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Abstract In this paper, we review some results on the spectral methods. We first consider the Jacobi spectral

method and the generalized Jacobi spectral method for various problems, including degenerated and singular

differential equations. Then we present the generalized Jacobi quasi-orthogonal approximation and its applica-

tions to the spectral element methods for high order problems with mixed inhomogeneous boundary conditions.

We also discuss the related spectral methods for non-rectangular domains and the irrational spectral methods

for unbounded domains. Next, we consider the Hermite spectral method and the generalized Hermite spec-

tral method with their applications. Finally, we consider the Laguerre spectral method and the generalized

Laguerre spectral method for many problems defined on unbounded domains. We also present the generalized

Laguerre quasi-orthogonal approximation and its applications to certain problems of non-standard type and

exterior problems.
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1 Introduction

The spectral methods have been successfully used in scientific computations, see the books of Bernardi and

Maday [8,9], Bernardi et al. [10], Boyd [13], Canuto et al. [14–16], Funaro [25], Gottlieb and Orszag [27],

Guo [30], Hesthaven et al. [82], Shen and Tang [104], Shen et al. [105], Karniadakis and Sherwin [87], the

review papers of Guo [38], Guo et al. [76], and Shen and Wang [111], and the references therein.

The traditional spectral methods are available for periodic problems and many problems defined on

rectangular domains. Their mathematical foundations are the Fourier, Legendre and Chebyshev approxi-

mations. Guo [34,35], and Guo and Wang [54,56] developed the Jacobi approximation, and proposed the

Jacobi spectral method for degenerated problems. We also refer to the work of Babuška and Guo [3], Fu-

naro [25], and Ma and Sun [95]. Later, Guo et al. [47,48] provided the generalized Jacobi approximation,

which leads to a class of new spectral methods for high order problems. It is also appreciated for singu-

lar problems. Recently, Guo et al. [53], and Guo and Wang [60] proposed the Jacobi quasi-orthogonal

approximation, which plays an important role in the spectral element methods for mixed inhomogeneous

boundary value problems of various differential equations.
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The Jacobi approximation also serves as a powerful tool for other numerical algorithms. Bernardi and

Maday [6], and Guo and Huang [39] used certain specific Jacobi approximations for axisymmetric and

spherically symmetrical domains. Dubiner [21], Guo and Wang [58], Li et al. [91], Owens [100], and

Shen et al. [113] considered the spectral methods for triangles. Guo and Jia [40], and Jia and Guo [84]

developed the spectral element methods on polygons. Some authors studied pseudospectral element

methods with their applications, see [10, 16, 87] and the references therein. We could also use the Jacobi

approximation, coupled with variable transformation, to solve some problems defined on unbounded

domains, see [31, 33, 36, 37].

The Jacobi approximation is related to several irrational spectral methods for unbounded domains. In

the early work, the used basis functions were induced by the Legendre and Chebyshev polynomials, see

the work of Boyd [11, 12], Christov [19], Guo and Shen [45], Guo et al. [49, 50], Guo and Wang [64], and

Wang and Guo [135, 136]. Later, Guo and Shen [46], and Wang and Guo [137] used the basis functions

induced by the Jacobi polynomials. Recently, Guo and Yi [72], and Yi and Guo [150] proposed the

irrational spectral methods with the basis functions induced by the generalized Jacobi functions, which

match various boundary conditions at infinity closely.

We could solve many problems on the whole space directly by the Hermite spectral method. Guo [32],

and Xu and Guo [143] studied the approximation using the Hermite polynomials, and designed the

spectral methods for the whole line. Meanwhile, Funaro and Kavin [26], Guo et al. [51], Ma et al. [96],

Tang et al. [121] and Xiang and Wang [147] developed the spectral methods by using several kinds of

Hermite functions. Recently, Guo and Zhang [78] and Zhang and Guo [153] proposed the new generalized

Hermite approximations fitting the asymptotic behaviors of exact solutions properly.

On the other hand, Funaro [24], Guo and Shen [44], Guo et al. [59], Guo and Zhang [80], Maday et

al. [98], and Xu and Guo [143] developed the approximations using the Laguerre and generalized Laguerre

polynomials, and provided the spectral methods for the half line. Guo and Ma [43], Guo and Zhang [81],

and Shen [102] studied the approximations by using the Laguerre and generalized Laguerre functions,

and the related spectral methods. Recently, Guo and Zhang [77], and Zhang and Guo [152] considered

the more general Laguerre approximations and the Laguerre quasi-orthogonal approximations, which are

specially appropriate for problems of non-standard type, and exterior problems.

This paper is organized as follows. In the next section, we review the recent results on the Jacobi and

generalized spectral methods, the spectral methods using the Jacobi quasi-orthogonal approximation,

the spectral methods for non-rectangular domains, and the irrational spectral methods for unbounded

domains. In Section 3, we review the recent results on the spectral methods using the Hermite polynomials

and functions, and the generalized Hermite spectral methods. We also review the recent results on the

Laguerre and generalized Laguerre spectral methods, the spectral methods using the Laguerre functions

and the Laguerre quasi-orthogonal approximation, and the spectral methods for problems of non-standard

type, and exterior problems.

2 Jacobi spectral method

2.1 Jacobi spectral approximation

The Jacobi spectral method and the related spectral methods have been used widely for numerical

solutions of differential equations defined on various bounded domains.

Let Λ = {x | |x| < 1} and χ(x) be a certain weight function. For any integer r � 0, we define the

weighted Sobolev spaces Hr
χ(Λ) and Hr

0,χ(Λ) in the usual way, equipped with the semi-norm |v|r,χ and

the norm ‖v‖r,χ. In particular, the inner product and the norm of the space L2
χ(Λ) are denoted by (u, v)χ

and ‖v‖χ, respectively.
Let α, β > −1, and J

(α,β)
l (x) be the Jacobi polynomial of degree l. The Jacobi weight function

χ(α,β)(x) = (1− x)α(1 + x)β . The set of all J
(α,β)
l (x) is a complete L2

χ(α,β)(Λ)-orthogonal system.
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For any integer N � 0, PN (Λ) stands for the set of all algebraic polynomials of degree at most N ,

0PN (Λ) = {v | v ∈ PN (Λ), v(−1) = 0}, P0
N (Λ) = {v | v ∈ PN (Λ), v(−1) = v(1) = 0}.

We denote by c a generic positive constant independent of any function and N .

The L2
χ(α,β)(Λ)-orthogonal projection PN,α,β : L2

χ(α,β)(Λ) → PN (Λ) is defined by

(PN,α,βv − v, φ)χ(α,β) = 0, ∀φ ∈ PN (Λ).

For description of approximation errors, we introduce the Jacobi weighted space Hr
χ(α,β),A

(Λ) for any

integer r � 0, equipped with the norm ‖v‖r,χ(α,β),A = (
∑r

k=0 ‖∂kxv‖2χ(α+k,β+k))
1
2 . It was proved by Guo

and Wang [56] that for any v ∈ Hr
χ(α,β),A

(Λ) and integers r � 0, r � N + 1,

‖PN,α,βv − v‖χ(α,β) � cα,β(N(N + α+ β))−
r
2 ‖∂rxv‖χ(r+α,r+β) ,

where cα,β is an explicit function of α and β.

In many practical problems, the coefficients of derivatives of different orders may degenerate in different

ways. In these cases, we should compare the numerical solutions with the exact solutions in certain non-

uniformly weighted spaces. For this purpose, we let α, β, γ, δ > −1, and define the space H1
α,β,γ,δ(Λ),

equipped with the norm ‖v‖1,α,β,γ,δ = (|v|2
1,χ(α,β) + ‖v‖2

χ(γ,δ))
1
2 . Let

aα,β,γ,δ(u, v) = (∂xu, ∂xv)χ(α,β) + (u, v)χ(γ,δ) , ∀u, v ∈ H1
α,β,γ,δ(Λ).

The orthogonal projection P 1
N,α,β,γ,δ(Λ) : H

1
α,β,γ,δ(Λ) → PN (Λ) is defined by

aα,β,γ,δ(P
1
N,α,β,γ,δv − v, φ) = 0, ∀φ ∈ PN(Λ).

Let α � γ + 2 and β � δ + 2. If ∂rxv ∈ L2
χ(α+r−1,β+r−1)(Λ) and integers 1 � r � N + 1, then

‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ � cα,β(N(N + α+ β))

1−r
2 ‖∂rxv‖χ(α+r−1,β+r−1) . (2.1)

If, in addition, α � γ + 1 and β � δ + 1, then

‖P 1
N,α,β,γ,δv − v‖χ(γ,δ) � cα,β(N(N + α+ β))−

r
2 ‖∂rxv‖χ(α+r−1,β+r−1) . (2.2)

In some problems, the approximated functions vanish at one of the extreme points, say x = −1. So

we need another projection. Let

0H
1
α,β,γ,δ(Λ) = {v | v ∈ H1

α,β,γ,δ(Λ) and v(−1) = 0}.

The orthogonal projection 0P
1
N,α,β,γ,δ : 0H

1
α,β,γ,δ(Λ) → 0PN (Λ) is defined by

aα,β,γ,δ(0P
1
Nv − v, φ) = 0, ∀φ ∈ 0PN (Λ).

We have the error estimates similar to (2.1) and (2.2).

In studying movements of fluid flows with non-slip walls, populations of bud worms with lethal bound-

ary conditions, and some problems in other topics, the homogenous boundary conditions are imposed.

In these cases, we set

H1
0,α,β,γ,δ(Λ) = {v | v ∈ Hα,β,γ,δ(Λ) and v(−1) = v(1) = 0}.

The orthogonal projection P 1,0
α,β,γ,δ : H

1
0,α,β,γ,δ(Λ) → P0

N (Λ) is defined by

aα,β,γ,δ(P
1,0
N,α,β,γ,δv − v, φ) = 0, φ ∈ P0

N(Λ).

We also have the approximation results similar to (2.1) and (2.2).
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As an example, we consider the simplest model problem

−∂x(k(x)∂xU(x)) + b(x)U(x) = f(x), x ∈ Λ,

where k(x) � 0, b(x) � 0 and f(x) are given functions. Assume that k(x) and b(x) degenerate in such a

way that k(x) ∼ χ(α,β)(x), b(x) ∼ χ(γ,δ)(x). Also suppose that k(x)U(x)∂xU(x) → 0 as |x| → 1. A weak

formulation of the above problem is to find U ∈ H1
α,β,γ,δ(Λ), satisfying

(∂xU, ∂xv)k + (bU, v) = (f, v), ∀ v ∈ H1
α,β,γ,δ(Λ).

If f ∈ (H1
α,β,γ,δ(Λ))

′, then it has a unique solution. Let VN (Λ) = H1
α,β,γ,δ(Λ)∩PN (Λ). The corresponding

spectral method is to seek uN ∈ VN (Λ) such that

(∂xuN , ∂xφ)k + (buN , φ) = (f, φ), ∀φ ∈ VN (Λ).

In actual computation, we take the proper Jacobi polynomials as the basis functions fitting the singularity

of the exact solution. Then we compare the exact solution with the numerical solution in the space

H1
α,β,γ,δ(Λ). If k(x) degenerates at several distinct points, then we can use the Jacobi spectral method

coupled with domain decomposition.

Guo and Wang [55], and Wang and Guo [124] investigated the multiple-dimensional Jacobi spectral

method for some problems, in which the coefficients of differential equations degenerate, or the source

terms and the boundary values grow up somewhere. Recently, Shen and Wang [112] developed the sparse

spectral scheme of multiple-dimensional problems, which keeps the same numerical accuracy as the usual

spectral scheme for certain specific solutions, but saves much computational time. The key point is to use

the hyperbolic cross approximation. To show this, let � = (x1, x2, . . . , xn)
T, � = (α1, α2, . . . , αn)

T, � =

(β1, β2, . . . , βn)
T and � = (l1, l2, . . . , ln)

T. We set

J
(�,�)
�

(�) =

n∏

i=1

J
(αi,βi)
li

(xi), χ(�,�)(�) =

n∏

i=1

χ(αi,βi)(xi).

Furthermore,

P̄N (Λn) = span

{

J
(�,�)
�

(�)

∣
∣
∣
∣ 1 �

n∏

i=1

max(1, li) � N

}

.

The orthogonal projection from L2
χ(�,�)(Λ

n) onto P̄N (Λn) is defined by

(PN,�,�v − v, �)L2

χ(�,�)
(Λn) = 0, ∀ � ∈ P̄N (Λn).

Since Card(P̄N (Λn)) = λnN(lnN)n−1, λn being a positive constant depending on n, such orthogonal

projection reduces the λnN
n operations for the standard multiple-dimensional orthogonal projection to

the λnN(lnN)n−1 operations.

The second order Jacobi orthogonal approximation and the related interpolation were considered by

Guo et al. [70], and Wan et al. [123], which are applicable to the spectral and pseudospectral methods

of fourth order problems. For the mapped Jacobi spectral methods, we refer to the work of Shen and

Wang [106], and Wang and Shen [129], which oftentimes provide better numerical results.

The Gegenbauer approximation and the related spectral methods were studied by Guo [34]. In particu-

lar, Babuška and Guo [2,3] considered the Gegenbauer approximation in the Jacobi weighted Besov space.

The sharpest inverse estimate was obtained, which leads to the optimal error estimates of the p-version

of finite element method for the Poisson equation. For other applications of Gegenbauer approximation

to the analysis of finite element method, could be found in [85, 115] and the references therein. The

Gegenbauer approximation was also used early for recovering the Jibbs phenomena for piecewise analytic

functions, see the work of Gottlieb and Shu [28, 29].
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2.2 Generalized Jacobi spectral method

Guo et al. [47,48] proposed the generalized Jacobi orthogonal approximation, with arbitrary real param-

eters α and β.

Let [α] be the largest integer � α. Furthermore, α̂ = ᾱ = −α for α � −1, and α̂ = 0, ᾱ = α otherwise.

The notation β̂, β̄ and [β] have the same meanings. Let l̄α,β = [α̂]+ [β̂]. The generalized Jacobi functions

are defined by

J̄
(α,β)
l (x) = χ(α̂,β̂)(x)J

(ᾱ,β̄)

l−l̃α,β
(x), l � l̄α,β,

which form a complete L2
χ(α,β)(Λ)-orthogonal system.

Let

QN,α,β(Λ) = span{J̄ (α,β)
l (x), l̄α,β � l � N}.

The orthogonal projection PN,α,β : L2
χ(α,β)(Λ) → QN,α,β(Λ) is defined by

(PN,α,βv − v, φ)χ(α,β) = 0, ∀φ ∈ QN,α,β(Λ).

If ∂rxv ∈ L2
χ(α+r,β+r)(Λ) and one of the following conditions holds,

(i) α is a negative integer and β > −1,

(ii) β is a negative integer and α > −1,

(iii) α and β are negative integers,

then for integers r � 1, 0 � k � r,

‖∂kx(PN,α,βv − v)‖χ(α+k,β+k) � cα,βN
k−r‖∂rxv‖χ(α+r,β+r) . (2.3)

The above approximation was used for the spectral methods of high order problems, see [47,48]. Based

on this approximation, Shen [103], and Shen and Wang [107,108] developed the spectral method with its

applications to KdV-like equations. Ma and Sun [94,95] used the similar trick for some problems of odd

order, and obtained the better error estimates. On the other hand, this approximation with α, β � −1 is

suitable for certain problems with coefficients growing up somewhere.

We now focus on the specific case with α = −m and β = −n, m and n being positive integers. For

notational convenience, we denote QN,−m,−n(Λ) and PN,−m,−nv by Q̄N,m,n(Λ) and P̄N,m,nv, respectively.

We introduce the space Hr
m,n,A(Λ), equipped with norm ‖v‖Hr

m,n,A
= (

∑r
k=0 ‖∂kxv‖2χ(−m+k,−n+k))

1
2 . For

r � max(m,n), we define the space

Hr
0,m,n,A(Λ) = {v ∈ Hr

m,n,A(Λ) | ∂kxv(−1) = 0 for 0 � k � n− 1, and ∂kxv(1) = 0 for 0 � k � m− 1}.

For any integer μ � max(m,n), the operator P̄μ,0
N,m,n : Hμ

0,m,n,A(Λ) → Q̄N,m,n(Λ) is defined by

(∂μx (v − P̄μ,0
N,m,nv), ∂

μ
xφ)χ(−m+μ,−n+μ) = 0, ∀φ ∈ Q̄N,m,n(Λ).

In fact, P̄μ,0
N,m,nv = P̄N,m,nv for any v ∈ Hμ

0,m,n,A(Λ). Thus, if v ∈ Hμ
0,m,n,A(Λ), ∂

r
xv ∈ L2

χ(−m+r,−n+r)(Λ)

and integers m,n, r � 1, N � m+ n, 0 � k � r � N + 1, μ � max(m,n, k), then

‖∂kx(v − P̄μ,0
N,m,nv)‖χ(−m+k,−n+k) � cNk−r‖∂rxv‖χ(−m+r,−n+r) . (2.4)

Sun and Guo [116] also considered the generalized Jacobi orthogonal approximation in several dimensions

and its applications. Guo and Jiao [42] designed the spectral method for the Navier-Stokes equations with

slip boundary conditions by using some results on the generalized Jacobi orthogonal approximation. In

this case, the numerical solution satisfies the incompressibility automatically. This trick is also available

for some other problems with divergence-free solutions.

Recently, Guo et al. [53] proposed the generalized Jacobi quasi-orthogonal approximation (also see [76]).

To do this, we introduce the following two families of polynomials of degree m+ n− 1,

q−m,n,j(x) =
1

2mj!
(1− x)m

n−1−j∑

l=0

(m+ l − 1)!

2ll!(m− 1)!
(1 + x)l+j , m, n � 1,

q+m,n,j(x) =
(−1)j

2nj!
(1 + x)n

m−1−j∑

l=0

(n+ l − 1)!

2ll!(n− 1)!
(1− x)l+j , m, n � 1.
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Let δk,j be the Kronecker symbol. It can be checked that

∂μx q
−
m,n,j(−1) = δμ,j , ∂νxq

−
m,n,j(1) = 0, 0 � j, μ � n− 1, 0 � ν � m− 1,

∂νxq
+
m,n,j(−1) = 0, ∂μx q

+
m,n,j(1) = δμ,j , 0 � j, μ � m− 1, 0 � ν � n− 1.

Now, for any v ∈ Hμ
m,n,A(Λ) and μ � max(m,n), we set

vm,n,b(x) =

n−1∑

j=0

∂jxv(−1)q−m,n,j(x) +

m−1∑

j=0

∂jxv(1)q
+
m,n,j(x).

Furthermore, we let v̄(x) = v(x) − vm,n,b(x). Clearly, v̄ ∈ Hμ
0,m,n,A(Λ). Thereby, we define the Jacobi

quasi-orthogonal projection as

P̄μ
∗,N,m,nv(x) = P̄μ,0

N,m,nv̄(x) + vm,n,b(x).

We have

∂kx P̄
μ
∗,N,m,nv(−1) = ∂kxv(−1), for 0 � k � n− 1,

∂kx P̄
μ
∗,N,m,nv(1) = ∂kxv(1), for 0 � k � m− 1.

If v ∈ H
max(m,n)
m,n,A (Λ), ∂rxv ∈ L2

χ(−m+r,−n+r)(Λ) and integers m,n, r � 1, N � m+ n, 0 � k � r � N + 1,

max(m,n, k) � μ � m+ n, then

‖∂kx(P̄
μ
∗,N,m,nv − v)‖χ(−m+k,−n+k) � cNk−r(‖∂rxv‖χ(−m+r,−n+r) + ‖v‖Hmax(m,n)(Λ)). (2.5)

If, in addition, r � m+ n or m,n � 4, then

‖∂kx(P̄
μ
∗,N,m,nv − v)‖χ(−m+k,−n+k) � cNk−r‖∂rxv‖χ(−m+r,−n+r) . (2.6)

Since the Jacobi quasi-orthogonal approximation fits certain derivatives of approximated functions at

the endpoints of Λ, it is very helpful for the spectral element methods of high order problems, and spectral

methods with essential imposition of various boundary conditions, see the work of Guo and Jia [40], Guo

and Wang [60–62], Jia and Guo [84], Wang and Guo [132, 133], Wang and Wang [134], and Wang and

Wang [142]. Recently, Yu and Guo [151] proposed the spectral element method for mixed inhomogeneous

boundary value problems of fourth order.

2.3 Jacobi pseudospectral method

We now turn to the Jacobi pseudospectral method, with which we only need to evaluate the unknown

functions on the nodes of the Jacobi interpolation, and could deal with nonlinear problems conveniently.

For any integer r � 0, we denote by Cr(Λ̄) the space consisting of all r-times differentiable func-

tions. Let ζ
(α,β)
G,N,j, ζ

(α,β)
R,N,j and ζ

(α,β)
L,N,j be the zeros of polynomials J

(α,β)
N+1 (x), (1 + x)J

(α,β+1)
N (x) and (1 −

x2)∂xJ
(α,β)
N (x), respectively, 0 � j � N . They are arranged in decreasing orders. The Gauss-type

interpolations IZ,N,α,βv are defined by

IZ,N,α,βv(ζ
(α,β)
Z,N,j) = v(ζ

(α,β)
Z,N,j), Z = G,R,L, 0 � j � N,

where Z = G,R,L correspond to the Jacobi-Gauss interpolation, the Jacobi-Gauss-Radau interpolation

and the Jacobi-Gauss-Lobatto interpolation, respectively. Guo and Wang [56] estimated the errors of the

previous interpolations, stated below.

• If ∂rxv ∈ L2
χ(α+r,β+r)(Λ) and integers 1 � r � N + 1, then

‖IZ,N,α,βv − v‖χ(α,β) � cα,βN
−r‖∂rxv‖χ(α+r,β+r) , Z = G,R. (2.7)
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If, in addition, ∂rxv ∈ L2
χ(α+r−1,β+r−1)(Λ) and one of the following conditions holds,

(i) α = β � −1

2
, (ii) α � β + 1, (iii)

1

2
� α � β + 1, (2.8)

then

‖∂x(IZ,N,α,βv − v)‖χ(α,β) � cα,βN
2−r‖∂rxv‖χ(α+r−1,β+r−1) , Z = G,R. (2.9)

• If ∂rxv ∈ L2
χ(α+r−1,β+r−1)(Λ), −1 < α, β � 0 or 0 < α, β < 1, and integers 1 � r � N + 1, then

‖IL,N,α,βv − v‖χ(α,β) � cα,βN
−r‖∂rxv‖χ(α+r−1,β+r−1) . (2.10)

If, in addition, (2.8) is fulfilled, then

‖∂x(IL,N,α,βv − v)‖χ(α,β) � cα,βN
2−r‖∂rxv‖χ(α+r−1,β+r−1) . (2.11)

More general and precise results were given by Guo and Wang [54,56], which are useful for pseudospec-

tral methods of differential equations of second order. Wang and Guo [128] studied the interpolation based

on the Gauss-Lobatto-Legendre-Birkhoff quadrature, which leads to a new pseudospectral method with

exact imposition of the Neumann boundary condition. Wang and Wang [142] also considered a colloca-

tion method with exact imposition of mixed boundary condition. Recently, Wang et al. [130] discovered

the exponential convergence of the Gegenbauer-Gauss and Gegenbauer-Gauss-Lobatto interpolations for

analytic functions. Zhang [157] obtained the exponential convergence of the Chebyshev-Gauss-Lobatto

interpolation using the values of derivatives of approximated functions. We also refer to the work of

Zhang [158,159] for the superconvergence of the Legendre-Gauss-Lobatto and Chebyshev-Gauss-Lobatto

interpolations for certain smooth functions, and their applications to p-version of finite element and

collocation methods.

The second order Jacobi-Gauss type interpolations were also considered, which are applicable to pseu-

dospectral methods of fourth order problems, see [123]. On the other hand, Guo and Zhang [79] renewed

the early results on the Jacobi-Gauss type interpolations in multiple dimensions with its applications,

which also leads to the concept of the Legendre quasi-orthogonal approximation.

Guo and Wang [66] considered the initial value problem of first order ordinary differential equation

⎧
⎨

⎩

d

dt
U(t) = f(U(t), t), 0 < t � T,

U(0) = U0.

Let ΛT = {t | 0 < t � T }. Ll(t) stands for the Legendre polynomials and the shifted Legendre polynomials

LT,l(t) = Ll(
2t
T −1). The zeros of LT,N+1(t) are denoted by tNT,j , 0 � j � N. The corresponding collocation

method is to seek uN (t) ∈ PN+1(ΛT ) such that

⎧
⎨

⎩

d

dt
uN (tNT,k) = f(uN(tNT,k), t

N
T,k), 0 � k � N,

uN (0) = U0.

If f(z, t) satisfies certain conditions, then it has a unique solution. Usually, one expands the unknown
d
dtu

N(t) by the Lagrange interpolation and derives a system with its coefficients. But, the Lagrange

interpolation is not stable for largeN.We now expand uN(t) directly by the shifted Legendre polynomials,

and derive a system with its coefficients, which leads to a stable algorithm even for large N, possessing

the spectral accuracy. The multi-step procedure was also given by Guo and Wang [66]. The sharp

error estimate is obtained by using the approximation results in this subsection. The numerical results

demonstrate that this new approach provides more accurate numerical results and costs less computational

time than other commonly used algorithms. Guo and Wang [68] applied this numerical process to

collocation method for nonlinear Klein-Gordon equation. Guo and Wang [67], and Wang and Guo [138]

designed the new Radau and Lobatto collocation methods for first order problems. We also refer to the
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work of Kanyamee and Zhang [86] for the Hamiltonian systems. Moreover, Guo and Yan [71] proposed

the Gauss collocation method for second order problems. Recently, Wang and Wang [141] provided the

new numerical algorithm for the delay ordinary differential equation

⎧
⎨

⎩

d

dt
U(t) = f(U(t), U(t− θ(t)), t), 0 < t � T,

U(t) = V (t), t � 0,

where θ(t) > 0 and V (t) are given functions. Babuška and Janik [4], Shen and Wang [109], and Tang

and Ma [117–119] also considered spectral approximation in time.

The Jacobi interpolation was used for numerical solutions of the Volterra integral equations of second

kind,

U(t) = g(t) +

∫ t

0

(t− s)−μK(t, s)U(s)ds, μ < 1, 0 � t � T.

The related results could be found in [90], and [17,18]. We also refer to the early work of Tang et al. [122].

Recently, Lin et al. [92] studied the numerical solutions of the fractional cable equation,

∂tU(x, t) = −dμ−1
0D

μ
t U(x, t) + 0D

ν
t ∂

2
xU(x, t), 0 < μ, ν < 1,

where d is a constant, and 0D
μ
t v(x, t) is the Riemann-Louville fractional derivative operator, i.e.,

0D
μ
t v(x, t) =

1

Γ(1 − μ)
∂t

∫ t

0

v(x, τ)

(t− τ)μ
dτ.

Recently, Guo et al. [53] proposed the generalized Jacobi-Gauss-Lobatto interpolation. For any integer

r � max(m− 1, n− 1), we define

Cr
0,m,n(Λ̄) = {v ∈ Cr(Λ̄) | ∂kxv(−1) = 0 for 0 � k � n− 1, ∂kxv(1) = 0 for 0 � k � m− 1}.

Let

ζ
(m,n)
N,j = ζ

(m,n)
G,N−m−n,j, m, n � 0, 0 � j � N −m− n.

For any v ∈ C
max(m−1,n−1)
0,m,n (Λ̄) and m,n � 1, we introduce the auxiliary interpolation ĪN,m,nv ∈

QN,m,n(Λ), determined uniquely by

ĪN,m,nv(ζ
(m,n)
N,j ) = v(ζ

(m,n)
N,j ), 0 � j � N −m− n.

Next, let vm,n,b(x) be the same as in the last subsection. For any v ∈ C
max(m−1,n−1)
m,n (Λ̄), we set

v̄(x) = v(x) − vm,n,b(x). In fact, v̄ ∈ C
max(m−1,n−1)
0,m,n (Λ̄). Thus, we define the generalized Jacobi-Gauss-

Lobatto interpolation as

ĪL,N,m,nv(x) = ĪN,m,nv̄(x) + vm,n,b(x).

Obviously,

ĪL,N,m,nv(ζ
(m,n)
N,j ) = v(ζ

(m,n)
N,j ), for 0 � j � N −m− n,

∂kx ĪL,N,m,nv(−1) = ∂kxv(−1), for 0 � k � n− 1,

∂kx ĪL,N,m,nv(1) = ∂kxv(1), for 0 � k � m− 1.

If v ∈ H
max(m,n)
m,n,A (Λ), ∂rxv ∈ L2

χ(−m+r,−n+r) (Λ) and integers m,n, r � 1, N � m+ n, 0 � k � r � N + 1,

then

‖∂kx(ĪL,N,m,nv − v)‖χ(−m+k,−n+k) � cNk−r(‖∂rxv‖χ(−m+r,−n+r) + ‖v‖Hmax(m,n)(Λ)). (2.12)

If, in addition, 1 � m,n � 4 or r � m+ n, then

‖∂kx(ĪL,N,m,nv − v)‖χ(−m+k,−n+k) � cNk−r‖∂rxv‖χ(−m+r,−n+r) . (2.13)
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The above result with m = n = 1 and k = 0, 1 was first obtained by Guo and Zhang [79], which is much

better than (2.10) and (2.11).

If m = n � 1, then ĪL,N,m,mv is equivalent to the generalized Legendre-Gauss-Labatto polynomial

interpolation kmN v given by Bernardi and Maday [9]. By (13.26) of [9], we have ‖k1Nv − v‖χ(−1,−1) �
cN−r‖v‖Hr(Λ). Thus, the results (2.12) and (2.13) improve and generalize the earlier results. The result

(2.13) also implies ‖∂mx (ĪL,N,m,mv)‖ � c‖∂mx v‖. Thereby, the interpolation ĪL,N,m,mv is stable in the

space Hm
m,m,A(Λ). Bernardi and Maday [9] first proved that ‖k1Nv‖H1(Λ) � c‖v‖H1(Λ). Clearly, the

estimate (2.13) generalizes the existing results. The above results are very applicable to psudospectral

element and collocation methods for high order problems.

2.4 Spectral methods on non-rectangular domains

The Jacobi approximation was also used for the spectral methods of many problems defined on non-

rectangular domains.

For example, we consider the Laplace equation on the cylinder Ω,

−1

ρ
∂ρ(ρ∂ρU(ρ, θ, z))− 1

ρ2
∂2θU(ρ, θ, z)− ∂2zU(ρ, θ, z) = f(ρ, θ, z), in Ω. (2.14)

We can solve (2.14) numerically, by using the Jacobi, Fourier and Legendre approximations in the ρ, θ and

z directions, respectively. Bernardi et al. [6] treated with this problem early, by using some combinations

of the Legendre polynomials in the ρ-direction. This is equivalent to the specific Jacobi approximation

with α = 1 and β = 0. In this case, we do not need any artificial boundary condition at ρ = 0, which is

imposed usually in the finite difference methods.

Guo and Wang [127] considered the mixed Jacobi-Fourier spectral method on a disc. Guo and

Huang [39] proposed the mixed Jacobi-spherical harmonic spectral method for the Navier-Stokes equa-

tions in a ball, in which the components of velocity are presented by using the Descartes coordinates.

This treatment simplifies the computation essentially. Recently, Shen and Wang [110] considered the

Helmholtz equation in an ellipse Ω with the focal distance 2d,

∂2x1
U(x1, x2) + ∂2x2

U(x1, x2) + k2U(x1, x2) = 0, in Ω.

Under the transformation x = d cosh ρ cos θ, y = d sinh ρ sin θ and U(x1, x2) = V (ρ, θ), we obtain

2

d2(cosh(2ρ)− cos(2θ))
(∂2ρV (ρ, θ) + ∂2θV (ρ, θ)) + k2V (ρ, θ) = 0.

Then we could solve the Helmholtz equation by using the Legendre polynomials in the ρ-direction, and

the Mathieu functions in the θ-direction, which are the eigenfunctions of the Sturm-Liouville equation

d2Φ

dθ2
+

(

λ− 1

2
d2k2

)

Φ = 0.

We next consider the orthogonal approximation on triangles. Let T be the reference triangle,

T = {(x, y) | 0 < x, y < 1, 0 < x+ y < 1}.

Dubiner [21] considered the polynomials

gl,m(x, y) = 2l+
3
2 (1− y)lJ

(0,0)
l

(
2x+ y − 1

1− y

)

J (2l+1,0)
m (2y − 1),

0 � l � N �M, 0 � m �M, 0 � l+m �M,

which form the normalized L2(T )-orthogonal system. Let

PN,M(T ) = {gl,m(x, y) | 0 � l � N, 0 � m �M}.
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The orthogonal projection PN,M : L2(T ) → PN,M(T ) is defined by

(PN,Mv − v, φ)L2(T ) = 0, ∀φ ∈ PN,M(T ).

We introduce the non-isotropic weighted space Hr,s(T ), equipped with the norm

‖v‖Hr,s(T ) =

( r∑

k=0

k∑

j=0

‖xjy r
2 (1 − y)k−j− r

2 ∂jx∂
k−j
y v‖2L2(T ) + ‖x s

2 (1− x− y)
s
2 ∂sxv‖2L2(T )

) 1
2

.

Guo and Wang [58] proved that for any v ∈ Hr,s(T ) and integers 0 � r � N + 1, 0 � s �M + 1,

‖PN,Mv − v‖L2(T ) � c

((
M(M +N)

N2

)−r

+N−s

)

‖v‖Hr,s(T ).

The H1
0 (T )-orthogonal approximation and the related spectral method were also investigated by Guo and

Wang [58]. Recently, Li and Shen [88] established the new error estimates in certain weighted semi-norms

for both of the L2(T )-orthogonal approximation and the H1
0 (T )-orthogonal approximation, by using the

generalized Koornwinder polynomials and the properties of the Sturm-Liouville operator on the triangle

T . These results were applied to the spectral method for partial differential equations of second and

fourth orders. We also refer to the work of Owens [100] for spectral approximation on triangles, and the

work of Sherwin and Karniadakis [114] for triangular and tetrahedral basis of high-order finite element

methods.

Li et al. [91] introduced a new rectangle-to-triangle mapping, which pulls one edge of the triangle

to two adjacent edges of the reference rectangle. For example, we make the variable transformation

x = 1
8 (1 + ξ)(3 − η), y = 1

8 (3 − ξ)(1 + η). Then the triangle T becomes the square in the ξ − η plan.

Meanwhile, the corner with ξ = η = 1 becomes the midpoint of one edge with x = y = 1
2 . In contrast with

the collapsed mapping, such a mapping is one-to-one, and allows an efficient implementation of spectral

approximation on the triangle T , by a direct using of nodal Lagrange polynomial basis on the reference

rectangle with a slight modification. This technique was generalized to the three-dimensional problems

defined on a tetrahedra, by using the variable transformation x = 1
24 (1 + ξ)(7 − 2η − 2ζ + ηζ), y =

1
24 (1 + η)(7 − 2ξ − 2ζ + ξζ), z = 1

24 (1 + ζ)(7 − 2ξ − 2η + ξη). Recently, Samson et al. [101] designed a

new spectral method with better interpolation points in triangles.

On the other hand, Shen et al. [113] provided the irrational basis functions on the triangle T , which

are induced by the polynomials in the reference square through a collapsed transformation. The L2(T )-

orthogonal projection and the H1
0 (T )-orthogonal projection were investigated, which lead to a new spec-

tral method on triangles. Li and Wang [89] also proposed a spectral method on tetrahedra by using

certain irrational basis functions.

We now turn to spectral method on a convex quadrilateral Ω in the ξ − η plan. By a bilinear variable

transformation, the quadrilateral is transformed to a reference square in the x−y plan. The determinant

of Jacobi matrix of the transformation is denoted by JΩ(x, y). Let Ll(x) be the Legendre polynomials as

before. Guo and Jia [40], and Jia and Guo [84] proposed the spectral methods for the quadrilateral Ω,

by using the following two kinds of basis functions,

ψl,m(ξ, η) = Ll(x(ξ, η))Lm(y(ξ, η))J
− 1

2

Ω (x(ξ, η), y(ξ, η)), l,m � 0,

ψl,m(ξ, η) = Ll(x(ξ, η))Lm(y(ξ, η)), l,m � 0.

For the spectral element methods for arbitrary polygons, the key points are how to match the numerical

solutions on the common boundaries of adjacent subdomains, and how to keep the spectral accuracy on

the whole polygons. Guo and Jia [40], and Jia and Guo [84] investigated the two-dimensional Legendre

quasi-orthogonal approximation and its applications to the spectral element methods for some problems

defined on polygons, with the mixed inhomogeneous Dirichlet-Neumann-Robin boundary conditions.

Bernardi et al. [10], Canuto et al. [16], and Karniadakis and Sherwin [87] developed the pseudospectral

element methods for non-rectangular domains, which are also called as spectral methods in many liter-

atures, and succeed in scientific computing. We also refer to the nodal discontinuous Galerkin method,

see [83].
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The Jacobi approximation could be applied to some problems on unbounded domains. Let R =

(−∞,∞) and R+ = (0,∞). As an example, we consider the logistic equation governing the population

of budworm on an unbounded forest. Suppose that the boundary condition at y = −1 is lethal, and at

least e−yV (y, t)∂yV (y, t) → 0, as y → ∞. This problem is of the form

⎧
⎪⎪⎨

⎪⎪⎩

∂tV (y, t)− ∂2y(y, t) = V (y, t)(1− V (y, t)), 0 < y <∞, 0 < t � T,

V (0, t) = lim
y→∞

e−yV (y, t)∂yV (y, t) = 0, 0 � t � T,

V (y, 0) = V0(y), 0 < y <∞.

(2.15)

We make the variable transformation y(x) = −2 ln(1− x) + 2 ln 2. Accordingly, U(x, t) = V (y(x), t) and

U0(x) = V0(y(x)). Then (2.15) becomes

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tU(x, t)− 1

4
(1− x)∂x((1− x)∂xU(x, t)) = U(x, t)(1 − U(x, t)), x ∈ R+, 0 � t � T,

U(−1, t) = lim
x→1

(1− x)2U(x, t)∂xU(x, t) = 0, 0 � t � T,

U(x, 0) = U0(x), x ∈ R+.

If U0 ∈ L2(R+), then it admits a unique solution U ∈ L∞(0, T ;L2(R+)) ∩ L2(0, T ; 0H
1
χ(2,0)(R

+)). Ob-

viously, we could solve this problem by the Jocobi spectral method with α = 2 and β = γ = δ = 0,

see [37].

With the aid of variable transformation y = ln 1+x
1−x , we can use the Jacobi spectral method with

α = β = 2 and γ = δ = 0 to solve some problems on the whole line R, see [36].

If the solutions decay to zero at infinity, then we may solve the differential equations on the half line,

by using the Jacobi spectral method with α = 1, β = 0, γ = −1 and δ = 0. For the differential equations

on the whole line, we could use the Jacobi spectral method with α = β = 1 and γ = δ = −1, see [31,33].

For the multiple-dimensional problems, we use the Jacobi approximations with different parameters in

different directions, see [125].

2.5 Jacobi irrational spectral methods for unbounded domains

The Jacobi approximation is related to various irrational spectral methods for unbounded domain closely,

which are also called rational spectral methods usually.

In the early work of Boyd [12] and Christov [19], the irrational basis functions are induced by the

Legendre or Chebyshev polynomials. Guo et al. [49, 50], Guo and Wang [64], and Wang and Guo [135],

proposed several new irrational orthogonal approximations and interpolations. By using some results on

the Jacobi approximation, they established a series of approximation results. The related spectral and

pseudospectral methods were provided.

The solutions of different problems have different asymptotic behaviors at infinity. Also, the same

solution might behave differently at different endpoints of infinite intervals, such as the kink solitons in

quantum physics and the heteroclinic waves in logistic models. In the previous irrational approximations,

the basis functions are mutually orthogonal with the fixed weights. This feature limits their applications.

For overcoming this deficiency, Wang and Guo [137] used the irrational basis functions on the half line,

induced by the standard Jacobi polynomials. Recently, Guo and Yi [72] developed the generalized Jacobi

irrational spectral method and so enlarged the applications of irrational spectral methods.

Let J̄
(α,β)
l (x) be the generalized Jacobi functions. The generalized Jacobi irrational functions are

defined by

R
(α,β)
l (x) = J̄

(α,β)
l

(
x√

x2 + 1

)

, l � l̄α,β.

Let the weight function

ω
(α,β)
R (x) = (

√
x2 + 1 + x)β−α(x2 + 1)

−α−β−3
2 .
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The set of all R
(α,β)
l (x) is a complete L2

ω
(α,β)
R

(R)-orthogonal system. We set

VN,α,β(R) = span{R(α,β)
l (x), l̄α,β � l � N}.

The orthogonal projection PN,α,β : L2

ω
(α,β)
R

(R) → VN,α,β(R) is defined by

(PN,α,βv − v, φ)
ω

(α,β)
R

= 0, ∀φ ∈ VN,α,β(R).

We introduce the space Hr

ω
(α,β)
R ,A

(R) equipped with the following semi-norm and norm,

‖v‖
0,ω

(α,β)
R ,A

= ‖v‖
ω

(α,β)
R

, |v|
1,ω

(α,β)
R ,A

= ‖(x2 + 1)
3
2 ∂xv‖ω(α+1,β+1)

R

,

|v|
k,ω

(α,β)
R ,A

= |(x2 + 1)
3
2 ∂xv|k−1,ω

(α+1,β+1)
R ,A

, k � 2, ‖v‖
r,ω

(α,β)
R ,A

=

( r∑

k=0

|v|2
k,ω

(α,β)
R ,A

) 1
2

.

Moreover,

Hr

0,ω
(α,β)
R ,A

(R) = {v | v ∈ Hr

ω
(α,β)
R ,A

(R), v(±∞) = 0}.

Let N− be the set of all negative integers. If one of the following conditions holds,

(i) α, β > −1,

(ii) α > −1, β � −r − 1 or β ∈ N−,

(iii) α � −r − 1 or α ∈ N−, β > −1,

(iv) α, β � −r − 1 or α, β ∈ N−,

then for any v ∈ Hr

ω
(α,β)
R ,A

(R) and integers r � 0, 0 � k � r � N + 1,

‖PN,α,βv − v‖
k,ω

(α,β)
R ,A

� cNk−r|v|
r,ω

(α,β)
R ,A

. (2.16)

For numerical solutions of differential equations, we need other projections. To do this, we introduce

the space H1
α,β,γ,δ(R), equipped with the norm ‖v‖1,α,β,γ,δ = (|v|2

1,ω
(α,β)
R

+ ‖v‖2
ω

(γ,δ)
R

)
1
2 . There are several

projections depending on various underlying problems. For example, if α, β > −4 and γ, δ > −1, then

we define the orthogonal projection P 1
N,α,β,γ,δ : H

1
α,β,γ,δ(R) → VN,α,β(R) by

(∂x(P
1
N,α,β,γ,δv − v), ∂xφ)ω(α,β)

R

+ (P 1
N,α,β,γ,δv − v, φ)

ω
(γ,δ)
R

= 0, ∀φ ∈ VN,α,β(R).

Let σ, θ � 3. If 0 < α + σ � γ + 2, 0 < β + θ � δ + 2 and γ, δ > −1, then for any v ∈ H1
α,β,γ,δ(R)

∩Hr

ω
(α+σ−1,β+θ−1)
R ,A

(R) and integers 1 � r � N + 1,

‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ � cN1−r|v|

r,ω
(α+σ−1,β+θ−1)
R ,A

. (2.17)

If, in addition, α � γ + σ − 5 and β � δ + θ − 5, then

‖P 1
N,α,β,γ,δv − v‖

ω
(γ,δ)
R

� cN−r|v|
r,ω

(α+σ−1,β+θ−1)
R ,A

. (2.18)

Guo and Yi [72] provided the irrational spectral schemes for the sine-Gordon, Klein-Gordon and Fisher

equations defined on the whole line.

Yi and Guo [150] also introduced the generalized Jacobi irrational functions defined on the half line, as

R
(α,β)
l (x) = J̄

(α,β)
l

(
x− 1

x+ 1

)

, l � l̄α,β.

Let the weight function ω
(α,β)
R (x) = xβ(x+1)−α−β−2. The set of all R

(α,β)
l (x) is a complete L2

ω
(α,β)
R

(R+)-

orthogonal system. We set

VN,α,β(R
+) = span{R(α,β)

l (x), l̄α,β � l � N}.
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The orthogonal projection PN,α,β : L2

ω
(α,β)
R

(R) → VN,α,β(R) is defined by

(PN,α,βv − v, φ)
ω

(α,β)
R

= 0, ∀φ ∈ VN,α,β(R
+).

We introduce the space Hr

ω
(α,β)
R ,A

(R+), equipped with the following semi-norm and norm,

‖v‖
0,ω

(α,β)
R ,A

= ‖v‖
ω

(α,β)
R

, |v|
1,ω

(α,β)
R ,A

= ‖(x+ 1)
2

∂xv‖ω(α+1,β+1)
R

,

|v|
k,ω

(α,β)
R ,A

= |(x+ 1)2∂xv|k−1,ω
(α+1,β+1)
R ,A

, k � 2, ‖v‖
r,ω

(α,β)
R ,A

=

( r∑

k=0

|v|2
k,ω

(α,β)
R ,A

) 1
2

.

Moreover,

Hr

0,ω
(α,β)
R ,A

(R+) = {v | v ∈ Hr

ω
(α,β)
R ,A

(R+), v(0) = v(∞) = 0}.

If one of the following conditions holds,

(i) α, β > −1,

(ii) α > −1, β � −r − 1 or β ∈ N−,

(iii) α � −r − 1 or α ∈ N−, β > −1,

(iv) α, β � −r − 1 or α, β ∈ N−,

then for any v ∈ Hr

ω
(α,β)
R ,A

(R+) and integers 0 � μ � r � N,

‖PN,α,βv − v‖
μ,ω

(α,β)
R ,A

� cNμ−r|v|
r,ω

(α,β)
R ,A

. (2.19)

For numerical solutions of differential equations, we need other projections. For this purpose, we

introduce the space H1
α,β,γ,δ(R

+), equipped with the norm ‖v‖1,α,β,γ,δ = (|v|2
1,ω

(α,β)
R

+ ‖v‖2
ω

(γ,δ)
R

)
1
2 . There

are also several projections. For example, if β, δ > −1, α − 2γ > −3 and γ � −1, then we define the

orthogonal projection P 1
N,α,β,γ,δ : H

1
α,β,γ,δ(R

+) → RN,α,β(R
+) by

(∂x(P
1
N,α,β,γ,δv − v), ∂xφ)ω(α,β)

R

+ (P 1
N,α,β,γ,δv − v, φ)

ω
(γ,δ)
R

= 0, ∀φ ∈ VN,α,β(R
+).

Denote the set of all positive integers by N+. Let γ � −1, δ > −1, α − 2γ > −3, γ − α − σ + 2 ∈ N+,

and σ � 4, θ � 0. If one of the following conditions holds,

(i) α+ σ � −r − 1 or α+ σ − 1 ∈ N−, 0 � β + θ � δ + 2,

(ii) α+ σ − 1 ∈ N−, β + θ − 1 ∈ N−, β > −1,

then for any v ∈ H1
α,β,γ,δ(R

+) ∩Hr
wα+σ−1,β+θ−1

R ,A
(R+) and integers 1 � r � N + 1,

‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ � cN1−r|v|

r,ω
(α+σ−1,β+θ−1)
R ,A

. (2.20)

If, in addition, α � γ + σ − 7, β � δ + θ + 1 and α < σ − 8, then

‖P 1
N,α,β,γ,δv − v‖ω(γ,δ) � cN−r|v|

r,ω
(α+σ−1,β+θ−1)
R ,A

. (2.21)

The irrational spectral schemes for the Black-Scholes type equation were provided by Yi and Guo [150].

The nonlinear wave equations usually possess some conservations, which play important role in theo-

retical analysis and actual computation. However, the used weights might destroy this property. Some

authors adopted the basis functions

√

ω
(α,β)
R (x)R

(α,β)
l (x). Then, the corresponding numerical solutions

keep the same conservations as the exact solutions. We refer to the work of Guo and Shen [45], Guo and

and Wang [63], and Wang and Guo [136], with the parameters α = β = 0 or α = β = − 1
2 . They derived

the errors of the related orthogonal approximations and interpolations, and designed the spectral and

psudospectral methods for many important nonlinear equations.

Guo and Shen [46] also considered the irrational spectral methods for exterior problems, by using the

base functions

I
(α,γ,δ)
l (x) =

1

xγ
J
(α,0)
l

(

1− 2

xδ

)

, x > 0, l � 0.

In actual computation, we first choose γ properly to fit the asymptotic behaviors of exact solutions closely.

Next, we take α in such a way that I
(γ,δ)
l (x) are mutually orthogonal in the weighted space to which the

exact ones belong. Finally, the suitable choice of δ > 0 leads to better numerical results.
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3 Hermite and Laguerre spectral methods

3.1 Hermite spectral and pseudospectral methods

The Hermite spectral and pseudospectral methods are widely used for problems defined on the whole line

R and the related unbounded domains.

Let ω(x) = e−x2

and Hr
ω(R) be the weighted Sobolev space with the norm ‖v‖r,ω. We denote the inner

product and the norm of the space L2
ω(R) by (u, v)ω and ‖v‖ω, respectively. In the standard Hermite

spectral method and pseudospectral method, we take the Hermite polynomials Hl(x), l � 0, as the basis

functions, which form a complete L2
ω(R)-orthogonal system.

Let PN(R) be the set of all algebraic polynomials of degree at most N . The L2
ω(R)-orthogonal projec-

tion PN : L2
ω(R) → PN (R) is defined by

(PNv − v, φ)ω = 0, ∀φ ∈ PN(R).

According to a slight modification of the result by Guo [32], we have that for any v ∈ Hr
ω(R) and integers

0 � k � r,

‖∂kx(PNv − v)‖ω � cN
k−r
2 ‖∂rxv‖ω. (3.1)

The Hm
ω (R)-orthogonal projection is exactly the same as PN .

In actual computation, the Hermite pseudospectral method is more preferable. For any integer r � 0,

we denote by Cr(R) the space consisting of all r-times differential functions. Let ξG,N,j, 0 � j � N, be

the zeros of HN+1(x). For any v ∈ C(R), the Hermite-Gauss interpolation IG,Nv ∈ PN (R) is determined

uniquely by

IG,Nv(ξG,N,j) = v(ξG,N,j), 0 � j � N.

Guo and Xu [73] proved that for any v ∈ Hr
ω(R) and integers r � 1, 0 � k � r,

‖∂kx(IG,Nv − v)‖ω � cN
1
3+

k−r
2 ‖∂rxv‖ω.

As an example, we consider the Burgers equation with the kinetic viscosity μ > 0,
⎧
⎨

⎩

∂sV (y, t) +
1

2
V (y, t)∂yV (y, t)− μ∂2yV (y, t) = g(y, t), −∞ < y <∞, 0 < s � T,

V (y, 0) = V0(y), −∞ < y <∞.
(3.2)

In addition, V (y, t) satisfies certain conditions at the infinity. The above problem is not well-posed in

the Sobolev space with the weight function ω(x). To remedy this deficiency, we may take the similarity

transformation x = y

2
√

μ(1+s)
and t = ln(1 + s). Accordingly, U(x, t) = ex

2

V (2
√
μxe

t
2 , et − 1) and

f(x, t) = ex
2+tg(2

√
μxe

t
2 , et − 1). Then (3.2) is changed to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tU(x, t) +
1

2
U(x, t) +

1

2
x∂xU(x, t) +

1

4
√
μ
ex

2+ t
2 ∂x(e

−2x2

U2(x, t))

−1

4
∂2xU(x, t) = f(x, t), x ∈ R, 0 < t � ln(1 + T ),

U(x, 0) = ex
2

V0(2
√
μx), x ∈ R.

This reformed problem is well-posed in the weighted Sobolev space. Therefore, we could design the proper

Hermite spectral and pseudospectral schemes. Xu and Guo [145] also proposed the multiple-dimensional

Hermite spectral and pseudospectral methods with their applications to the logistic equation.

The standard Hermite spectral method might not be the most appropriate for some problems. Guo

et al. [51], and Tang [120] took the Hermite functions e−
1
2x

2

Hl(x), l � 0, as the basis functions, which are

mutually orthogonal in the space L2(R). Thereby, the numerical schemes have the same weight functions

as in the weak formulations of original problems. As a result, the numerical solutions keep the same

conservations as the exact ones. This trick has been applied to the numerical simulations of Gaussian

type functions, the Dirac equation an so on.
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In some practical problems, the solutions decay exponentially as |x| → ∞. In this case, it is reasonable

to take the basis functions like e−α2x2

Hl(αx), α > 0, l � 0, which are mutually orthogonal in the space

with the weight function eα
2x2

. Funaro and Kavian [26] first used such functions with α = 1
2 . Tang

et al. [121], and Xiang and Wang [147] provided numerical algorithms with α > 0, for simulating the

dispersion of small particles in a turbulent flows and the growth and dispersal of population. Meanwhile,

Fox et al. [23] proposed the composite Hermite spectral-finite difference method for the two-dimensional

Fokker-Planck equation. Guo and Wang [60], and Wang and Guo [131] investigated the mixed Hermite-

Legendre spectral and pseudospectral methods with α = 1, for heat transfer in an infinite stripe. Ma et

al. [96], and Ma and Zhao [97] developed the Hermite spectral method with time-dependent basis functions

e−α(t)x2

φ(x), φ ∈ PN (R). The reasonable choice of α(t) depends on some coefficients of underlying

evolutionary problems, which in turn affect the asymptotic behaviors of solutions as t increases.

Zhang and Guo [153] introduced a family of new generalized Hermite functions, which are mutually

orthogonal with the weight function (1+x2)−γ , where γ is any real number. By adjusting the parameter

γ suitably, they simulate the asymptotic behaviors of approximated functions at infinity reasonably. The

corresponding orthogonal approximation and interpolation were used for numerical solutions of the sine-

Gordon equation. Recently, Guo and Zhang [78] studied the more general orthogonal approximation

and interpolation using the basis functions, which are mutually orthogonal with the weight function

(1+ 2
π arctanx)−2α(1− 2

π arctanx)−2γ . By adjusting the arbitrary real parameters α and γ suitably, they

simulate different asymptotic behaviors of approximated functions at the different endpoints of the whole

line properly.

3.2 Laguerre spectral and pseudospectral methods

The Laguerre spectral and pseudospectral methods play important roles in numerical solutions of differ-

ential equations defined on various unbounded domains, as well as certain exterior problems.

Let ω(α,β)(x) = xαe−βx, α > −1, β > 0. We define the weighted space Hr
ω(α,β)(R

+) and its norm

‖v‖r,ω(α,β) as usual. The inner product and the norm of the space L2
ω(α,β)(R

+) are denoted by (u, v)ω(α,β)

and ‖v‖ω(α,β) , respectively.

Guo and Zhang [80] considered the scaled generalized Laguerre polynomials

L(α,β)
l (x) =

1

l!
x−αeβx∂lx(x

l+αe−βx), l � 0,

which form a complete L2
ω(α,β)(R

+)-orthogonal system.

The orthogonal projection PN,α,β : L2
ω(α,β)(R

+) → PN(R+) is defined by

(PN,α,βv − v, φ)ω(α,β) = 0, ∀φ ∈ PN (R+).

If ∂rxv ∈ L2
ω(α+r,β)(R

+) and integers r � 0, 0 � k � r � N + 1, then

‖∂kx(PN,α,βv − v)‖ω(α+k,β) � cα,β(βN)
k−r
2 ‖∂rxv‖ω(α+r,β) , (3.3)

where the positive constant cα,β is given explicitly.

In many differential equations, the coefficients of derivatives of different orders of unknown functions

grow or degenerate in different ways. Thus, we have to consider the orthogonal approximation in certain

non-uniformly weighted Sobolev spaces. Now, we let α, γ > −1, β, δ > 0, and introduce the space

H1
α,β,γ,δ(R

+), equipped with the norm ‖v‖1,α,β,γ,δ = (‖∂xv‖2ω(α,β)+‖v‖2
ω(γ,δ))

1
2 . The orthogonal projection

P 1
N,α,β,γ,δ : H

1
α,β,γ,δ(R

+) → PN (R+) is defined by

(∂x(P
1
N,α,β,γ,δv − v), ∂xφ)ω(α,β) + (P 1

N,α,β,γ,δv − v, φ)ω(γ,δ) = 0, ∀φ ∈ PN (R+).

As a special and important case, we assume that −1 < γ � α � γ+2, β = δ, or γ > −1, −1 < α � γ+2,

β < δ. If v ∈ H1
α,β,γ,δ(R

+), ∂rxv ∈ L2
ω(α+r−1,β)(R

+) and integers 1 � r � N + 1, then

‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ � cα,β,γ,δ(βN)

1−r
2 ‖∂rxv‖ω(α+r−1,β) , (3.4)
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where the positive constant cα,β,γ,δ is given explicitly.

Taking the boundary conditions into consideration, we denote by 0H
1
ωα,β

(R+) and 0PN (R+) the subsets

of H1
ωα,β

(R+) and PN (R+), respectively, in which all functions vanish at x = 0. We define the orthogonal

projection 0P
1
N,α,β(R

+) : 0H
1
ω(α,β)(R

+) → 0PN (R+) by

(∂x(0P
1
N,α,βv − v), ∂xφ)ω(α,β) = 0, ∀φ ∈ 0PN (R+).

If ∂xv ∈ L2
ω(α,β)(R

+), ∂rxv ∈ L2
ω(α+r−1,β)(R

+) and v(0) = 0, then for integers 1 � r � N + 1,

‖∂x(0P 1
N,α,βv − v)‖ω(α,β) � cα,β(βN)

1−r
2 ‖∂rxv‖ω(α+r−1,β) . (3.5)

If, in addition, v ∈ L2
ω(α,β)(R

+) and |α| < 1, then

‖0P 1
N,α,βv − v‖ω(α,β) � cα,β(βN)

1−r
2 ‖∂rxv‖ω(α+r−1,β) . (3.6)

We now turn to the generalized Laguerre interpolation. For any integer r � 0, we denote by Cr(R̄+)

the space consisting of all r-times differential functions. Let ξ
(α,β)
G,N,j and ξ

(α,β)
R,N,j, 0 � j � N, be the zeros

of L(α,β)
N+1 (x) and xL(α+1,β)

N (x), respectively. They are arranged in ascending order. For v ∈ C̄(R+), the

generalized Laguerre-Gauss type interpolation IZ,N,α,βv ∈ PN (R+) is determined uniquely by

IZ,N,α,βv(ξ
(α,β)
G,N,j) = v(ξ

(α,β)
G,N,j), Z = G,R, 0 � j � N,

where Z = G,R correspond to the Laguerre-Gauss interpolation and the Laguerre-Radau interpolation,

respectively.

Guo et al. [59] proved that if ∂kxv ∈ L2
ω(α,β)(R

+), ∂rxv ∈ L2
ω(α+r,β)(R

+)∩L2
ω(α+r−1,β)(R

+)∩L2
ω(r+α−k,β)(R

+)

and integers r � 1, 0 � k � r � N + 1, then

‖∂kx(IG,N,α,βv − v)‖ω(α,β) � cα,β(βN)
2k+1−r

2 (β−1(‖∂rxv‖ω(α+r−1,β) +N− 1
2 ‖∂rxv‖ω(α+r−k,β))

+ (1 + β− 1
2 )(lnN)

1
2 ‖∂rxv‖ω(α+r,β)). (3.7)

If, in addition, r > α+ 1 or |α| < 1, then

‖∂kx(IR,N,α,βv − v)‖ω(α,β) � cα,β(βN)
2k+1−r

2 (β−1(‖∂rxv‖ω(α+r−1,β) +N− 1
2 ‖∂rxv‖ω(α+r−k,β))

+ (1 + β− 1
2 )(lnN)

1
2 ‖∂rxv‖ω(α+r,β)). (3.8)

Mastroianni and Monegato [99] also studied the generalized Laguerre interpolation with its application

to integral equations. Xu and Guo [146] investigated the generalized Laguerre approximation in multiple

dimensions.

In the early work, we used the Laguerre polynomials mostly, i.e., α = 0 and β = 1. Coulaud et al. [20],

Funaro [24,25], Guo and Shen [44], Maday et al. [98], and Xu and Guo [143] proposed the related spectral

and pseudospectral methods for various steady and unsteady problems arising in fluid dynamics. For

example, we consider the Burgers equation with the homogeneous boundary condition at x = 0. We

make the variable transformation y = x, U(x, t) = e
x
2 V (x, t) and f(x, t) = e

x
2 g(x, t). Then, the Burgers

equation on the half line becomes

⎧
⎪⎪⎨

⎪⎪⎩

∂tU(x, t)− μ(∂2xU(x, t)− ∂xU +
1

4
U(x, t)) +

1

2
e

x
2 ∂x(e

−xU2(x, t)) = f(x, t), x ∈ R+, 0 < t � T,

U(0, t) = 0, 0 � t � T,

U(x, 0) = e
x
2 V0(x), x ∈ R+.

This problem is well-posed in the weighted Sobolev space. Hence, we could solve it by the Laguerre

spectral and pseudospectral methods numerically.

Wang and Guo [126] proposed the stair Laguerre pseudospectral method. In other words, we first use

the Laguerre interpolation with moderate mode N , and then use the shifted Laguerre interpolation to



Guo B Y Sci China Math December 2013 Vol. 56 No. 12 2427

extend the numerical solutions step by step. This approach simplifies calculation and raises the numerical

accuracy. On the other hand, Bernardi et al. [5], and Bernardi and Maday [7] developed the H2
ω0,1

(R+)-

orthogonal approximation and the corresponding interpolations, with their applications to fourth order

problems. Guo and Xu [74], and Xu and Guo [144] proposed the mixed Legendre-Laguerre spectral and

pseudospectral methods for the stream function form of the incompressible fluid flows in an infinite strip.

The Laguerre approximation is available essentially for rectangular domains. In opposite, the general-

ized Laguerre approximation is applicable to a large class of other problems. As an example, let ρ, λ and

θ be the radius, the longitude and the latitude, respectively. We consider the following problem with the

spherical geometry,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− 1

ρ2
∂ρ(ρ

2∂ρU(ρ, λ, θ))− 1

ρ2 cos θ
∂θ(cos θ∂θU(ρ, λ, θ))

− 1

ρ2 cos2 θ
∂2λU(ρ, λ, θ) = f(ρ, λ, θ), ρ > ρ0, 0 � λ < 2π, |θ| < π

2
,

lim
ρ→∞

U(ρ, λ, θ) = 0, 0 � λ < 2π, −π
2
� θ <

π

2
,

U(ρ, λ+ 2π, θ) = U(ρ, λ, θ), ρ > ρ0, 0 � λ < 2π, −π
2
� θ <

π

2
.

(3.9)

In addition, ∂λU(ρ, λ, θ) = 0 for |θ| = 1
2π. If ρ0 > 0, then we impose the boundary condition as

U(ρ0, λ, θ) = g(λ, θ). This case corresponds to an exterior problem. We could adopt the spherical

harmonic approximation in the (λ, θ)-directions, and benefit from the orthogonality of spherical har-

monic functions. Furthermore, in the weak formulation of (3.9), the coefficients of terms ∂ρU, ∂θU and
1

cos θ∂λU are ρ2, 1 and 1, respectively. Thus, it is natural to use the generalized Laguerre approximation

with α = 2, in the ρ-direction. Moreover, we may adjust the parameter β suitably so that the numerical

solutions match the exact ones properly.

The generalized Laguerre approximation has been used successfully for a lot of problems. Guo and

Zhang [80], and Zhang and Guo [155] used the above approach with α = 2, coupled with the spherical

harmonic approximation, for problems in the whole three-dimensional space and outside a ball, respec-

tively. Guo et al. [52] applied this trick with α = β = 1, coupled with the Fourier approximation, to

two-dimensional exterior problems. Guo and Jiao [41] proposed the mixed spectral method for exte-

rior problem of the Navier-Stokes equations, with a disc obstacle. Besides, Guo et al. [59] provided the

pseudospectral method for spherically symmetrical solutions of (3.9) with ρ0 = 0 and ρ0 > 0, respectively.

3.3 Laguerre approximation using generalized Laguerre functions

Many practical problems are not well-posed in the Laguerre weighted Sobolev spaces. Thus, we often

need certain variable transformations for deriving reasonable alternative forms, which are not convenient

in multiple dimensions usually. On the other hand, the weight functions might destroy some properties

of numerical solutions, which the exact solutions possess. They also bring difficulties for matching the

numerical solutions of domain decomposition methods, on the common boundaries of adjacent subdo-

mains. Indeed, for the functions belong to certain Sobolev spaces with the weight function ω(α)(x) = xα,

we prefer to the spectral methods using the generalized Laguerre functions.

Guo and Zhang [81] considered the scaled generalized Laguerre functions

L̃(α,β)
l (x) = e−

1
2βxL(α,β)

l (x), l � 0,

which form a complete L2
ω(α)(R

+)-orthogonal system. Let

QN,α,β(R
+) = {e− 1

2βxφ | φ ∈ PN (R+)}.

The orthogonal projection P̃N,α,β : L2
ω(α)(R

+) → QN,α,β(R
+) is defined by

(P̃N,α,βv − v, φ)ω(α) = 0, ∀φ ∈ QN,α,β(R
+).
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If v ∈ L2
ω(α)(R

+) and integers r � 0, r � N + 1, then

‖P̃N,α,βv − v‖ω(α) � c(βN)−
r
2 ‖∂rx(e

1
2βxv)‖ω(α+r,β) , (3.10)

provided that ‖∂rx(e
1
2
βxv)‖ω(α+r,β) is finite. The special result with α = 0 and β = 1 was given earlier by

Shen [102].

In applications, we need several specific orthogonal projections in non-uniformly weighted spaces, which

correspond to different underlying problems. For example, we define the space H1
2,0(R

+) with the norm

‖v‖1,2,0 = (‖∂xv‖2ω(2) +‖v‖2
ω(0))

1
2 . Let η � 0. The orthogonal projection P̃ 1

N,α,β : H1
2,0(R

+) → QN,α,β(R
+)

is defined by

(∂x(P̃
1
N,α,βv − v), ∂xφ)ω(2) + η(P̃ 1

N,α,βv − v, φ)ω(0) = 0, ∀φ ∈ QN,α,β(R
+).

If v ∈ H1
2,0(R

+) and integers 1 � r � N + 1, then

‖P̃ 1
N,α,βv − v‖1,2,0 � c(1 + η)(βN)

1−r
2 ‖∂r−1

x (e
1
2βx∂xv)‖ω(r+1,β) , (3.11)

provided that ‖∂r−1
x (e

1
2βx∂xv)‖ω(r+1,β) is finite.

Wang et al. [139] studied the interpolations ĨZ,N,α,βv ∈ QN,α,β(R
+), defined by

ĨZ,N,α,βv(ξ
(α,β)
Z,N,j) = v(ξ

(α,β)
Z,N,j), Z = G,R, 0 � j � N,

where z = G,R correspond to the generalized Laguerre-Gauss interpolation, and the generalized Laguerre-

Radau interpolation, respectively.

If ∂kxv ∈ L2
ω(α)(R

+) and integers 1 � r � N + 1, then

‖∂kx(ĨG,N,α,βv − v)‖ω(α) �c(βN)
2k+1−r

2

(

(β−1 + (βN)
−1−k

2 )N− 1
2

k∑

μ=0

‖∂μx (e
1
2βxv)‖ω(α+r−k,β)

+β−1‖∂rx(e
1
2βxv)‖ω(α+r−1,β)+(1+β−1

2 )(lnN)
1
2 ‖∂rx(e

1
2βxv)‖ω(α+r,β)

)

. (3.12)

If, in addition, r > α+ 1 or |α| < 1, then we have also

‖∂kx(ĨR,N,α,βv − v)‖ω(α) �c(βN)
2k+1−r

2

(

(β−1 + (βN)
−1−k

2 )N− 1
2

k∑

μ=0

‖∂μx (e
1
2βxv)‖ω(α+r−k,β)

+β−1‖∂rx(e
1
2βxv)‖ω(α+r−1,β)+(1+β−1

2 )(lnN)
1
2 ‖∂rx(e

1
2βxv)‖ω(α+r,β)

)

. (3.13)

The above two results are valid provided that all norms involved at the right-hand side of the above

inequalities are finite. The special result with α = 0 and β = 1 was due to Guo and Wang [57].

Shen [102] proposed the spectral method using the Laguerre functions, i.e., α = 0, β = 1. Meanwhile,

Guo and Ma [43], and Ma and Guo [93] used such basis functions for the related domain decomposition

spectral methods. More precisely, they used the Legendre approximation on the subinterval near x = 0,

where the solutions change rapidly, and adopted the Laguerre approximation on the remaining subinterval.

If the solutions vary fast or have several peaks at the large points, then we may refine the numerical results

by the multidomain Legendre approximation between the Laguerre interpolation nodes. This technique is

very suitable for parallel computation, and recovers the structures of solutions between the interpolation

nodes, see [57]. Azaiez et al. [1], and Zhuang et al. [160] considered the mixed Legendre-Laguerre

pseudospectral and pseudospectral element methods for the Stokes equation in an infinite strip.

The generalized Laguerre functions are powerful tools for a number of important problems. For exam-

ple, let x and V (x, s) be the value of underlying security and the value of derivative security, respectively.

We consider the Black-Scholes type equation
{
∂sV (x, s) + xB∂xV (x, s) + ∂x(x

2A∂xV (x, s))−GV (x, s) = F (x, s), x ∈ R+, 0 � s < T,

V (x, T ) = V0(x), x ∈ R+,
(3.14)
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where 0 < a0 � A(x, s) � a1, and |B(x, s)| is bounded as x → 0. Clearly, the coefficients xB(x, s)

and x2A(x, s) degenerate as x → 0. According to Fichera’s theory, we could not impose any boundary

condition at x = 0. The equation (3.14) includes many important models in financial mathematics,

such as the Black-Scholes, Dothan, and Black-Derman-Toy models. In practical cases, the asymptotic

behavior of solution of (3.14) depends on the final state V0(x). There are two types of the most interesting

solutions. The first type of solutions is the call-option, growing to infinity as x → ∞. The second type

of solutions is the put-option, decaying to zero rapidly as x → ∞. There exists an explicit relation

between these two types of solutions. Guo and Zhang [81] proposed the spectral method for solving the

put-options.

Zhang et al. [156] provided the mixed generalized Laguerre-spherical harmonic spectral method for the

three-dimensional nonlinear Klein-Gordon equation. Zhang et al. [154] used the generalized Laguerre-

Fourier spectral and pseudospectral methods for two-dimensional exterior problems. Wang et al. [140]

developed the generalized Laguerre-spherical harmonic spectral method for three-dimensional exterior

problems. Furthermore, Guo and Wang [65], Guo et al. [69], and Yan and Guo [148, 149] designed the

new collocation methods for initial value problems of differential equations of first and second orders,

based on the interpolation by using the Laguerre polynomials and the Laguerre functions.

3.4 Laguerre approximation with arbitrary parameter α

Guo et al. [53] developed the generalized Laguerre approximation with arbitrary real parameter α, and

proposed the Laguerre quasi-orthogonal approximation (also see [76]). Everitt et al. [22] considered the

Laguerre approximation with negative integer α, without the error estimate.

Denote by [α] the largest integer � α. Let l̄α = [−α] for α � −1, and l̄α = 0 for α > −1. Meanwhile,

lα = l− [−α] for α � −1, and lα = l for α > −1. The new generalized Laguerre functions are defined by

L̄(α,β)
l (x) =

{
x−αL(−α,β)

lα
(x), α � −1, l � l̄α,

L(α,β)
l (x), α > −1, l � l̄α,

which conform a complete L2
ω(α,β)(R

+)-orthogonal system.

Let

Q̄N,α,β(R
+) = span{L̄(α,β)

l (x), l̄α � l � N}.

The orthogonal projection P̄N,α,β : L2
ω(α,β)(R

+) → Q̄N,α,β(R
+) is defined by

(P̄N,α,βv − v, φ)ω(α,β) = 0, ∀φ ∈ Q̄N,α,β(R
+).

For estimating the approximation error, we introduce the Sturm-Liouville operator

Aα,βv(x) = −x−αeβx∂x(x
α+1e−βx∂xv(x)).

Furthermore, we define the following Sobolev-type spaces with integer r � 0,

D(Ar
α,β) = {v | Ak

α,βv ∈ L2
ω(α,β)(R

+) for 0 � k � r},

D(Ar+ 1
2

α,β ) = {v | v ∈ D(Ar
α,β) and ∂xAr

α,βv ∈ L2
ω(α,β)(R

+)},

equipped with the following semi-norms and norms,

|v|D(Ar
α,β)

= ‖Ar
α,βv‖ω(α,β) , |v|

D(A
r+ 1

2
α,β )

= ‖∂xAr
α,βv‖ω(α+1,β) ,

‖v‖D(Ar
α,β

) =

( r∑

k=0

|v|2D(Ak
α,β)

) 1
2

, ‖v‖
D(Ar+1/2

α,β
)
= (‖v‖2D(Ar

α,β)
+ |v|2

D(Ar+1/2
α,β )

)
1
2 .

If v ∈ D(A
r
2

α,β) and integers r � 0, 0 � k � r � N + 1, then

|P̄N,α,βv − v|
D(A

k
2
α,β)

� c(βN)
k−r
2 |v|

D(A
r
2
α,β)

. (3.15)
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In practice, the specific projection P̄N,−m,βv is the most useful, where m is any positive integer. If

∂kxv ∈ L2
ω(−m+k,β)(R

+), ∂rxv ∈ L2
ω(−m+r,β)(R

+), and integers 1 � m � min(r,N), 0 � k � r � N + 1,

k � m, then

‖∂kx(P̄N,−m,βv − v)‖ω(−m+k,β) � c(βN)
k−r
2 ‖∂rxv‖ω(−m+r,β) . (3.16)

For numerical solutions of high order differential equations, we need another orthogonal projection. For

this purpose, we introduce the space H̄m
β,A(R

+), equipped with norm ‖v‖H̄m
β,A

= (
∑m

k=0 ‖∂kxv‖2ω(−m+k,β))
1
2 .

Moreover,

0H̄
m
β,A(R

+) = {v | v ∈ H̄m
β,A(R

+), and ∂kxv(0) = 0 for 0 � k � m− 1}.

The projection 0P̄
m
N,−m,β : 0H

m
β,A(R

+) → Q̄N,−m,β(R
+) is defined by

(∂mx (v − 0P̄
m
N,−m,βv), ∂

m
x φ)ω(0,β) = 0, ∀φ ∈ Q̄N,−m,β(R

+).

In fact, 0P̄
m
N,−m,βv(x) = P̄N,−m,βv(x) for any v ∈ 0H̄

m
β,A(R

+). Accordingly, if ∂kxv ∈ L2
ω(−m+k,β)(R

+),

∂rxv ∈ L2
ω(−m+r,β)(R

+), and integers 1 � m � min(r,N), 0 � k � r � N + 1, k � m, then

‖∂kx(0P̄m
N,−m,βv − v)‖ω(−m+k,β) � c(βN)

k−r
2 ‖∂rxv‖ω(−m+r,β) . (3.17)

We now turn to the Laguerre quasi-orthogonal approximation. Let

v̄b,m(x) =

m−1∑

j=0

∂jxv(0)
xj

j!
.

For any v ∈ H̄m
β,A(R

+), we set v̄(x) = v(x) − v̄b,m(x). Evidently, v̄(x) ∈ 0H̄
m
β,A(R

+). Thus, we could

define the generalized Laguerre quasi-orthogonal projection by

P̄m
∗,N,−m,βv(x) = 0P̄

m
N,−m,β v̄(x) + v̄b,m(x).

Obviously, P̄m
∗,N,−m,βv ∈ PN (R+). Moreover,

∂kx P̄
m
∗,N,−m,βv(0) = ∂kxv(0), 0 � k � m− 1.

If ∂kxv ∈ L2
ω(−m+k,β)(R

+), ∂rxv ∈ L2
ω(−m+r,β)(R

+), and integers 1 � m � min(r,N), 0 � k � r � N + 1,

k � m, then

‖∂kx(P̄m
∗,N,−m,βv −v)‖ω(−m+k,β) � c(βN)

k−r
2 ‖∂rxv‖ω(−m+r,β) . (3.18)

Guo et al. [53] proposed the new generalized Laguerre-Gauss-Radau interpolation. For any integer

r � m− 1, we set

0C
r
m(R̄+) = {v ∈ Cr(R̄+) | ∂kxu(0) = 0 for 0 � k � m− 1}.

Let m � 0, and

ξ
(m,β)
N,j = ξ

(m,β)
G,N−m,j, 0 � j � N −m.

For any v ∈ 0C
m−1
m (R̄+) and m � 1, we introduce the auxiliary interpolation by

ĪN,−m,βv(ξ
(m,β)
N,j ) = v(ξ

(m,β)
N,j ), 0 � j � N −m.

For any v ∈ Cm−1
m (R̄+), we define the new interpolation as

ĪR,N,−m,βv(x) = ĪN,−m,βv̄(x) + v̄b,m(x).

It can be checked that

ĪR,N,−m,βv(ξ
(m,β)
N,j ) = v(ξ

(m,β)
N,j ), 0 � j � N −m,

ĪR,N,−m,βv(0) = ∂kxv(0), 0 � k � m− 1.
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This interpolation is the same as the generalized Laguerre-Gauss-Radau interpolation, since both of them

are polynomials of degree N , satisfying the same condition at the same interpolation nodes.

If ∂kxv ∈ L2
ω(−m+k,β)(R

+), ∂rxv ∈ L2
ω(−m+r,β)(R

+), and integers 1 � m � min(r,N), 0 � k � r � N + 1,

k � m, then

‖∂kx(ĪR,N,−m,βv − v)‖ω(−m+k,β) � c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ‖∂rxv‖ω(−m+r,β) . (3.19)

The above result improves and generalizes the existing results essentially. For example, the result (3.19)

with m = 1 implies ‖∂kx(ĪR,N,−1,βv − v)‖ω(−1+k,β) � c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ‖∂rxv‖ω(−1+r,β) . This

estimate is better than (3.8).

The Laguerre quasi-orthogonal approximation and the generalized Laguerre-Gauss-Radau interpola-

tion play important roles in the spectral and collection methods for high order problems with mixed

inhomogeneous boundary conditions, such as some problems similar to the steady beam equation and

extended Fisher-Kolmogorov equation.

3.5 Approximation using Laguerre functions with arbitrary parameter α

Zhang and Guo [152] proposed the new orthogonal approximation using the Laguerre functions with

arbitrary real parameter α, and the corresponding quasi-orthogonal approximation.

Let [α], l̄α, ω
(α) and L̄(α,β)

l (x) be the same as before. The new generalized Laguerre functions are given

by

L̂(α,β)
l (x) = e−

β
2 xL̄(α,β)

l (x), l � l̄α,

which form a complete L2
ω(α)(R

+)-orthogonal system.

Let

Q̂N,α,β(R
+) = {e−

β
2 xφ | φ ∈ Q̄N,α,β(R

+)}.

The L2
ω(α)(R

+)-orthogonal projection P̂N,α,β,Λ : L2
ω(α)(R

+) → Q̂N,α,β(R
+) is defined by

(P̂N,α,β,Λv − v, φ)ω(α) = 0, ∀φ ∈ Q̂N,α,β(R
+).

For description of the approximation error, we introduce the Sturm-Liouville operator

Âα,βv(x) = −x−αe
β
2 x∂x(x

α+1e−βx∂x(e
β
2 xv(x))).

Accordingly, we define the following Sobolev-type space with integer r � 0,

D(Âr
α,β) = {v | Âk

α,βv ∈ L2
ω(α)(R

+) for 0 � k � r},

D(Âr+ 1
2

α,β ) = {v | v ∈ D(Âr
α,β) and ∂xÂr

α,βv ∈ L2
ω(α)(R

+)},

equipped with the following semi-norms and norms,

|v|D(Âr
α,β)

= ‖Âr
α,βv‖ω(α) , |v|

D(Â
r+ 1

2
α,β )

= ‖∂xÂr
α,βv‖ω(α+1) ,

‖v‖D(Âr
α,β)

=

( r∑

k=0

|v|2
D(Âk

α,β)

) 1
2

, ‖v‖
D(Âr+1/2

α,β )
= (‖v‖2

D(Âr
α,β)

+ |v|2
D(Âr+1/2

α,β )
)

1
2 .

If v ∈ D(Â
r
2

α,β) and integers r � 0, 0 � k � r � N + 1, then

|P̂N,α,βv − v|
D(A

k
2
α,β)

� c(βN)
k−r
2 |v|

D(Â
r
2
α,β)

. (3.20)

In practice, the specific projection P̂N,−m,βv with positivem is the most useful. If ∂kxv ∈ L2
ω(−m+k)(R

+),

∂rx(e
β
2 xv) ∈ L2

ω(−m+r,β)(R
+), and integers 1 � m � min(r,N), 0 � k � r � N + 1, k � m, then

‖∂kx(P̂N,−m,βv − v)‖ω(−m+k) � c(βN)
k−r
2 ‖∂rx(e

β
2 xv)‖ω(−m+r,β) . (3.21)
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We now introduce the space Ĥm
A (R+), equipped with the norm ‖v‖Ĥm

A
= (

∑m
k=0 ‖∂kxv‖2ω(−m+k))

1
2 .

Moreover, for 1 � m � r,

0Ĥ
m
A (R+) = {v | v ∈ Ĥm

A (R+), and ∂kxv(0) = 0 for 0 � k � m− 1}.

Let 0P̄
m
N,−m,βv be the same as in the last subsection. If v ∈ 0Ĥ

m
A (R+), then 0P̄

m
N,−m,β(e

β
2 xv) is meaningful.

Furthermore, let

v̂b,m(x) = e−
β
2 x

m−1∑

j=0

(
1

j!

j∑

i=0

Ci
j

(
β

2

)j−i

∂ixv(0)

)

xj .

For any v ∈ Ĥm
A (R+), we set v̂(x) = v(x)− v̂b,m(x), and define the generalized Laguerre quasi-orthogonal

projection as

P̂m
∗,N,−m,βv(x) = e−

β
2 x

0P̄
m
N,−m,β(e

β
2 xv̂(x)) + v̂b,m(x).

Clearly, P̂m
∗,N,−m,βv ∈ Q̂N,−m,β(R

+). Moreover, a direct calculation shows

∂kxP̂
m
∗,N,−m,β,Λv(0) = ∂kxv(0), 0 � k � m− 1.

If ∂kxv ∈ L2
ω(−m+k)(R

+), ∂rx(e
β
2 xv) ∈ L2

ω(−m+r,β)(R
+), and integers 1 � m � min(r,N), 0 � k � r � N +1,

k � m, then

‖∂kx(P̂m
∗,N,−m,βv − v)‖ω(−m+k) � c(βN)

k−r
2 ‖∂rx(e

β
2 xv)‖ω(−m+r,β) . (3.22)

We now turn to the interpolation. Let ξ
(m,β)
N,j be the same as in the last subsection. For any v ∈

0C
m−1
m (R+) and m � 1, the auxiliary interpolation ÎN,−m,βv ∈ Q̂

(m,β)
N (R̄+) is determined uniquely by

ÎN,−m,βv(ξ
(m,β)
N,j ) = v(ξ

(m,β)
N,j ), 0 � j � N −m.

For any v ∈ Cm−1
m (R̄+), we put v̂(x) = v(x) − v̂b,m(x), and define the new Laruerre-Gauss-Radau

interpolation by

ÎR,N,−m,βv(x) = ÎN,m,βv̂(x) + v̂b,m(x).

It can be checked that

ÎR,N,−m,βv(ξ
(m,β)
N,j ) = v(ξ

(m,β)
N,j ), 0 � j � N −m,

∂kx ÎR,N,−m,β,Λv(0) = ∂kxv(0), 0 � k � m− 1.

If ∂kxv ∈ L2
ω(−m+k,β)(R

+), ∂rx(e
β
2 xv) ∈ L2

ω(−m+r,β)(R
+), and integers 1 � m � min(r,N), 0 � k � r � N+1,

k � m, then,

‖∂kx(ÎR,N,−m,βv − v)‖ω̃(−m+k) � c(β− 1
2 + 1)(lnN)

1
2 (βN)

k+1−r
2 ‖∂rx(e

β
2 xv)‖ω(−m+r,β) . (3.23)

Recently, Guo and Zhang [77] introduced the more general Lagurre functions

L̂(α,β,γ,δ)
l (x) = (δ + x)

γ
2 e−

β
2 xL(α,β)

l (x), l � l̄α,

where δ > 0, α and γ are any real numbers. They are mutually orthogonal with the weight function

xα(δ + x)−γ . The basic results on the corresponding quasi-orthogonal approximation and interpolation

were established. By adjusting the parameters α and γ suitably, these approaches not only fit the bound-

ary conditions of considered functions at the fixed boundary exactly, but also simulate their asymptotic

behaviors at infinity reasonably.

The previous quasi-orthogonal approximations and the corresponding interpolations play the essential

roles in the multidomain spectral and pseudospectral methods of high order differential equations defined

on unbounded domains, with mixed inhomogeneous boundary conditions, see [77, 152].

The above approaches are also very helpful for solving problems of non-standard type. For example,

let x be the velocity of particles. Denote by U(x, y, t) the probability density. The positive constants
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k, T and m stand for the Boltzmann’s constant, the absolute temperature, and the mass of particles,

respectively. Let μ = kT
m and β−1 > 0 be the particle relaxation time. We consider the Fokker-Planck

equation describing the Brownian motion of particles in an infinite channel,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂tU(x, y, t) + x∂yU(x, y, t)− β∂x(xU(x, y, t)) + y∂xU(x, y, t)

−βμ∂2xU(x, y, t) = 0, x ∈ R, |y| < 1, 0 < t � T,

U(x, y, t) = 0, x � 0, y = −1 or x � 0, y = 1, 0 < t � T,

U(x, y, t) → 0, |x| → ∞, |y| < 1, 0 < t � T,

U(x, y, 0) = U0(x, y), x ∈ R, |y| � 1.

(3.24)

There exist several difficulties for solving (3.24) numerically. Indeed, the above equation behaves like

parabolic equation in the x-direction, and like hyperbolic equation in the y-direction. Next, the coefficient

of the convective term ∂yU changes the sign at x = 0, and so different kinds of boundary conditions are

imposed on different subdomains with x < 0 or x > 0, respectively. Furthermore, the terms ∂xU(x, y, t)

and ∂yU(x, y, t) possess the coefficients x, which varies from −∞ to ∞. Consequently, we could not use

the usual spectral method for solving (3.24). Guo and Wang [61] introduced a proper composite approx-

imation, which is a set of two mixed generalized Laguerre-Legendre quasi-orthogonal approximations on

the subdomains. The numerical solution of the corresponding spectral method keeps the continuity at

x = 0, and the global spectral accuracy. Wang and Guo [132] also provided the pseudospectral method

for (3.24).

Another challenging problem is how to design reasonable spectral and pseudospectral methods for

exterior problems with polygon obstacles. Guo and Wang [61, 62], Guo and Yu [75], and Wang and

Guo [133] divided the unbounded exterior domain into several subdomains, and constructed the different

Jacobi, Laguerre and mixed Laguerre-Legendre quasi-orthogonal approximations on different subdomains.

They form the composite approximations on the whole exterior domain, keeping the continuity and

possessing the global spectral accuracy. The corresponding spectral and pseudospectral methods provided

accurate numerical results of second and fourth order problems.
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1992

9 Bernardi C, Maday Y. Spectral methods. In: Ciarlet P G, Lions J L, eds. Handbook of Numerical Analysis, vol. 5.

Techniques of Scientific Computing. Amsterdam: Elsevier, 1997, 209–486



2434 Guo B Y Sci China Math December 2013 Vol. 56 No. 12

10 Bernardi C, Maday Y, Rapetti F. Discretisations Variationnelles de Problemes aux Limites Elliptique. Collection:

Mathematique et Applications, vol. 45. Berlin: Springer-Verlag, 2004

11 Boyd J P. Orthogonal rational functions on a semi-infinite interval. J Comp Phys, 1987, 70: 63–88

12 Boyd J P. Spectral method using rational basis functions on infinite intervals. J Comp Phys, 1987, 69: 112–142

13 Boyd J P. Chebyshev and Fourier Spectral Methods, 2nd edition. New York: Dover Publication Inc, 2001

14 Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods in Fluid Dynamics. Berlin: Springer-Verlag, 1988

15 Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods: Fundamentals in Single Domains. Berlin: Springer-

Verlag, 2006

16 Canuto C, Hussaini M Y, Quarteroni A, et al. Spectral Methods: Evolution to Complex Geometries and Applications

to Fluid Dynamics. Berlin: Springer-Verlag, 2007

17 Chen Y P, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions. J Comp

Appl Math, 2009, 233: 938–950

18 Chen Y P, Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations

with a weakly singular kernel. Math Comp, 2010, 79: 147–167

19 Christov C I. Complete orthogonal system of functions in L2(−∞,∞) space. SIAM J Appl Math, 1982, 42: 1337–1344

20 Coulaud O, Funaro D, Kavian O. Laguerre spectral approximation of elliptic problems in exterior domains. Comp

Mech Appl Mech Eng, 1990, 80: 451–458

21 Dubiner M. Spectral methods on triangles and other domains. J Sci Comput, 1991, 6: 345–390

22 Everitt W N, Littlejohn L L, Wellman R. The Sobolev orthogonality and spectral analysis of the Laguerre polynomials

{L−k
n } for positive integers k. J Comp Appl Math, 2004, 171: 199–234

23 Johnson Fox C M, Guo B Y, Tang T. Combined Hermite spectral-finite difference method for the Fokker-Planck

equations. Math Comp, 2001, 71: 1497–1528

24 Funaro D. Estimates of Laguerre spectral projectors in Sobolev spaces. In: Brezinski C, Gori L, Ronveaux A, eds.

Orthogonal Polynomials and Their Applications. New Brunswick: IMACS, 1991

25 Funaro D. Polynomial Approxiamtions of Differential Equations. Berlin: Springer-Verlag, 1992

26 Funaro D, Kavian O. Approximation of some diffusion evolution equations in unbounded domains by Hermite func-

tions. Math Comp, 1990, 57: 597–619

27 Gottlieb D, Orszag S A. Numerical Analysis of Spectral Methods: Theory and Applications. Philadelphia: SIAM-

CBMS, 1977

28 Gottlieb D, Shu C W. On the Gibbs phenomenon IV: Resolution exponential accuracy in a subinterval from a

Gegenbauer partial sum of a piecewise analytic functions. Math Comp, 1995, 64: 1081–1095

29 Gottlieb D, Shu C W. Resolution exponential accuracy from collocation point values of piecewise analytic function.

Numer Math, 1995, 71: 511–526

30 Guo B Y. Spectral Methods and Their Applictions. Singapore: World Scientific, 1998

31 Guo B Y. Gegenbauer approximation and its applications to differential equations on the whole line. J Math Anal

Appl, 1998, 22: 180–206

32 Guo B Y. Error estimation of Hermite spectral method for nonlinear partial differential equations. Math Comp, 1999,

68: 1067–1078

33 Guo B Y. Jacobi approximation and its applications to differential equations on the half line. J Comp Math, 2000,

18: 95–112

34 Guo B Y. Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations.

SIAM J Numer Anal, 2000, 37: 621–645

35 Guo B Y. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. J

Math Anal Appl, 2000, 243: 373–406

36 Guo B Y. Gegenbauer approximation and its applications to differential equations with rough asymptotic behaviors

at infinity. Appl Numer Math, 2001, 38: 403–425

37 Guo B Y. Jacobi spectral method for differential equations with rough asymptotic behaviors at infinity. J Comp

Math Appl, 2003, 46: 95–104

38 Guo B Y. Some developments in spectral methods for nonlinear partial differential equations in unbounded domains.

In: Gu C H, Hu H S, Li T T, eds. Differential Geometry and Related Topics. Singapore: World Scientific, 2002,

68–90

39 Guo B Y, Huang W. Mixed Jacobi-spherical harmonic spectral method for Navier-Stokes equations. Appl Numer

Math, 2007, 57: 939–961

40 Guo B Y, Jia H L. Spectral method on quadrilaterals. Math Comp, 2010, 79: 2237–2264

41 Guo B Y, Jiao Y J. Mixed generalized Laguerre-Fourier spectral method for exterior problem of Navier-Stokes

equations. Discrete Contin Dyn Syst Ser B, 2009, 11: 315–345

42 Guo B Y, Jiao Y J. Spectral method for Navier-Stokes equations with slip boundary conditions. J Sci Comput, in

press, doi: 10.1007/s10915-013-9729-5



Guo B Y Sci China Math December 2013 Vol. 56 No. 12 2435

43 Guo B Y, Ma H P. Composite Legendre-Laguerre approximation in unbounded domains. J Comp Math, 2001, 19:

101–112

44 Guo B Y, Shen J. Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval.

Numer Math, 2000, 86: 635–654

45 Guo B Y, Shen J. On spectral approximations using modified Legendre rational functions: application to the Korteweg

de Vries equation on the half line. Indiana Univ Math J, 2001, 50: 181–204

46 Guo B Y, Shen J. Irrational approximations and their applications to partial differential equations in exterior domains.

Adv Comp Math, 2008, 28: 237–267

47 Guo B Y, Shen J, Wang L L. Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J Sci Comput,

2006, 27: 305–322

48 Guo B Y, Shen J, Wang L L. Generalized Jacobi polynomials/functions and their Applications. Appl Numer Math,

2009, 59: 1011–1028

49 Guo B Y, Shen J, Wang Z Q. A rational approximation and its applications to differential equations on the half line.

J Sci Comput, 2000, 15: 117–148

50 Guo B Y, Shen J, Wang Z Q. Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval.

Int J Numer Meth Eng, 2002, 53: 65–84

51 Guo B Y, Shen J, Xu C L. Spectral and pseudospectral approximations using Hermite functions: Application to the

Dirac equation. Adv Comp Math, 2003, 19: 35–55

52 Guo B Y, Shen J, Xu C L. Generalized Laguerre approximation and its applications to exterior problems. J Comp

Math, 2005, 23: 113–130

53 Guo B Y, Sun T, Zhang C. Jacobi and Laguerre quasi-orthogonal approximations and related interpolations. Math

Comp, 2013, 82: 413–441

54 Guo B Y, Wang L L. Jacobi interpolation approximations and their applications to singular differential equations.

Adv Comp Math, 2001, 14: 227–276

55 Guo B Y, Wang L L. Non-isotropic Jacobi spectral method. Contemp Math, 2003 329: 157–164

56 Guo B Y,Wang L L. Jacobi approximation in non-uniformly Jacobi-weighted Sobolev spaces. J Appro Theor, 2004,

128: 1–41

57 Guo B Y, Wang L L. Modified Laguerre pseudospectral method refined by multidomain Legendre approximation for

differential equations on the half line. J Comp Appl Math, 2006, 190: 304–324

58 Guo B Y, Wang L L. Error analysis of spectral method on a triangle. Adv Comp Math, 2007, 26: 473–496

59 Guo B Y, Wang L L, Wang Z Q. Generalized Laguerre interpolation and pseudospectral method for unbounded

domains. SIAM J Numer Anal, 2006, 43: 2567–2589

60 Guo B Y, Wang T J. Composite generalized Laguerre-Legendre spectral method with domain decomposition and its

application to Fokker-Planck equation in an infinite channel. Math Comp, 2009, 78: 129–151

61 Guo B Y, Wang T J. Composite Laguerre-Legendre spectral method for exterior problems. Adv Comp Math, 2010,

32: 393–429

62 Guo B Y, Wang T J. Composite Laguerre-Legendre spectral method for fourth-order exterior problems. J Sci Comput,

2010, 44: 255–285

63 Guo B Y, Wang Z Q. Modified Chebyshev rational spectral method for the whole line. Discrete Contin Dyn Syst,

2003, 9: 365–374

64 Guo B Y, Wang Z Q. Legendre rational approximation on the whole line. Sci China Ser A, 2004, 47: 155–164

65 Guo B Y, Wang Z Q. Numerical integration based on Laguerre-Gauss interpolation. Comp Meth Appl Mech Eng,

2007, 196: 3726–3741

66 Guo B Y, Wang Z Q. Legendre-Gauss collocation methods for ordinary differential equations. Adv Comp Math,

2009, 30: 249–280

67 Guo B Y,Wang Z Q. A spectral collocation method for solving initial value problems of first order ordinary differential

equations. Discrete Contin Dyn Syst Ser B, 2010, 14: 1029–1054

68 Guo B Y, Wang Z Q. A collocation method for generalized nonlinear Klein-Gordon equation. Adv Comp Math,

submitted

69 Guo B Y, Wang Z Q, Tian H J, et al. Integration processes of ordinary differential equations based on Laguerre-Gauss

interpolations. Math Comp, 2008, 77: 181–199

70 Guo B Y, Wang Z Q, Wan Z S, et al. Second order Jacobi approximation with applications to fourth order differential

equations. Appl Numer Math, 2005, 55: 480–502

71 Guo B Y, Yan J P. Legendre-Gauss collocation methods for initial value problems of second order ordinary differential

equations. Appl Numer Math, 2009, 59: 1386–1408

72 Guo B Y, Yi Y G. Generalized Jacobi rational spectral method and its applications. J Sci Comput, 2010, 43: 201–238

73 Guo B Y, Xu C L. Hermite pseudospectral method for nonlinear partial differential equations. RAIRO Math Model

Numer Anal, 2000, 34: 859–872



2436 Guo B Y Sci China Math December 2013 Vol. 56 No. 12

74 Guo B Y, Xu C L. Mixed Laguerre-Lagendre pseudospectral method for incompressible fluid flow in an infinite strip.

Math Comp, 2003, 73: 95–125

75 Guo B Y, Yu X H. Composite spectral method for exterior problems with polygonal obstacles. Submitted

76 Guo B Y, Zhang C, Sun T. Some developments in spectral methods. Stud Adv Math, 2012, 51: 561–574

77 Guo B Y, Zhang C. Spectral method for high order problems with proper simulations of asymptotic behaviors at

infinity. J Comp Appl Math, 2013, 237: 269–294

78 Guo B Y, Zhang C. Generalized Hermite spectral method matching different asymptotic behaviors at different end-

points. Unpublished

79 Guo B Y, Zhang K J. On non-isotropic Jacobi pseudospectral method. J Comp Math, 2008, 26: 511–535

80 Guo B Y, Zhang X Y. A new generalized Laguerre spectral approximation and its applications. J Comp Appl Math,

2005, 181: 342–363

81 Guo B Y, Zhang X Y. Spectral method for differential equations of degenerate type on unbounded domains by using

generalized Laguerre functions. Appl Numer Math, 2007, 57: 455–471

82 Hesthaven J S, Gottlieb S, Gottlieb D. Spectral Methods for Time-Dependent Problems. Cambridge Monographs on

Applied and Computational Mathematics, vol. 21. Cambridge: Cambridge University Press, 2007

83 Hesthaven J S, Warburton T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications.

Springer Texts in Applied Mathematics, vol. 54. Berlin: Springer Verlag, 2008

84 Jia H L, Guo B Y. Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems on

polygons. Chinese Ann Math Ser B, 2010, 31: 855–878

85 Junghanns V P. Uniform convergence of approximate methods for Cauchy type singular equation over (−1, 1). Wiss

Z Tech Hocsch Karl-Mars Stadt, 1984, 26: 250–256

86 Kanyamee N, Zhang Z M. Comparison of a spectral collocation method and symplectic methods for Hamiltonian

systems. Int J Numer Anal Model, 2011, 8: 86–104

87 Karniadakis G E, Sherwin S T. Spectral/hp Element Methods for CFD. Oxford: Oxford University Press, 1999

88 Li H Y, Shen J. Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the

triangle. Math Comp, 2010, 79: 1621–1646

89 Li H Y, Wang L L. A spectral method on tetrahedra using rational basis functions. Inter J Numer Anal Model, 2010,

7: 330–355

90 Li X J, Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Abel-Volterra integral equations

of the second kind. Front Math China, 2012, 7: 69–84

91 Li Y Y, Wang L L, Li H Y, et al. A new spectral method on triangles. In: Lecture Notes in Computational Sciences

and Engineering. Proceeding of International Conference on Spectral and High-Order Methods (ICOSAHOM09).

New York: Springer-Verlag, 2010, 237–246

92 Lin Y M, Li X J, Xu C J. Finite difference/spectral approximations for the fractional cable equation. Math Comp,

2011, 80: 1369–1396

93 Ma H P, Guo B Y. Composite Legendre-Laguerre pseudospectral approximation in unbounded domains. IMA J

Numer Anal, 2001, 21: 587–602

94 Ma H P, Sun W W. A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential

equations. SIAM J Numer Anal, 2000, 38: 1425–1438

95 Ma H P, Sun W W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries

equation. SIAM J Numer Anal, 2001, 39: 1380–1394

96 Ma H P, Sun W W, Tang T. Hermite spectral methods with a time-dependent scaling for parabolic equations in

unbounded domains. SIAM J Numer Anal, 2006, 43: 58–75

97 Ma H P, Zhao T G. A stabilized Hermite spectral method for second-order differential equations in unbounded

domain. Numer Methods Partial Differential Equations, 2007, 23: 968–983

98 Maday Y, Pernaud-Thomas B, Vandeven H. One réhabilitation des méthods spèctrales de type Laguerre. Rech
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