the nonlinear component.

3 A penalized robust estimation

In practice many covariates are often collected to attenuate modeling bias during the stage of data

gathering. To enhance the interpretability of (1.1) when a large number of covariates are present, we con-

sider penalized robust estimation procedures to select important covariates and to exclude unimportant

covariates in the sequel.

3.1 Variable selection in robust estimation

To select important covariates from x in (1.1), we consider equivalently the transformed linear model

(2.1). Over the past years, much effort has been devoted to establishing the consistency of various

penalized robust estimations in the context of classical linear models [20, 28, 30, 34]. In the transformed

linear model (2.1), however, both x̃ and Ỹ are not observed. Thus we must replace them with their

consistent estimators. This introduces some new difficulties in selecting important covariates from x.
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We follow the idea of (2.4) and propose to estimate βn0 by minimizing

n∑
i=1

ρ(
̂̃
Y i − ̂̃x�

i βn) + n

pn∑
j=1

pλ(|βnj |), (3.1)

where βnj is the j-th coordinate of βn, pλ(·) is a penalty function and λ is a regularization parameter. [9]

studied the choice of penalty functions in depth. They proposed a unified approach via non-concave

penalized likelihood to automatically select important variables and simultaneously estimate the coeffi-

cients of covariates. One of the most commonly used nonconcave penalty is the SCAD penalty, which is

defined by

pλ (|βnj |) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ|βnj |, if 0 � |βnj | < λ,

(a2 − 1)λ2 − (|βnj | − aλ)2

2(a− 1)
, if λ � |βnj | < aλ,

(a+ 1)2λ2

2
, if |βnj | � aλ,

where a is often chosen as 3.7 as suggested in [9].

In practical implementation, we may employ the perturbed LQA algorithm proposed by [18] to mini-

mize (3.1) for a fixed λ. Specifically, we updated β
(k+1)
n from β

(k)
n by using

β(k+1)
n = argmin

βn

{ n∑
i=1

ρ(
̂̃
Y i − ̂̃x�

i βn) + n

pn∑
j=1

p′λ(|β(k)
nj |)

2(|β(k)
nj |+ τ)

β2
nj

}
, (3.2)

where τ = τ0
min{|β(k)

nj |:β(k)
nj �=0}

2nλn
for a prespecified tolerance τ0. In our subsequent implementations, we

update β
(k)
n using (3.2) to obtain an estimate of βn0. This algorithm was implemented in our numerical

study.

To produce a sparse robust estimate of βn0, it remains to select the regularization parameter λ. For

any fixed λ, we update β
(k+1)
n from β

(k)
n iteratively using (3.2) until the algorithm converges. We denote

the resulting estimate by β̂n(λ). The regularization parameter λ can be chosen through a data-driven

algorithm. We adopt the BIC-type tuning parameter selector. To be specific, we choose the optimal λ

which minimizes the following BIC type criterion:

BIC(λ) = n log

[ n∑
i=1

ρ{ ̂̃Y i − ̂̃x�
i β̂n(λ)}

]
+ log(n)DFλ,

where

DFλ = trace[
̂̃
X(

̂̃
X

�̂̃
X + nD{β̂n(λ), λ})−1̂̃X�

],̂̃
X = (̂̃x1, . . . , ̂̃xn)

� is an n × pn matrix, and D{β̂n(λ), λ} is the diagonal matrix whose j-th diagonal

element is
p′λ(|β̂nj(λ)|)
2|β̂nj(λ)|

.

We denote by β̂n the final estimation β̂n(λ) with an optimal λ selected by the above BIC type criterion.

Regarding pn as a fixed number, [29] proved the selection consistency of the BIC type criterion under

the least squares framework. [27] proposed a modified BIC type criterion to accommodate the diverging

pn scenario. They also established the selection consistency for the modified BIC type criterion. We

further adapted [27]’s BIC type criterion to accommodate the robust regression scenario. Though the

selection consistency of the modified BIC type criterion under the robust regression context remains

unknown to us, it is an important issue and deserves our further study.
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3.2 Asymptotic properties

In this section, we investigate the asymptotic properties of the nonconcave-penalized robust estimation

β̂n. The following theorem states the convergence rate of β̂n.

Theorem 4. Suppose that ρ(·) and x̃ satisfy Conditions (C1)–(C2) and (C3)(ii) and the penalty func-

tion pλn(·) satisfies Conditions (C8)–(C10). If p2n/n → 0 as n → ∞, then there exists a nonconcave-

penalized robust estimator β̂n such that

‖β̂n − βn0‖ = OP {p1/2n (n−1/2 + an)},

where an is defined in Condition (C8) in Appendix A.

Theorem 4 shows that the nonconcave-penalized robust estimator β̂n is root-n/pn consistent if an =

O(n−1/2). For the SCAD penalty, if those nonzero coefficients are larger than aλn, it can be easily seen

that an = 0 when n is large enough, and hence the estimate of nonconcave-penalized robust estimator

β̂n is root-n/pn consistent.

Next, we investigate the oracle property of the nonconcave-penalized robust estimate β̂n. To facilitate

illustration, we assume without loss of generality that the first kn elements in βn0 are nonzero and the

last pn − kn elements are zero. In other words, βn0 = (β�
nI ,β

�
nII)

�, where βnI = (βn0,1, . . . , βn0,kn)
�

and βnII = (βn0,kn+1, . . . , βn0,pn)
�, βn0,j �= 0 for 1 � j � kn and βn0,j = 0 for kn + 1 � j � pn. Denote

bn = {p′λn
(|βn0,1|)sign(βn0,1), . . . , p′λn

(|βn0,kn |)sign(βn0,kn)}�,

and

Σλn = diag{p′′λn
(|βn0,1|), . . . , p′′λn

(|βn0,kn |)}.

Theorem 5. Under Conditions (C1)–(C2) and (C3)(ii) and (C8)–(C11), if λn → 0 with a proper

rate, then with probability tending to 1, the root-n/pn consistent nonconcave-penalized robust estimator

β̂n = (β̂
�
nI , β̂

�
nII)

� must satisfy:

(i) Sparsity: β̂nII = 0, if (n/pn)
1/2

λn → ∞ as n→ ∞;

(ii) Asymptotic normality: If p2n/n→ 0 and (n/pn)
1/2

λn → ∞, then

n1/2AnIS
−1/2
nI (γSnI +Σλn) {(β̂nI − βnI) + (γSnI +Σλn)

−1
bn} D→ N(0, σ2

0G),

where SnI = var (x̃I) and AnI is a q × kn matrix such that AnIA
�
nI → G as n → ∞, and G is a q × q

nonnegative symmetric matrix.

Theorem 5 implies that the nonconcave-penalized robust estimator of the zero coefficients are exactly

zero with high probability when n is large. The asymptotic normality in Theorem 5 in parallel to that

in Theorem 2, both allow the dimensionality pn diverges at the rate of pn = o(n1/2). When n is large

enough and those nonzero valued coefficients are larger than aλn, Σλn = 0 and b = 0 for the SCAD

penalty. Consequently, the asymptotic normality (ii) of Theorem 5 becomes

n1/2AnIS
1/2
nI (β̂nI − βnI)

D→ N(0, γ−2σ2
0G),

which has the same efficiency of the robust estimator of βnI based on the sub-model with βnII known in

advance. In addition, our estimator achieves the same efficacy as if x̃ and Ỹ were observed in advance,

although x̃ and Ỹ have to be estimated from the data because E (x|z) and E (Y |z) usually remain

unknown in practice. This demonstrates that, the penalized robust estimate is as efficient as the oracle

estimator which assumes βnII and the effects of z on x and Y were known in advance.

With the penalized robust estimate β̂n, we follow the idea of Subsection 2.2 and estimate ν(z0) using

the local linear approximation. To be specific, we define

(â, b̂) := argmin
a,b

n∑
i=1

ρ{Yi − β̂
�
nxi − a− (z − z0)

� b}K
(
zi − z0
hn

)
.
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We define without notational confusion that ν̂(z0) = â. The following theorem is parallel to Theorem 3,

yet it allows the dimension of x diverges at the rate of pn = o(n1/2), thanks to the penalized robust

estimation.

Theorem 6. In addition to conditions in Theorem 5, we assume that Conditions (C4)–(C7) hold. If

hn → 0 and nhdn → ∞, then

(nhdn)
1/2 {ν̂(z0)− ν(z0)− bias} D→ N

{
0,

∫
K2(v)dv

f(z0)

∫
G2 {y∗ − ν(z0)} g(y∗|z0)dμ(y∗)

}
,

where bias = h2ntr {ν′′(z0)}
∫
v2K(v)dv/2.

4 Numerical studies

4.1 Simulations

We conduct simulations to investigate the performance of the newly proposed procedures. The following

four models are adopted for comparison purposes:

model (I) : Y = β�
n0x+ 2 sin(γ�z) + ε;

model (II) : Y = β�
n0x+ |(γ�z) + 1|+ ε;

model (III) : Y = β�
n0x+ exp{(γ�z)/2}/2 + ε;

model (IV) : Y = β�
n0x+ 2(γ�z) + ε.

We choose these models based on the following considerations. The effects of z on the response Y are

nonlinear in (I)–(III) and linear in (IV). The link function ν(z) is oscillating in (I)–(II), and monotonic

in (III)–(IV). In these models, we generate z = (Z1, Z2)
� from a multivariate normal distribution with

mean zero and identity variance-covariance matrix. We generate x = (X1, . . . , Xpn)
� from models of

the form Xi = γ�z + 2εi for i = 1, . . . , pn, where γ = (0.707, 0.707)� and the error terms εi’s are

independently generated from standard normal population. We generate x in this way such that x and

z are correlated. We choose βn0 = (1.0, 0.8, 1.0,−1.5, 0.5, 0, . . . , 0)�, indicating that only the first five

covariates are important, and all remaining covariates of x are unimportant given (X1, . . . , X5)
�.

To verify the robustness of our proposals, we consider three scenarios for the error term ε: (a) ε

is generated from standard normal distribution; (b) ε is generated from standard t-distribution with 2

degrees of freedom; and (c) ε is generated from the mixture normal distribution 0.8N(0, 1)+0.2N(0, 52).

To provide a consistent estimate of βn0 for model (1.1), we adopt three loss functions: (1) ρ(r) = r2

(least squares estimation, LSE); (2) ρ(r) = |r| (least absolute deviation, LAD); and (3) ρ(r) = 0.5r2 if

|r| � 1.345 and ρ(r) = 1.345|r| − 1.3452/2 if |r| > 1.345 (Huber function, HUB).

The simulations are repeated 200 times each of sample size n = 400 and dimension pn = 2n1/2 = 40.

Estimation of βn0

We evaluate the performance of β̂ using the squared errors. To measure the estimation accuracy of β̂,

we adopt the squared error (SE) which is defined by

SE(β̂) = ‖β̂ − βn0‖2. (4.1)

Recall that, to estimate βn0, we introduced the general robust estimate β̂n0 in Section 2 and the non-

concave penalized robust estimate β̂n in Section 3.

We estimate the squared errors by Monte Carlo simulations. The averages and the standard deviations

of SE values of β̂n0 are summarized in Table 1, from which it can be easily seen that the general robust

estimate β̂n0 performs equally as well as its oracle version which assumes ν(·) is known in advance. This

confirms our theoretical investigation in Theorem 5. Though we estimate mY (zi) through the usual

kernel regression (2.3) when ε ∼ t(2), the squared errors SE(β̂n0) of both LAD and HUB estimators
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Table 1 The average (“aver.”) and standard deviation (“stdev.”) of SE(̂βn0) values based on 200 repetitions

Error
Standard normal t(2) distribution Mixture normal

aver. stdev. aver. stdev. aver. stdev.

Model (I)

LSE 0.32 (0.04) 0.94 (0.45) 0.80 (0.11)

oracle LAD 0.40 (0.05) 0.49 (0.07) 0.50 (0.07)

HUB 0.33 (0.04) 0.48 (0.06) 0.47 (0.07)

LSE 0.34 (0.04) 0.98 (0.47) 0.83 (0.12)

robust LAD 0.42 (0.05) 0.57 (0.08) 0.55 (0.08)

HUB 0.35 (0.04) 0.53 (0.07) 0.53 (0.08)

Model (II)

LSE 0.33 (0.04) 1.00 (0.54) 0.78 (0.11)

oracle LAD 0.41 (0.04) 0.49 (0.06) 0.50 (0.06)

HUB 0.33 (0.04) 0.49 (0.06) 0.47 (0.06)

LSE 0.35 (0.04) 1.05 (0.57) 0.82 (0.12)

robust LAD 0.43 (0.05) 0.58 (0.09) 0.56 (0.08)

HUB 0.35 (0.04) 0.55 (0.08) 0.53 (0.07)

Model (III)

LSE 0.33 (0.04) 0.93 (0.52) 0.79 (0.11)

oracle LAD 0.41 (0.05) 0.49 (0.07) 0.51 (0.07)

HUB 0.33 (0.04) 0.47 (0.07) 0.48 (0.06)

LSE 0.35 (0.04) 0.97 (0.52) 0.83 (0.12)

robust LAD 0.43 (0.05) 0.57 (0.08) 0.56 (0.08)

HUB 0.35 (0.04) 0.53 (0.07) 0.53 (0.08)

Model (IV)

LSE 0.33 (0.04) 1.07 (1.34) 0.79 (0.11)

oracle LAD 0.42 (0.05) 0.50 (0.07) 0.51 (0.06)

HUB 0.34 (0.04) 0.48 (0.07) 0.48 (0.06)

LSE 0.35 (0.04) 1.12 (1.42) 0.82 (0.11)

robust LAD 0.44 (0.05) 0.56 (0.10) 0.56 (0.07)

HUB 0.36 (0.04) 0.53 (0.09) 0.52 (0.07)

are small, indicating that the robust estimates are asymptotically unbiased. This is because the issue of

heavy tailed errors has been automatically taken into account in (2.4). The LSE performs the best when

the error is standard normal, and the worst otherwise, which complies with our expectation. We can also

see that different estimation procedures have similar performance in different models.

The averages and the standard deviations of SE values of β̂n are displayed in Table 2. In comparison of

β̂n0 with β̂n, we can see that the non-concave penalized estimate β̂n has much better performance across

all scenarios. The oracle estimate in Table 2 assumes both the nonlinear effects and the unimportant

covariates are known a priori, which is not surprisingly better than the oracle estimate in Table 1.

Estimation of ν(·)
Throughout our simulations we use the Epanechnikov kernel function and the generalized cross-

validation to determine an optimal bandwidth. To evaluate the performance of estimating ν(·), we

adopt the median absolute deviation defined by

MAD = median {|ν̂(zi)− ν(zi)| , i = 1, . . . , n} . (4.2)

Table 3 charted the averages and the standard deviations for three different estimation procedures: The

oracle estimate which assumes βn0 is known in advance; the robust estimation which regresses Y −x�β̂n0

onto z; and the penalized robust estimation which regresses Y −x�β̂n onto z. The three loss functions,
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Table 2 The average (“aver.”) and standard deviation (“stdev.”) of SE(̂βn) values based on 200 repetitions

Error
Standard normal t(2) distribution Mixture normal

aver. stdev. aver. stdev. aver. stdev.

Model (I)

LSE 0.10 (0.03) 0.28 (0.15) 0.23 (0.08)

oracle LAD 0.12 (0.05) 0.15 (0.05) 0.15 (0.05)

HUB 0.10 (0.04) 0.14 (0.05) 0.13 (0.05)

LSE 0.14 (0.04) 0.46 (0.29) 0.36 (0.12)

robust LAD 0.20 (0.09) 0.26 (0.17) 0.23 (0.11)

HUB 0.19 (0.09) 0.26 (0.12) 0.25 (0.10)

Model (II)

LSE 0.10 (0.03) 0.28 (0.18) 0.23 (0.09)

oracle LAD 0.12 (0.04) 0.14 (0.05) 0.14 (0.05)

HUB 0.10 (0.03) 0.14 (0.05) 0.13 (0.05)

LSE 0.14 (0.04) 0.49 (0.33) 0.36 (0.11)

robust LAD 0.20 (0.09) 0.27 (0.23) 0.24 (0.10)

HUB 0.18 (0.08) 0.27 (0.14) 0.25 (0.11)

Model (III)

LSE 0.10 (0.03) 0.28 (0.19) 0.23 (0.09)

oracle LAD 0.12 (0.04) 0.14 (0.05) 0.14 (0.05)

HUB 0.10 (0.03) 0.13 (0.05) 0.14 (0.05)

LSE 0.14 (0.04) 0.45 (0.27) 0.36 (0.12)

robust LAD 0.21 (0.08) 0.26 (0.25) 0.24 (0.10)

HUB 0.19 (0.09) 0.26 (0.14) 0.25 (0.10)

Model (IV)

LSE 0.10 (0.04) 0.31 (0.50) 0.23 (0.08)

oracle LAD 0.13 (0.04) 0.14 (0.05) 0.15 (0.05)

HUB 0.11 (0.04) 0.13 (0.05) 0.13 (0.05)

LSE 0.14 (0.04) 0.49 (0.39) 0.36 (0.11)

robust LAD 0.20 (0.09) 0.28 (0.29) 0.23 (0.11)

HUB 0.18 (0.08) 0.26 (0.21) 0.25 (0.10)

LSE, LAD and HUB, are considered here. It can be seen that the general robust estimation and the

non-concave penalized robust estimation have quite similar performance, both of which are very close to

the oracle estimates. The phenomenon, once again, verifies our theoretical observations in Theorems 3

and 6.

Variable selection

To measure the performance of the penalized robust estimation procedure in terms of variable selection,

we calculated the average proportions of the zero coefficients, which are summarized in Table 4, in which

the column labeled “C” presents the average proportion restricted only to the true zero coefficients, while

the column labeled “IC” depicts the average of coefficients erroneously set to zero. All numbers in the

“IC” columns are exactly zero, indicating that three methods can identify successfully all five important

predictors. A closer inspection finds that the numbers of LSE in the “C” columns are smaller that those

of the robust estimations such LAD and HUB, indicating that the penalized robust estimation procedures

are better than the penalized least squares in terms of variable selection.

4.2 An application

Motor-car manufactures produce different types of vehicles with different levels of attributes such as miles

per gallon and horsepower. Given these attributes, the manufacturers would like to know how they can
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Table 3 The average (“aver.”) and standard deviation (“stdev.”) of median absolute deviation values obtained from

nonconcave-penalized robust estimation procedure

Error
Standard normal t(2) distribution Mixture normal

aver. stdev. aver. stdev. aver. stdev.

Model (I)

LSE 0.18 (0.03) 0.36 (0.06) 0.39 (0.06)

oracle LAD 0.22 (0.03) 0.27 (0.04) 0.28 (0.04)

HUB 0.20 (0.03) 0.26 (0.04) 0.26 (0.04)

LSE 0.25 (0.09) 0.70 (0.49) 0.62 (0.29)

robust LAD 0.28 (0.09) 0.66 (0.49) 0.56 (0.27)

HUB 0.26 (0.09) 0.65 (0.50) 0.55 (0.28)

LSE 0.24 (0.10) 0.50 (0.25) 0.46 (0.12)

penalized LAD 0.27 (0.09) 0.42 (0.24) 0.37 (0.11)

HUB 0.25 (0.10) 0.41 (0.24) 0.35 (0.12)

Model (II)

LSE 0.19 (0.03) 0.37 (0.07) 0.39 (0.06)

oracle LAD 0.23 (0.03) 0.27 (0.04) 0.28 (0.04)

HUB 0.20 (0.03) 0.27 (0.04) 0.26 (0.04)

LSE 0.27 (0.11) 0.72 (0.47) 0.58 (0.23)

robust LAD 0.30 (0.11) 0.68 (0.46) 0.53 (0.25)

HUB 0.28 (0.11) 0.66 (0.46) 0.51 (0.25)

LSE 0.23 (0.08) 0.51 (0.26) 0.45 (0.11)

penalized LAD 0.27 (0.08) 0.44 (0.27) 0.36 (0.10)

HUB 0.24 (0.08) 0.43 (0.27) 0.35 (0.11)

Model (III)

LSE 0.18 (0.02) 0.37 (0.06) 0.39 (0.06)

oracle LAD 0.23 (0.03) 0.27 (0.04) 0.28 (0.04)

HUB 0.19 (0.02) 0.27 (0.04) 0.27 (0.04)

LSE 0.27 (0.11) 0.68 (0.54) 0.59 (0.27)

robust LAD 0.30 (0.10) 0.63 (0.55) 0.55 (0.29)

HUB 0.28 (0.11) 0.63 (0.55) 0.53 (0.29)

LSE 0.24 (0.09) 0.49 (0.23) 0.44 (0.10)

penalized LAD 0.27 (0.08) 0.42 (0.22) 0.36 (0.09)

HUB 0.25 (0.09) 0.41 (0.23) 0.35 (0.10)

Model (IV)

LSE 0.18 (0.03) 0.36 (0.06) 0.38 (0.06)

oracle LAD 0.23 (0.03) 0.27 (0.04) 0.28 (0.04)

HUB 0.20 (0.03) 0.26 (0.04) 0.26 (0.04)

LSE 0.26 (0.11) 0.82 (0.98) 0.59 (0.26)

robust LAD 0.29 (0.10) 0.77 (1.01) 0.54 (0.28)

HUB 0.27 (0.11) 0.76 (1.03) 0.52 (0.28)

LSE 0.23 (0.09) 0.53 (0.29) 0.45 (0.11)

penalized LAD 0.27 (0.08) 0.45 (0.27) 0.36 (0.10)

HUB 0.24 (0.09) 0.44 (0.27) 0.34 (0.11)

charge the highest price that consumers are willing to pay. It is then of natural interest to investigate

how the prices of vehicles depend upon their attributes. We collect a data set which contains information

about 428 new vehicles for the year 2004 [19]. Sixteen observations with missing values are removed from

our subsequent analysis, leaving 412 data points.
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Table 4 The average proportion of zero coefficients obtained by SCAD-penalized estimators, where LSE, LAD and

HUB denote the penalized least squares estimation, the penalized least absolute deviation and the penalized Huber

function estimation, respectively, “C” denotes the average proportion of the zero coefficients which are correctly estimated

as zero, and “IC” denotes the average proportion of the nonzero coefficients which are erroneously set to zero

Error Standard normal t(2) distribution Mixture normal

Model Method C IC C IC C IC

LSE 0.90 0.00 0.90 0.05 0.91 0.03

(I) LAD 0.95 0.00 0.99 0.04 0.99 0.02

HUB 0.97 0.00 0.97 0.02 0.97 0.01

LSE 0.91 0.00 0.90 0.06 0.89 0.02

(II) LAD 0.95 0.01 0.98 0.06 0.98 0.02

HUB 0.97 0.00 0.97 0.03 0.97 0.01

LSE 0.91 0.00 0.90 0.06 0.91 0.03

(III) LAD 0.96 0.00 0.98 0.06 0.98 0.03

HUB 0.97 0.00 0.97 0.03 0.97 0.02

LSE 0.90 0.00 0.90 0.07 0.90 0.03

(IV) LAD 0.95 0.00 0.99 0.07 0.98 0.02

HUB 0.97 0.00 0.98 0.03 0.97 0.01

The manufacturer suggested retail price (MSRP) in U.S. dollars serves as the response variable. This

price is what the manufacture thinks the vehicle is worth given the set of attributes, including adequate

profit for the manufacturer and the dealer. There are twelve covariates which classify the vehicles. The

first seven covariates are binary variables: The sport car (X1), the sport utility vehicle (X2), wagon

(X3), mini-van (X4), pickup (X5), all-wheel drive (X6) and rear-wheel drive (X7). Other five covariates

are continuous: Engine size (X8), number of cylinders (X9), horsepower (X10), weight (X11) and wheel

base (X12). In addition, we choose z = (Z1, Z2)
� where Z1 denotes city miles per gallon (MPG) and Z2

denotes highway MPG.

We first examine the empirical distribution of the MSRP values. The histogram of the standardized

MSRP is presented in Figure 1(b). It is revealed that the distribution of the MSRP is highly skewed.

We also examined the boxplot of the standardized MSRP in Figure 1(b), through which it can be seen

that there exist a number of outliers. The presence of non-normality and outliers in the response imposes

serious challenges for variable selection and subsequent inference. One may suggest to impose logarithm

transformation on the response variable. However, our preliminary analysis indicates that the transformed

response is still non-normal. Since the transformation may not remove the outliers and often brings

additional issues for interpretability, we choose to analyze the response on its standardized scale.

We fit a partially linear model (1.1) and apply three different estimation procedures to this data
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Figure 1 The empirical distribution of the MSRP values
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set: LSE, LAD and HUB. The results are summarized in Table 5. The resulting estimators using all

covariates are used as a benchmark for comparison. Next we apply penalized estimation procedures

corresponding to LSE, LAD and HUB, respectively. The estimated coefficients and their standard errors

are summarized in Table 6. Because all three penalized algorithms identify X2, X5, X8, X10 and X12 as

important variables, we re-run the above three un-penalized algorithms on this dataset. The results are

again charted in Table 5. All above analysis conveys similar messages. For example, given other features,

the sport utility vehicle (X2) and pickup (X5) are more expensive than other type of vehicles. The engine

size (X8), horsepower (X10) and wheel base (X12) are important factors affecting the MSRP, while others

are not. It can also be seen that the penalized robust estimates (LAD and HUB) have smaller standard

errors than the penalized least squares estimate (LSE), indicating that the penalized robust estimates are

more accurate than the penalized least squares estimate when outliers and nonnormal errors are present.

Figure 2 presents the scatter plots of the observed MSRP values (on the vertical axis) versus the

fitted values (on the horizontal axis) obtained from three estimation procedures, from which it can be

seen that the penalized least squares estimate (LSE) is more influenced by the outliers than the other

two procedures (LAD and HUB) because the fitted values are closer to the observed value on the right

boundary.

5 Discussion

In this paper we study several robust estimation procedures to estimate the parameters in partially linear

model. In many biomedical applications, however, the condition pn = o(n1/2) may be violated. In

particular, in studies with microarray data as covariate measurements, the number of genes (covariates)

Table 5 The estimated coefficients of x in analysis of the new vehicle data, where LSE, LAD and HUB denote the

least squares estimation, the least absolute deviation and the Huber function estimation, respectively. For each method,

the first line utilizes all covariates (X1, . . . ,X12)�, and the second line merely utilizes (X2,X5,X8,X10,X12)�

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

LSE

all −0.009 −0.534 −0.023 −0.124 −0.545 −0.026 0.091 −0.300 0.052 0.009 0.000 −0.024

subset −0.518 −0.520 −0.214 0.010 −0.023

LAD

all −0.008 −0.434 −0.002 −0.172 −0.663 −0.014 0.181 −0.259 0.010 0.006 0.000 −0.012

subset −0.376 −0.625 −0.252 0.007 −0.010

HUB

all 0.034 −0.485 −0.036 −0.261 −0.674 −0.021 0.086 −0.328 0.060 0.006 0.000 −0.013

subset −0.388 −0.571 −0.229 0.007 −0.014

Table 6 The estimated coefficients of x and their corresponding standard deviations in analysis of the new vehicle

data, where LSE, LAD and HUB denote the penalized least squares estimation, the penalized least absolute deviation

and the penalized Huber function estimation, respectively

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

LSE

coef 0 −0.520 0 0 −0.544 0 0 −0.223 0 0.010 0 −0.021

stdev. 0.108 0.164 0.062 0.001 0.005

LAD

coef 0 −0.316 0 0 −0.590 0 0 −0.075 0 0.006 0 −0.022

stdev. 0.037 0.097 0.009 0.001 0.003

HUB

coef 0 −0.456 0 0 −0.592 0 0 −0.255 0 0.007 0 −0.017

stdev. 0.080 0.103 0.043 0.001 0.004



Zhu L P et al. Sci China Math October 2013 Vol. 56 No. 10 2081

−2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

−2 −1 0 1 2 3 4
−2

0

2

4

6

8

10

−2 −1 0 1 2 3 4
−2

0

2

4

6

8

10
(a) (b) (c)LSE LAD HUB

Observed Y Observed Y Observed Y

F
it

te
d 

Y
 w

it
h 

L
SE

F
it

te
d 

Y
 w

it
h 

L
A

D

F
it

te
d 

Y
 w

it
h 

H
ub

er

Figure 2 The scatter plots of the observed MSRP values (on the vertical axis) versus the fitted values (on the

horizontal axis) obtained from three estimation procedures, where LSE, LAD and HUB denote the penalized least

squares estimation, the penalized least absolute deviation and the penalized Huber function estimation, respectively.

is typically greater than the sample size. How to apply the penalized robust estimation to adapt those

studies is of both theoretical and practical importance.

In our context, we allow the covariate vector z to be multivariate. It is remarkable here that, our

estimation procedures may encounter the curse of dimensionality when the dimension of z is large. In

that situation, we may consider partially linear single-index model [4] to tackle this issue. With an

additional single-index structure, more elegant technical derivations are often expected. These issues are

currently under investigation.
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Appendix Proofs of theorems

Appendix A Some regularity conditions

To establish the asymptotics for the robust estimates, we present the following regularity conditions.

These conditions are not the weakest possible conditions, but they are imposed to facilitate the technical

derivations.

(C1) The loss function ρ(·) is convex on R
1 with right and left derivative ψ+(·) and ψ−(·). Choose

ψ(·) such that ψ−(·) � ψ(·) � ψ+(·), for all t ∈ R
1. Let ψ(·) be any choice of the subgradient of ρ(·) and

denote S as the set of discontinuity points of ψ, which is the same for all choices of ψ(·). We assume that

ψ(·) satisfies the first order Lipschitz continuity. That is, there exist positive constants κ and C such

that |ψ(x+ t)− ψ(x)| � C|t|, for all x ∈ R
1 and |t| � κ.

(C2) The common distribution function F of εi satisfies F (S) = 0. In addition, we assume that

E{ψ(ε1)} = 0, 0 < E{ψ2(ε1)} = σ2 <∞, and G(t) =: E{ψ(ε1 + t)} = γt+ o(|t|), as t→ 0, where γ is a

positive constant.

(C3) Suppose max1�k�p E(X4
k) <∞. In addition, there exist N0 and constants b and B such that for

n � N0,

(i) 0 < b � ρ1(Σn) � ρpn(Σn) � B, where Σn = cov(x̃), or

(ii) 0 < b � ρ1(ΣnI) � ρpn(ΣnI) � B, where ΣnI = cov(x̃I).

The subscript I denotes the index set of important predictors in x. Conditions (C1)–(C2) are often

imposed in the M -estimation theory of linear model. Condition (C3) is often assumed to study problems

with diverging number of covariates. See [1] and [31] for more discussions about these conditions.

(C4) The kernel function K(·) used in (2.3) has a compact support [−1, 1]. It satisfies
∫ 1

−1
K(v)dv = 1,∫ 1

−1 vK(v)dv = 0. The bandwidths hk in (2.3) satisfy nh8k → 0 and nh2dk → ∞, here d is the dimension

of z.

(C5) The density function f(·) of z is continuous, and f(z) > 0.

(C6) The conditional density function g(y∗|z) given z is continuous in z for each y∗ = Y −x�βn0. More-
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over, there exist positive constants ε and δ and a positive functionG(y∗|z) such that sup|zn−z|�εg(y
∗|zn) �

G0(y
∗|z) and that ∫

|G {y∗ − ν(x)} |2+δG0(y
∗|z)dμ(y∗) <∞,

and ∫
|ν(y∗ − t)− ν(y∗)− ν′(y∗)t|2G0(y

∗|z)dμ(y∗) = o(t2), as t→ 0.

(C7) The function ν(z) has a continuous second derivative.

Let an = max{|p′λn
(|βn0,j |)| : βn0,j �= 0} and bn = max{|p′′λn

(|βn0,j |)| : βn0,j �= 0}, where we write λ as

λn to emphasize that λn depends on the sample size n. Then the conditions are as follows:

(C8) lim infn→∞ lim infθ→0+ p
′
λn

(θ)/λn > 0.

(C9) an = O(n−1/2).

(C10) bn → 0 as n→ ∞.

(C11) There are constants C and D such that |p′′λn
(θ1)− p′′λn

(θ2)| � D|θ1 − θ2| for any θ1, θ2 > Cλn.

Because Theorems 1–3 are respectively parallel to Theorems 4–6. In the sequel, we will only prove

Theorems 4–6 and point out how the technical derivations can be adapted to prove Theorems 1–3.

Appendix B Proof of Theorem 4

In the sequel we will only sketch some key procedures because the major derivations are very standard

in the nonconcave-penalized likelihood literature. One can refer to [9] and [11] for more technical details.

Let αn = pn
1/2(n−1/2 + an). We will show that, for any given ε > 0, there exists a large constant C

such that

Pr
{

inf
‖u‖=C

Qn(βn0 + αnu) > Qn(βn0)
}
� 1− ε. (B.1)

Denote

Jn(u) =

n∑
i=1

ρ{ ̂̃Y i − ̂̃x�
i (βn0 + αnu)} −

n∑
i=1

ρ(
̂̃
Y i − ̂̃x�

i βn0).

Let s = (
̂̃
Y i − Ỹi)− (̂̃xi − x̃i)

�βn0. Then by Condition (C1) Jn(u) can be expressed as follows,

n∑
i=1

∫ −αn
̂x̃
�
i u

0

{ψ(εi + t+ s)− ψ(εi)} dt− αn

n∑
i=1

ψ(εi)̂̃x�
i u =: Jn1(u) + Jn2(u).

Invoking Condition (C2), for Jn1(u) we have

E{Jn1(u)} =

n∑
i=1

E

[ ∫ −αn
̂x̃
�
i u

0

{γ(t+ s) + o(|t+ s|)}dt
]

=
γ{1 + o(1)}

2

n∑
i=1

E[(αn
̂̃x�
i u)

2 − 2{( ̂̃Y i − Ỹi)− (̂̃xi − x̃i)
�βn0}αn

̂̃x�
i u]

=: Jn11(u) + Jn12(u).

It is easy to see that Jn11(u) is positive if γ is positive. In addition, Condition (C3) and the uniform

convergence of ̂̃x�
i u [24, 33] entail that Jn11(u) = O(nα2

n‖u‖2). Following similar arguments, we can

have,

‖Jn12(u)‖ =

∥∥∥∥E[ n∑
i=1

{( ̂̃Y i − Ỹi)− (̂̃xi − x̃i)
�βn0}αn

̂̃x�
i u

]∥∥∥∥ = o(1)O(n1/2αn‖u‖).

Recall the definition of αn. We can see that E {Jn1(u)} is dominated by Jn11(u) because Jn12(u) =

o(nα2
n‖u‖2). That is,

E{Jn1(u)} = O(nα2
n‖u‖2). (B.2)
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Recall the definition of x̃. We have E(αnx̃
�u) = 0. By invoking Condition (C3), we have var(αnx̃

�u) =
O(α2

n‖u‖2). Thus, αnx̃
�u = OP (αn‖u‖), which tends to zero as n → ∞ because ‖u‖ = C and

pn log(n)/n→ 0 as n→ ∞.

Next we prove that

var {Jn1(u)} = O(np2nα
4
n‖u‖4), as n→ ∞. (B.3)

To prove (B.3), we note that Condition (C1) yields that

var{Jn1(u)} = var

[ n∑
i=1

∫ −αn
̂x̃
�
i u

0

{ψ(εi + t+ s)− ψ(εi)}dt
]

�
n∑

i=1

C2var{(αnx̃
�
i u)

2}{1 + o(1)} = O(nα4
np

2
n‖u‖4).

The last inequality follows again due to the uniform convergence of ̂̃x�
i u, and the last equation holds by

invoking Condition (C3).

By combining (B.2) and (B.3), it can be seen that

Jn1(u) = Jn1(u)− E {Jn1(u)}+ E {Jn1(u)} = OP (n
1/2pnα

2
n‖u‖2) +O(nα2

n‖u‖2), (B.4)

which is positive when ‖u‖ is sufficiently large, because p2n/n→ 0 as n→ ∞. In addition, following similar

arguments in [20], we can show that Jn1(u) dominates Jn2(u) by taking a sufficiently large constant C.

We remark here that this proves Theorem 1.

Recall the equation defined in (B.1). We write that

Dn(u) := Qn(βn0 + αnu)−Qn(βn0)

� Jn1(u) + Jn2(u) + n

kn∑
j=1

{pλn(|βn0,j + αnuj |)− pλn(|βn0,j |)}, (B.5)

where kn is the dimension of βnI . As shown in [20], the third term in (B.5) is bounded by Jn2(u) by

invoking the assumptions (C8)–(C10). Therefore, by taking C large enough, Jn1(u) dominates Jn2(u)

and the third term in (B.5). Recall that Jn1(u) is positive, which is shown in the statement about (B.4).

This proves (B.1), and hence completes the proof of Theorem 4.

Appendix C Proof of Theorem 5

To enhance the readability, we split the proof of Theorem 5 into two parts. We first prove the sparsity,

and then turn to the asymptotic normality part.

Proof of sparsity. We now prove the sparsity. Theorem 4 shows that ‖β̂n − βn0‖ = OP (αn), where

αn = p
1/2
n (n−1/2 + an). Thus, it suffices to show that, for any j = kn + 1, . . . , pn, ∂Qn(β̂n)/∂β̂nj > 0 for

0 < β̂nj < ε = Cαn, and ∂Qn(β̂n)/∂β̂nj < 0 for −ε < β̂nj < 0, where β̂nj is the j-th component in β̂n.

Let

Λi(θ) =

∫ x̃�
i θ

0

{ψ (εi + t)− ψ (εi)} dt, and Λ∗
i (θ) =

∫ x̃�
i θ

0

{ψ(εi + t)− ψ(εi − αnx̃
�
i u)}dt.

It follows from [2, (3.2) in p. 219 and (3.30) in p. 227] that, for any fixed κ > 0,

sup
‖θ‖�καn

∣∣∣∣α−1
n π−1(θ)

n∑
i=1

[Λi(θ)− E {Λi(θ)}]
∣∣∣∣ = oP (1), (C.1)

and

sup
‖θ‖�καn

sup
‖u‖�C

∣∣∣∣α−1
n π−1(θ)

n∑
i=1

[Λ∗
i (θ)− E {Λ∗

i (θ)}]
∣∣∣∣ = oP (1), (C.2)
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where π(θ) = ‖θ‖ ∨ 1. Then, subtracting (C.2) from (C.1), we obtain that

sup
‖θ‖�καn

sup
‖u‖�C

∣∣∣∣α−1
n π−1(θ)

n∑
i=1

([{ψ(εi − αnx̃
�
i u)− ψ(εi)}x̃�

i θ]

−E[{ψ(εi − αnx̃
�u)− ψ(εi)}x̃�θ])

∣∣∣∣ = oP (1),

from which it can be derived that,

sup
‖θ‖=καn

sup
‖u‖�C

∣∣∣∣α−1
n

n∑
i=1

([{ψ(εi − αnx̃
�
i u)− ψ(εi)}x̃�

i θ]

−E[{ψ(εi − αnx̃
�u)− ψ(εi)}x̃�θ])

∣∣∣∣ = oP (1).

This is equivalent to

sup
‖u‖�C

∥∥∥∥α−1
n

n∑
i=1

([{ψ(εi − αnx̃
�
i u)− ψ(εi)}x̃i]− E[{ψ(εi − αnx̃

�u)− ψ(εi)}x̃])
∥∥∥∥ = oP (1). (C.3)

By Condition (C2), we can show without much difficulty that

E[{ψ(εi − αnx̃
�u)− ψ(εi)}x̃] = E(E[{ψ(εi − αnx̃

�u)− ψ(εi)}|x, z]x̃)
= −γE[x̃{αnx̃

�u+ o(αnx̃
�u)}]

= −γαncov(x̃)u+ o(αn),

which, together with (C.3), entails that

sup
‖u‖�C

∥∥∥∥ n∑
i=1

([{ψ(εi − αnx̃
�
i u)− ψ(εi)}x̃i] + γαncov(x̃)u)

∥∥∥∥ = oP (1). (C.4)

Let δi =
̂̃
Y i − Ỹi − (̂̃xi − x̃i)

�βn0. The uniform convergence implies that max1�i�n ‖δi‖ = op(1) almost

surely. Therefore,

sup
‖u‖�C

∥∥∥∥ n∑
i=1

([{ψ(εi + δi − αnx̃
�
i u)− ψ(εi)}x̃i] + γαncov(x̃)u)

∥∥∥∥ = oP (1).

By invoking Theorem 4 that ‖β̂n − βn0‖ = αn‖u‖, it follows that
n∑

i=1

ψ(
̂̃
Y i − ̂̃x�

i β̂n)x̃i =

n∑
i=1

ψ(εi)x̃i − nγcov(x̃)(β̂n − βn0) + oP (1).

Use again Condition (C3). It is easy to check that

E

∥∥∥∥ n∑
i=1

ψ(εi)x̃i

∥∥∥∥2 =

pn∑
j=1

n∑
i=1

n∑
l=1

E{X̃ijX̃ljψ(εi)ψ(εl)} =

pn∑
j=1

n∑
i=1

E(X̃2
ij)E{ψ2(εi)} = O(npn).

Consequently,
∑n

i=1 ψ(
̂̃
Y i − ̂̃x�

i β̂n)
̂̃
X ij = OP {(npn)1/2}. Recall the condition that (pn/n)

1/2/λn → 0.

By using Condition (C8) and the fact that

∂Qn(β̂n)

∂β̂nj
= −

n∑
i=1

ψ(
̂̃
Y i − ̂̃x�

i β̂n)
̂̃
X ij + np′λn

(|β̂n,j |)sign(β̂n,j)

= nλn

[
−OP {(pn/n)1/2/λn}+

p′λn
(|β̂n,j |)
λn

sign(β̂n,j)

]
,
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we can see that the sign of β̂n,j completely determines the sign of
∂Qn(

̂βn)

∂̂βn,j
, i.e.,

∂Qn(β̂n)

∂β̂n,j
=

{
> 0, for 0 < β̂n,j < ε,

< 0, for − ε < β̂n,j < 0,

where j = kn + 1, . . . , p. This completes the proof of sparsity part.

Proof of asymptotic normality. Next, we prove the asymptotic normality of β̂n. Theorem 4 proves that

β̂n is root-n/pn consistent. Thus, each component of β̂nI stays away from zero for n sufficiently large

because βnI is away from zero. Therefore, the partial derivatives exist for the first kn components. As

a consequence, the estimate β̂nI based on the penalized robust estimation are necessarily the solution of

the following estimation equation

−
n∑

i=1

̂̃xiψ(
̂̃
Y i − ̂̃x�

i β̂nI) + nP ′
λn

(|β̂nI |) = 0, (C.5)

where P ′
λn

(|β̂nI |) is a kn × 1 vector whose j-th element is p′λn
(|β̂nI,j |)sign(|β̂nI,j |). Let ε̂i = ̂̃

Y i − ̂̃x�
i βn.

By using Taylor expansion for (C.5) and re-arranging the resulting terms, we have

n{(γS1n +Σλn)(β̂nI − βnI) + bn}

=
n∑

i=1

ψ(εi)̂̃xIi

n∑
i=1

[
− {ψ′(εi)− γ}̂̃xIi

̂̃x�
Ii(β̂nI − βnI) +

1

2
ψ′′( ̂̃Y i − ̂̃x�

i β∗
n){̂̃x�

Ii(β̂nI − βnI)}2 ̂̃xIi

]
,

where β∗
n is a vector between βnI and β̂nI . Multiply both sides of the above equation by n−1/2AnIS

−1/2
nI ,

where SnI = var (x̃Ii). We can obtain that

n1/2AnIS
−1/2
nI (γSnI +Σλn) {(β̂nI − βnI) + (γSnI +Σλn)

−1
bn} =: w1 −w2 +w3/2,

where

w1 =: n−1/2AnIS
−1/2
nI

n∑
i=1

ψ(εi)̂̃xIi,

w2 =: n−1/2AnIS
−1/2
nI

n∑
i=1

{ψ′ (εi)− γ} ̂̃xIi
̂̃x�
Ii(β̂nI − βnI),

w3 =: n−1/2AnIS
−1/2
nI

n∑
i=1

ψ′′( ̂̃Y i − ̂̃x�
i β∗

n){̂̃x�
Ii(β̂nI − βnI)}2 ̂̃xIi.

In the sequel, we will show respectively that w1 satisfies the conditions of Lindeberg-Feller central

limit theorem, w2 = oP (1) and w3 = oP (1).

Using similar arguments to the proof of Lemma 3 in [22], we can show that∥∥∥∥ n∑
i=1

{ψ′(εi)− γ}x̃Iix̃
�
Ii

∥∥∥∥ = oP (1), (C.6)

which, together with the consistency of β̂n obtained Theorem 4, Condition (C3) and the Cauchy-Schwartz

inequality, entails that

‖w2‖ � n−1/2ρ1/2q (AnIA
�
nI)ρ

−1/2
1 (SnI)oP (1)‖β̂nI − βnI‖ = OP (p

1/2
n /n) = oP (1). (C.7)

Since ‖w3‖2 = tr(w3w
�
3 ) and pn log(n)/n→ 0, we have

E{‖w3‖2} � ρq(AnIA
�
nI)B/bE {ψ′′ (εi)}2E{x̃�

Ii(β̂nI − βnI)}4 = O
(
p4n/n

2
)
= o(1), (C.8)
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as long as p2n/n→ 0. From (C.7)–(C.8), we obtain

n1/2AnIS
−1/2
nI (γSnI +Σλn) {(β̂nI − βnI) + (γSnI +Σλn)

−1
bn} = w1 + oP (1). (C.9)

Next, we verify that w1 satisfies the conditions of the Lindeberg-Feller central limit theorem. Let ωni =

n−1/2AnIS
−1/2
nI ψ(εi)x̃Ii, i = 1, . . . , n. We note that E(ωni) = 0 and

var

( n∑
i=1

ωni

)
= E{ψ2 (εi)}AnIS

−1/2
nI E

(
1

n

n∑
i=1

x̃Iix̃
�
Ii

)
S

−1/2
nI A�

nI → σ2
0G, (C.10)

since AnIA
�
nI → G. For any ε > 0, it follows that

n∑
i=1

E{‖ωni‖21 (‖ωni‖ � ε)} = nE{‖ωni‖21 (‖ωni‖ � ε)} � nE(‖ωni‖4)1/2 {P (‖ωni‖ � ε)}1/2 . (C.11)

By Condition (C3), AnIA
�
nI → G and σ2

0 = E{ψ2(εi)}, we have

P (‖ωni‖ > ε) � E‖ωni‖2
ε2

� σ2
0ρq(AnIA

�
nI)E(x̃�

IiS
−1
nI x̃Ii)

nε2
= O(n−1). (C.12)

Let σ4 = E{ψ4 (εi)}. Similar to Theorem 6 in [16], we have

E(‖ωni‖4) � σ4
n2
ρ2q(AnIA

�
nI)ρ

−2
1 (SnI)E{(x̃�

I x̃I)
2} = O(p2n/n

2). (C.13)

Thus, by (C.10)–(C.13), we have

n∑
i=1

E{‖ωni‖21(‖ωni‖ � ε)} = O

(
n
pn
n

1

n1/2

)
= o(1).

Combining the above arguments, and invoking the Lindeberg-Feller central limit theorem, we complete

the proof of the asymptotic normality part in Theorem 5.

The proof of Theorem 3 is almost identical to that of Theorem 6. In the sequel, we will only prove

Theorem 6.

Appendix D Proof of Theorem 6

For notational clarity, we let Ki = K(zi−z
hn

). Recall that ν̂(z) = ân and (ân, b̂n) minimizes∑
ρ{Yi − x�

i β̂n − an − b�n (zi − z)}Ki.

Let θn = (nhdn)
1/2[ân − ν(z), hn{b̂n − ν′(z)}], si = x�

i (βn0 − β̂n), z∗
i = {1, (zi − z)�/hn}�, and

δi = Yi − x�
i β̂n − ν(z) − ν′(z)(zi − z). Following similar arguments for proving Theorem 4, we obtain

that

Dn =
n∑

i=1

[ρ{Yi − x�
i β̂n − an − bn(zi − z)} − ρ(δi)]Ki

=
n∑

i=1

[∫ (nhd
n)

−1/2(θ�
n z∗

i )

0

{ψ(δi + t)− ψ(δi)}dt+ (nhdn)
−1/2ψ(δi)(θ

�
n z

∗
i )

]
Ki. (D.1)

Given X = (x1, . . . ,xn)
� and Z = (z1, . . . , zn)

�, we can obtain that

E(Dn|X,Z) = (nhdn)
−1

n∑
i=1

(θ�
n z

∗
i )

2Ki{1 + op(1)}/2

+(nhdn)
−1/2

n∑
i=1

G{ν(zi)− ν(z) − ν′(z)(zi − z) + s}(θ�
n z

∗
i )Ki,
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where G(t) = E {ψ(ε+ t)} is defined in Condition (C2). The above display follows from Condition (C2)

which assumes that there exists a constant γ such that G(t) =: E{ψ(ε + t)} = γt + o(|t|). This also

implies that

(nhdn)
−1/2

n∑
i=1

G{ν(zi)− ν(z) − ν′(z)(zi − z) + si}(θ�n z∗
i )Ki

−(nhdn)
−1/2

n∑
i=1

G{ν(zi)− ν(z) − ν′(z)(zi − z)}(θ�
n z

∗
i )Ki

= γ(βn0 − β̂n)
�(nhdn)

−1/2
n∑

i=1

xi(θ
�
n z

∗
i )Ki

= γ(nhdn)
−1/2

n∑
i=1

{(βn̂I0 − β̂n̂I)
�x

̂Ii − β�
n̂II

x
̂IIi

}(θ�n z∗
i )Ki,

where Î and ÎI denote respectively the sets of estimated indices of important and unimportant predictors.

Next, we show that

(nhdn)
−1/2

n∑
i=1

(βn̂I0 − β̂n̂I)
�x

̂Ii(θ
�
n z

∗
i )Ki = op{(nhdn)1/2}. (D.2)

For positive constant c,

Pr

{
(nhdn)

−1
n∑

i=1

(βn̂I0 − β̂n̂I)
�x

̂Ii(θ
�
n z

∗
i )Ki � C

}

= Pr

{
(nhdn)

−1
n∑

i=1

(βn̂I0 − β̂n̂I)
�x

̂Ii(θ
�
n z

∗
i )Ki � C

∣∣∣∣ Î = I

}
Pr(Î = I)

+Pr

{
(nhdn)

−1
n∑

i=1

(βn̂I0 − β̂n̂I)
�x

̂Ii(θ
�
n z

∗
i )Ki � C

∣∣∣∣ Î �= I

}
Pr(Î �= I).

It is easy to show that (nhdn)
−3/2

∑n
i=1 xIi(θ

�
n z

∗
i )Ki converges in probability to a constant vector AnI ,

which together with the asymptotic normality of βn in Theorem 5 entails that (nhdn)
−1

∑n
i=1(βn̂I0 −

βn̂I)
�x

̂Ii(θ
�
n z

∗
i )Ki = Op{(nhdn)1/2}Op(n

−1/2) = op(1). Therefore, the first term in the above display

converges to zero as n → ∞, which together with that Pr(Î �= I) → 0 [29] proves (D.2). Similarly, we

can show that

(nhdn)
−1/2

n∑
i=1

β�
n̂II

x
̂IIi

(θ�
n z

∗
i )Ki = op{(nhdn)1/2}. (D.3)

The results of (D.2) and (D.3) yield that E(Dn|X,Z) can be simplified as follows,

E(Dn|X,Z) = (nhdn)
−1

n∑
i=1

(θ�
n z

∗
i )

2Ki{1 + op(1)}/2

+ (nhdn)
−1/2

n∑
i=1

G{ν(zi)− ν(z)− (zi − z)�ν′(z)}(θ�
n z

∗
i )Ki + op{(nhdn)1/2}.

Similar to the proof of Theorem 4, we can obtain that

Dn = (nhdn)
−1

n∑
i=1

(θ�
n z

∗
i )

2Ki/2

+ (nhdn)
−1/2

n∑
i=1

G{ν(zi)− ν(z) − (zi − z)�ν′(z)}(θ�
n z

∗
i )Ki + op{(nhdn)1/2}.

The rest of the proof follows literally from [8] by recalling that we treat the dimension of z as fixed. Thus

we omit the details.


