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Abstract This paper deals with the Cauchy problem to the nonlinear pseudo-parabolic system ut − Δu

−αΔut = vp, vt−Δv−αΔvt = uq with p, q � 1 and pq > 1, where the viscous terms of third order are included.

We first find the critical Fujita exponent, and then determine the second critical exponent to characterize the

critical space-decay rate of initial data in the co-existence region of global and non-global solutions. Moreover,

time-decay profiles are obtained for the global solutions. It can be found that, different from those for the

situations of general semilinear heat systems, we have to use distinctive techniques to treat the influence from

the viscous terms of the highest order. To fix the non-global solutions, we exploit the test function method,

instead of the general Kaplan method for heat systems. To obtain the global solutions, we apply the Lp-Lq

technique to establish some uniform Lm time-decay estimates. In particular, under a suitable classification for

the nonlinear parameters and the initial data, various Lm time-decay estimates in the procedure enable us to

arrive at the time-decay profiles of solutions to the system. It is mentioned that the general scaling method for

parabolic problems relies heavily on regularizing effect to establish the compactness of approximating solutions,

which cannot be directly realized here due to absence of the smooth effect in the pseudo-parabolic system.
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1 Introduction

In this paper, we consider the Cauchy problem to coupled nonlinear pseudo-parabolic equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut −Δu− αΔut = vp, (x, t) ∈ R
N × (0, T ),

vt −Δv − αΔvt = uq, (x, t) ∈ R
N × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R
N ,

(1.1)

where p, q � 1 with pq > 1, α > 0, u0(x) and v0(x) are nonnegative, bounded and appropriately smooth.

This kind of equations models a variety of important physical processes, for example, unidirectional

propagation of non-linear dispersive long waves [1, 4], seepage of homogeneous fluids through a fissured

rock [2] and discrepancy between the conductive and thermodynamic temperatures [6].
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It is well known that the heat equation⎧⎨
⎩

ut = Δu+ up, x ∈ R
N , t > 0,

u(x, 0) = u0(x), x ∈ R
N

(1.2)

has no non-trivial global solutions whenever 1 < p � pc = 1 + 2
N , whereas admits both global and

non-global solutions if p > pc, depending on the size of initial data [9, 30]. The critical exponents

like such pc have been established for various nonlinear PDEs. See the surveys [7, 17] and the recent

papers [24, 25, 29, 32, 34] for example. In addition, the so-called second critical exponent was introduced

for (1.2) to describe the critical space-decay rate of initial data in the co-existence parameter region of

global and non-global solutions [16]. It was shown with u0(x) ∼ |x|−a, |x| → ∞ that in the region p > pc,

there exist global and non-global solutions to (1.2) for a > a0 = 2
p−1 and 0 < a < a0 respectively. As for

the coupled heat system

ut = Δu+ vp, vt = Δv + uq, (1.3)

Escobedo and Herrero [8] determined the critical Fujita curve as (pq)c = 1 + 2
N max{p + 1, q + 1},

namely, every solution blows up in finite time if 1 < pq � (pq)c, and there exist both global and non-

global solutions if pq > (pq)c. With u0(x) ∼ |x|−a, v0(x) ∼ |x|−b, |x| → ∞, Mochizuki [21] obtained

in the coexistence region pq > (pq)c that there are global solutions to (1.3) if a > a0 = 2(p+1)
pq−1 and

b > b0 = 2(q+1)
pq−1 , while there are no global solutions if 0 < a < 2(p+1)

pq−1 or 0 < b < 2(q+1)
pq−1 . The time-decay

profiles for the global solutions were studied as well. For example, when p > pc the global solutions

to (1.2) behave like the fundamental solution G(x, t) = (4πt)−
N
2 e−

|x|2
4t in the sense of limt→∞ t

N
2 ‖u(·, t)

− BG(·, t)‖∞ = 0 with B = limt→∞ ‖u(·, t)‖1 [3], and limt→∞ t
a
2 ‖u(·, t) − AG(x, t) ∗ (1 + |x|)−a‖∞ = 0

with lim|x|→∞ |x|au0(x) = A > 0 and a ∈ (a0, N) [23]. The time-decay profiles for the coupled heat

system (1.3) were obtained also by Mochizuki [21].

The critical Fujita exponent to the pseudo-parabolic equation

ut −Δu− αΔut = up (1.4)

was determined as pc = 1+ 2
N in recent years, i.e., by Kaikina et al. [12] for p > pc and Cao et al. [5] for

p � pc. Currently, the second critical exponent for (1.4) was obtained as well [31]. In addition, Kaikina

et al. [12] obtained that if u0 ∈ L1
a(R

N ) = {f(x) | ∫
RN |x|a|f(x)|dx <∞} and 0 < a < 1, then

u(x, t) = BG(x, t) + o(t−
N
2 −γ), t→ ∞,

with 0 < γ < min{a
2 ,

N
2 (p − 1)− 1}. The other studies for pseudo-parabolic equations can be found in,

e.g., [10, 14, 15, 18, 19, 35]. Based on the above work, this paper investigates the asymptotic behavior of

solutions to the pseudo-parabolic system (1.1), such as the critical Fujita exponent, the second critical

exponent, as well as the time-decay profiles of solutions.

Denote by F ξ→xφ the inverse Fourier transform of φ, and ‖u‖m := ‖u‖Lm(RN ).

We deal with mild solutions to (1.1) to treat global solutions. We call (u, v) ∈ C([0, T ];C(RN)

∩ L∞(RN )) a mild solution to (1.1), if (u, v) satisfies⎧⎪⎪⎨
⎪⎪⎩

u(x, t) = G(t)u0(x) +
∫ t

0

G(t− s)Bvp(x, s)ds, x ∈ R
N , t > 0,

v(x, t) = G(t)v0(x) +
∫ t

0

G(t− s)Buq(x, s)ds, x ∈ R
N , t > 0,

(1.5)

with

G(t) = exp(−t(αΔ − I)−1Δ), B = −(αΔ− I)−1.

We have

G(t)φ = G(x, t) ∗ φ(x) + e−
t
α

N∑
m=0

( t
α )

m

m!
Bmφ+R(t)φ, (1.6)
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where

Bmφ =

∫
RN

Bm(x − y, t)φ(y)dy, R(t)φ =

∫
RN

R(x− y, t)φ(y)dy,

and

Bm(x, t) = (2π)−
N
2

∫
RN

eiξx(1 + |ξ|2)−mdξ,

R(x, t) = F ξ→x

(
e
− tξ2

1+αξ2 − e−tξ2 − e−
t
α

N∑
m=0

( t
α )

m

m!
(1 + αξ2)−m

)
.

Similarly to [5], it is easy to know that there exist mild solutions to system (1.1), which are the classical

solutions in fact if the initial data are appropriately smooth. In addition, the uniqueness of such solutions

is valid with the comparison principle. It seems that the pseudo-parabolic equations like system (1.1)

with viscous terms of highest order do not admit self-similar subsolutions. Moreover, the general energy

blow-up method for scalar equations [5] is difficult to treat the coupled system (1.1). In this paper, we

adopt the rescaled test function method (see, e.g., [20,33]) to fix the finite time blow-up of solutions. The

viscous highest order terms contribute additional dispersal mechanism to the system. In order to treat

the influence of these terms for non-global solutions, it is assumed that the initial data are compactly

supported, or behave negative powers in space infinity. To deal with global solutions, we use the Lp-Lq

technique to establish some uniform Lm time-decay estimates, with m being in a wider scope, and more

precise even compared with those previously obtained for semilinear heat systems. Corresponding to

a suitable classification to the nonlinear parameters and initial data, the related Lm estimates in the

procedure enable us to arrive at the time-decay profiles of solutions to (1.1). It is mentioned that the

general scaling method for parabolic problems [11,13,22] heavily relies on regularizing effect to establish

the compactness of approximating solutions, which cannot be directly realized here due to absence of

the smooth effect in the pseudo-parabolic system, for which the singular Dirac function presents in the

fundamental function [14].

2 Critical Fujita exponent

We deal with the critical Fuijita curve for the system (1.1) in this section.

Theorem 2.1. The critical Fujita curve to the system (1.1) is

(pq)c = 1 +
2

N
max{p+ 1, q + 1}, (2.1)

namely, the system (1.1) has no nontrivial global solution if 1 < pq � (pq)c, but admits both global and

non-global solutions if pq > (pq)c, depending on the size of the initial data.

Proof. Let 1 < pq � (pq)c, and assume p � q without loss of generality. To prove the finite time blow-up

of solutions, it suffices to treat the initial data with compact support by the comparison principle.

We first deal with the case p � q > 1. Choose sufficiently smooth and nonincreasing functions

0 � ξ(r), η(r) � 1 satisfying

ξ(r) = η(r) ≡ 1, 0 � r � 1/2; ξ(r) = η(r) ≡ 0, r � 1.

Assume for contradiction that (u, v) is a nonnegative nontrivial global solution to (1.1), and denote

Ip =

∫ T

0

∫
BR

vpξl
( |x|
R

)
ηl
(
t

R2

)
dxdt, Jq =

∫ T

0

∫
BR

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt,

where R > 1, T > R2, BR = {x ∈ R
N | |x| � R} and l � max{ p

p−1 ,
q

q−1}. Then,

Ip =

∫ T

0

∫
BR

(ut −Δu− αΔut)ξ
l

( |x|
R

)
ηl
(
t

R2

)
dxdt
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= −
∫
BR

u0ξ
l

( |x|
R

)
dx− lR−2

∫ R2

R2

2

∫
BR

uξl
( |x|
R

)
ηl−1

(
t

R2

)
η′
(
t

R2

)
dxdt

−
∫ R2

0

∫
BR\BR

2

uΔξl
( |x|
R

)
ηl
(
t

R2

)
dxdt+ α

∫
BR\BR

2

u0Δξ
l

( |x|
R

)
dx

+ αlR−2

∫ R2

R2

2

∫
BR\BR

2

uΔξl
( |x|
R

)
ηl−1

(
t

R2

)
η′
(
t

R2

)
dxdt. (2.2)

When u0 is compactly supported, let R be large enough such that∫
BR\BR

2

u0Δξ
l

( |x|
R

)
dx = 0, (2.3)

and hence,

Ip � −lR−2

∫ R2

R2

2

∫
BR

uξl
( |x|
R

)
ηl−1

(
t

R2

)
η′
(
t

R2

)
dxdt

−
∫ R2

0

∫
BR\BR

2

uΔξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

+ αlR−2

∫ R2

R2

2

∫
BR\BR

2

uΔξl
( |x|
R

)
ηl−1

(
t

R2

)
η′
(
t

R2

)
dxdt

=: K1 +K2 +K3. (2.4)

By Hölder’s inequality with l � 2q
q−1 , we have

K1 � CR−2

∫ R2

R2

2

∫
BR

uξ
l
q

( |x|
R

)
η

l
q

(
t

R2

)
dxdt

� CR−2

(∫ R2

R2

2

∫
BR

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q
(∫ R2

R2

2

∫
BR

1dxdt

) q−1
q

� CRN−N+2
q

(∫ R2

R2

2

∫
BR

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q

, (2.5)

where and throughout the paper, C denotes positive constants independent of R, u and v, and may be

different from line to line. Since Δξl(|x|) = lξl−1(ξrr +
N−1
r ξr) + l(l− 1)ξl−2|ξr|2, by Hölder’s inequality

again,

K2 � CR−2

∫ R2

0

∫
BR\BR

2

uξl−1

( |x|
R

)
ηl
(
t

R2

)
dxdt

� CRN−N+2
q

(∫ R2

0

∫
BR\BR

2

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q

. (2.6)

Similarly,

K3 � αCRN−2−N+2
q

(∫ R2

R2

2

∫
BR\BR

2

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q

. (2.7)

It follows from (2.4)–(2.7) that

Ip � CRN−N+2
q

(∫ R2

R2

2

∫
BR

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q
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+ CRN−N+2
q

(∫ R2

0

∫
BR\BR

2

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q

+ αCRN−2−N+2
q

(∫ R2

R2

2

∫
BR\BR

2

uqξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
q

� (2 + α)CRN−N+2
q J

1
q
q , (2.8)

and similarly,

Jq � CRN−N+2
p

(∫ R2

R2

2

∫
BR

vpξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
p

+ CRN−N+2
p

(∫ R2

0

∫
BR\BR

2

vpξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
p

+ αCRN−2−N+2
p

(∫ R2

R2

2

∫
BR\BR

2

vpξl
( |x|
R

)
ηl
(
t

R2

)
dxdt

) 1
p

� (2 + α)CRN−N+2
p I

1
p
p . (2.9)

This yields

Ip � (2 + α)1+
1
qCRN−N+2

q (RN−N+2
p I

1
p
p )

1
q = (2 + α)1+

1
qCRN− 2

q−N+2
pq I

1
pq
p . (2.10)

By Young’s inequality,

Ip � 1

2
Ip + (2 + α)

pq+p
pq−1CRN− 2(p+1)

pq−1 . (2.11)

Noticing pq < (pq)c = 1+ 2(p+1)
N implies N − 2(p+1)

pq−1 < 0, let R → ∞ in (2.11) to lead a contradiction. If

pq = (pq)c = 1+ 2(p+1)
N , i.e., N − 2(p+1)

pq−1 = 0, we have limR→∞ Ip =
∫∞
0

∫
RN v

p(x, t)dxdt � (2 +α)
pq+p
pq−1C.

It follows from (2.9) that for any ε > 0, there exists R1 > 0 such that

Jq � (2 + α)C1ε
1
pRN−N+2

p for R > R1, (2.12)

with C1 > 0 independent of R and ε. Combining (2.8) and (2.12), we get with N − 2(p+1)
pq−1 = 0 that

limR→∞ Ip � (2 + α)1+
1
q C̃1ε

1
pq , where the constant C̃1 is also independent of ε. The arbitrariness of ε

yields a contradiction.

If p > q = 1, set

Ip =

∫ T

0

∫
BR

vpξl1
( |x|
R

)
ηl1

(
t

R2

)
dxdt, J1 =

∫ T

0

∫
BR

uξl2
( |x|
R
v

)
ηl2

(
t

R2

)
dxdt

with l1 − 1 > l2 >
l1
p + 1. It is easy to know

∫ R2

0

∫
BR

uΔξl1−1

( |x|
R

)
ηl1−1

(
t

R2

)
η′
(
t

R2

)
dxdt � CJ1.

Together with (2.2) and (2.3), we conclude (2.8). Then, we can follow the same argument for the case of

p � q > 1 to get the finite time blow-up.

The coexistence of global and non-global solutions under pq > (pq)c will be quantitatively treated in

the next section for the second critical exponent.
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3 Second critical exponent

In this section, we will determine the second critical exponent for (1.1), i.e., the critical space-decay rate

of the initial data in the co-existence region pq > (pq)c for global and non-global solutions. We need the

following notation:

Ia =
{
φ(x) ∈ Cb(R

N )
∣∣∣ φ(x) � 0, lim inf

|x|→∞
|x|aφ(x) > Cl

}
,

I
a =

{
φ(x) ∈ Cb(R

N )
∣∣∣ φ(x) � 0, lim sup

|x|→∞
|x|aφ(x) < Cs

}
,

where Cb(R
N ) denotes bounded continuous functions in R

N , Cl, Cs > 0. Let

a0 =
2(p+ 1)

pq − 1
, b0 =

2(q + 1)

pq − 1
. (3.1)

The second critical exponent of (1.1) can be stated in the following theorem:

Theorem 3.1. Let pq > (pq)c, with nontrivial initial data u0(x) = λψ(x), v0(x) = μϕ(x), x ∈ R
N .

(i) If ψ(x) ∈ I
a and ϕ(x) ∈ I

b for some a > a0 and b > b0, then there exist λ1 � λ0 > 0 and

μ1 � μ0 > 0 such that the solutions to (1.1) are global if max{λ − λ0, μ − μ0} < 0, and non-global if

max{λ− λ1, μ− μ1} � 0.

(ii) If ψ(x) ∈ Ia for some a ∈ (0, a0) or ϕ(x) ∈ Ib for some b ∈ (0, b0), then the solutions to (1.1) blow

up in finite time.

We first give a preliminary proposition:

Proposition 3.2. For pq > (pq)c, there is η > 0 small such that if

‖u0‖∞ + ‖v0‖∞ + ‖u0‖ N
a0

+ ‖v0‖ N
b0

< η, (3.2)

then the solution to (1.1) is global, satisfying

‖u‖m � C(1 + t)−
a0
2 (1− N

ma0
), ‖v‖n � C(1 + t)−

b0
2 (1− N

nb0
), t > 0, (3.3)

with N
a0

� m � ∞ and N
b0

� n � ∞.

Proof. It is known that the following Lp-Lq estimates hold for φ ∈ Lp(RN )∩Lq(RN ) with 1 � q � p � ∞
[12, 14]:

‖Bφ‖p � C‖φ‖p, (3.4)

‖R(t)φ‖p � C(1 + t)−
N
2 ( 1

q− 1
p )−1‖φ‖q, (3.5)

‖G(t)φ‖p � Ce−
κt
α ‖φ‖p + C(1 + t)−

N
2 ( 1

q− 1
p )‖φ‖q, (3.6)

where 0 < κ < 1. Similar to [28], denote

X = C([0,∞);C(RN ) ∩ L N
a0 (RN ) ∩ L∞(RN ))× C([0,∞);C(RN ) ∩ L N

b0 (RN ) ∩ L∞(RN )),

with

‖(u, v)‖X = sup
t∈[0,∞)

{‖u(t)‖ N
a0

+ ‖v(t)‖ N
b0

+ (1 + t)
a0
2 ‖u(t)‖∞ + (1 + t)

b0
2 ‖v(t)‖∞}. (3.7)

Set (u, v) ∈ X ∩Bε with Bε = {(u, v) | ‖(u, v)‖X � ε}, and ε > 0 to be determined. Let

M1[u](t) = G(t)u0 +
∫ t

0

G(t− s)Bvp(x, s)ds, M2[v](t) = G(t)v0 +
∫ t

0

G(t− s)Buq(x, s)ds,

and denote M[(u, v)] = (M1[u],M2[v]).
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Consider the case with p, q > 1 only. If min{p, q} = 1, for example p = 1, we can substitute the

representation of v in (1.5) into the equation for u there to treat. Choosing p = ∞, q = N
a0
; p = ∞, q = N

δa0

with 1 < δ < min{N
a0
, a0+2

a0
, Nb0 ,

b0+2
b0

}, and p = q = ∞ respectively in (3.6), and then combining with

(3.4), we have

‖M1[u]‖∞ � ‖G(t)u0‖∞ +

∫ t

0

‖G(t− s)Bvp(s)‖∞ds

� Ce−
κt
α ‖u0‖∞ + C(1 + t)−

a0
2 ‖u0‖ N

a0

+ C

∫ t
2

0

e−
κ(t−s)

α ‖Bvp(s)‖∞ds

+ C

∫ t
2

0

(1 + t− s)
−δa0

2 ‖Bvp(s)‖ N
δa0

ds+ C

∫ t

t
2

‖Bvp(s)‖∞ds

� C(1 + t)−
a0
2 (‖u0‖∞ + ‖u0‖ N

a0

) + C

∫ t
2

0

e−
κ(t−s)

α ‖vp(s)‖∞ds

+ C

∫ t
2

0

(1 + t− s)−
δa0
2 ‖vp(s)‖ N

δa0

ds+ C

∫ t

t
2

‖vp(s)‖∞ds

=: C(1 + t)−
a0
2 (‖u0‖∞ + ‖u0‖ N

a0

) + L1 + L2 + L3. (3.8)

Noticing pb0 = a0 + 2, we obtain with (3.7) that

L1 �
∫ t

2

0

e−
κ(t−s)

α (1 + s)−
pb0
2 ds‖(u, v)‖pX � Ce−

κt
2α

∫ t
2

0

(1 + s)−
a0
2 −1ds‖(u, v)‖pX

� C(1 + t)−
a0
2 ‖(u, v)‖pX , (3.9)

L3 � C

∫ t

t
2

(1 + s)−
a0
2 −1ds‖(u, v)‖pX � C(1 + t)−

a0
2 ‖(u, v)‖pX . (3.10)

Moreover, we have with N
δa0

> 1, p− δa0

b0
> 0 and pb0−δa0

2 < 1 that

L2 � C(1 + t)−
δa0
2

∫ t
2

0

‖v(s)‖p−
δa0
b0∞ ‖v(s)‖

δa0
b0
N
b0

ds

� C(1 + t)−
δa0
2

∫ t
2

0

(1 + s)−
pb0−δa0

2 ds‖(u, v)‖pX
� C(1 + t)−

δa0
2 (1 + t)

δa0−pb0
2 +1‖(u, v)‖pX

� C(1 + t)−
a0
2 ‖(u, v)‖pX . (3.11)

Combine (3.9)–(3.11) to get

‖M1[u]‖∞ � C(1 + t)−
a0
2 (‖u0‖∞ + ‖u0‖ N

a0

) + C(1 + t)−
a0
2 ‖(u, v)‖pX ,

and similarly, ‖M2[v]‖∞ � C(1+ t)−
b0
2 (‖v0‖∞+‖v0‖ N

b0

)+C(1+ t)−
b0
2 ‖(u, v)‖qX . By the same procedure,

we have

‖M1[u]‖ N
a0

� C‖u0‖ N
a0

+ C‖(u, v)‖pX , ‖M2[v]‖ N
b0

� C‖v0‖ N
b0

+ C‖(u, v)‖qX .

Consequently,

‖M[(u, v)]‖X � C(‖u0‖∞ + ‖v0‖∞ + ‖u0‖ N
a0

+ ‖v0‖ N
b0

) + C(‖(u, v)‖pX + ‖(u, v)‖qX).

Since p, q > 1, we have C(‖(u, v)‖pX + ‖(u, v)‖qX) � ε
2 provided ε > 0 small enough. Take η = η(ε) > 0 in

(3.2) small such that C(‖u0‖∞ + ‖v0‖∞ + ‖u0‖ N
a0

+ ‖v0‖ N
b0

) � ε
2 . Thus, M maps X ∩Bε into itself.



562 Yang J G et al. Sci China Math March 2014 Vol. 57 No. 3

Furthermore, for (u1, v1), (u2, v2) ∈ X , we know by (3.4) and (3.6) that

‖M1[u1]−M1[u2]‖ N
a0

�
∫ t

0

‖G(t− s)B(vp1(s)− vp2(s))‖ N
a0

ds

�
∫ t

2

0

e−
κ(t−s)

α ‖vp1(s)− vp2(s)‖ N
a0

ds

+

∫ t
2

0

(1 + t− s)−
(δ−1)a0

2 ‖vp1(s)− vp2(s)‖ N
δa0

ds

+

∫ t

t
2

‖vp1(s)− vp2(s)‖ N
a0

ds.

By Hölder’s inequality,∫ t
2

0

e−
κ(t−s)

α ‖vp1(s)− vp2(s)‖ N
a0

ds

�
∫ t

2

0

e−
κ(t−s)

α ‖v1(s)− v2(s)‖ pN
a0

‖vp−1
1 (s) + vp−1

2 (s)‖ pN
(p−1)a0

ds

� C

∫ t
2

0

e−
κ(t−s)

α ‖v1(s)− v2(s)‖ pN
a0

(‖v1(s)‖p−1
pN
a0

+ ‖v2(s)‖p−1
pN
a0

)ds

�
∫ t

2

0

e−
κ(t−s)

α ‖v1(s)− v2(s)‖
a0
pb0
N
b0

‖v1(s)− v2(s)‖
1− a0

pb0∞

× (‖v1‖
(p−1)a0

pb0
N
b0

‖v1(s)‖
p−1− (p−1)a0

pb0∞ + ‖v2(s)‖
(p−1)a0

pb0
N
b0

‖v2(s)‖
p−1− (p−1)a0

pb0∞ )ds

�
∫ t

2

0

e−
κ(t−s)

α (1 + s)−1ds(‖(u1, v1)‖p−1
X + ‖(u2, v2)‖p−1

X )‖(u1 − u2, v1 − v2)‖X
� C(‖(u1, v1)‖p−1

X + ‖(u2, v2)‖p−1
X )‖(u1 − u2, v1 − v2)‖X , (3.12)

and similarly,∫ t

t
2

‖vp1(s)− vp2(s)‖ N
a0

ds � C(‖(u1, v1)‖p−1
X + ‖(u2, v2)‖p−1

X )‖(u1 − u2, v1 − v2)‖X . (3.13)

In the same way, we also have∫ t
2

0

(1 + t− s)−
(δ−1)a0

2 ‖vp1(s)− vp2(s)‖ N
δa0

ds

� C(1 + t)−
(δ−1)a0

2

∫ t
2

0

(1 + s)−
b0p−δa0

2 ds(‖(u1, v1)‖p−1
X + ‖(u2, v2)‖p−1

X )‖(u1 − u2, v1 − v2)‖X
� C(‖(u1, v1)‖p−1

X + ‖(u2, v2)‖p−1
X )‖(u1 − u2, v1 − v2)‖X . (3.14)

Combine (3.12)–(3.14) to conclude

‖M1[u1]−M1[u2]‖ N
a0

� C(‖(u1, v1)‖p−1
X + ‖(u2, v2)‖p−1

X )‖(u1 − u2, v1 − v2)‖X , (3.15)

and similarly,

‖M2[v1]−M2[v2]‖ N
b0

� C(‖(u1, v1)‖q−1
X + ‖(u2, v2)‖q−1

X )‖(u1 − u2, v1 − v2)‖X . (3.16)

Moreover, it can be obtained that

‖M1[u1]−M1[u2]‖∞ � C(1 + t)−
a0
2 (‖(u1, v1)‖p−1

X + ‖(u2, v2)‖p−1
X )‖(u1 − u2, v1 − v2)‖X , (3.17)

‖M2[v1]−M2[v2]‖∞ � C(1 + t)−
b0
2 (‖(u1, v1)‖q−1

X + ‖(u2, v2)‖q−1
X )‖(u1 − u2, v1 − v2)‖X . (3.18)
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We conclude from (3.15)–(3.18) that M is a strict contraction in X ∩ Bε provided ε is small enough,

and so, there is a unique global solution to (1.1).

The estimate (3.3) follows by interpolation.

Proof of Theorem 3.1. First, prove the global existence in the part (i). Since a > a0, b > b0, u0(x) =

λψ(x), v0(x) = μϕ(x) with ψ(x) ∈ I
a and ϕ(x) ∈ I

b, there exist λ0 > 0 and μ0 > 0 such that (3.2) holds

provided max{λ−λ0, μ−μ0} � 0. The global existence of solutions to (1.1) comes from Proposition 3.2.

Next, we deal with the blow-up of solutions under the mentioned large initial data. Suppose for

contradiction that there is a nontrivial global solution (u, v) to (1.1), and treat the large u0 only. It

follows from (2.2) and (2.8) that

Ip +

∫
BR

2

u0dx � C2(2 + α)RN−N+2
q J

1
q
q + C2R

−2

∫
BR\BR

2

u0dx,

provided R large enough, where and throughout this section C2 > 0 denotes constants independent of α,

R and λ. For simplicity, assume u0 ∼ λ|x|−a with λ > 1, |x| → ∞. Thus, for sufficiently large R,

Ip +
1

2

∫
BR

2

u0dx � C2(2 + α)RN−N+2
q J

1
q
q + C2R

−2

∫
BR\BR

2

u0dx− 1

2

∫
BR

2
\BR

4

u0dx

� C2(2 + α)RN−N+2
q J

1
q
q + C2R

N−2−a − C2R
N−a

� C2(2 + α)RN−N+2
q J

1
q
q ,

and hence, Ip +
1
2

∫
BR

2

u0dx � C2(2 + α)RN−N+2
q J

1
q
q . Together with (2.9), we get

Ip +
1

2

∫
BR

2

u0dx � C2(2 + α)1+
1
qRN− 2

q−N+2
pq I

1
pq
p . (3.19)

By Young’s inequality,

Ip +
1

2

∫
BR

2

u0dx � 1

2
Ip + C2(2 + α)

p(q+1)
pq−1 RN− 2(p+1)

pq−1 . (3.20)

Due to
∫
BR

2

u0dx �
∫
BR

2
\BR

4

u0dx � C2λR
N−a, we conclude from (3.20) that

Ip + C2λR
N−a � C2(2 + α)

p(q+1)
pq−1 RN− 2(p+1)

pq−1 . (3.21)

If 0 < a < a0 = 2(p+1)
pq−1 , (3.21) with R large enough leads to a contradiction. If a > a0 = 2(p+1)

pq−1 , another

contradiction comes from (3.21) provided λ > λ1(α) =: 1 + C2(2 + α)
p(q+1)
pq−1 Ra0−a.

Remark 3.3. Theorem 3.1 means that in the co-existence region of global and non-global solutions,

the space-decays of the initial data in the item (ii) are slow enough to yield a finite time blow-up of

solutions. Differently, for realizing the blow-up of solutions in the case (i), the coefficients associated with

the initial data should be large with e.g. λ > λ1(α) to overcome the additional dispersal mechanism due

to the third order term, since λ1(α) is obviously increasing with α.

4 Global profile of solutions

In this section, we further investigate time-decay profiles for the global solutions to (1.1). This is stated

in the following theorem:

Theorem 4.1. Assume pq > (pq)c. Let (u, v) be a solution to (1.1) with u0(x) = λψ(x), v0(x) = μϕ(x),

ψ(x) ∈ I
a, and ϕ(x) ∈ I

b.



564 Yang J G et al. Sci China Math March 2014 Vol. 57 No. 3

(i) If a0 < a < min{N, bp− 2} and b0 < b < min{N, aq − 2}, with a0 and b0 defined in (3.1), λ and μ

small enough, lim|x|→∞(1 + |x|)au0(x) = A > 0, lim|x|→∞(1 + |x|)bv0(x) = B > 0, then

lim
t→∞ t

a
2 ‖u(·, t)−AG(x, t) ∗ (1 + |x|)−a‖∞ = 0, (4.1)

lim
t→∞ t

b
2 ‖v(·, t)−BG(x, t) ∗ (1 + |x|)−b‖∞ = 0. (4.2)

(ii) If a0 < a < min{N,Np− 2}, N < b < aq− 2, with λ and μ small enough, lim|x|→∞(1+ |x|)au0(x)
= A > 0, then (u, v) satisfies (4.1) and

lim
t→∞ t

N
2 ‖v(·, t)−M0G(·, t)‖∞ = 0, (4.3)

with

M0 = lim
t→∞ ‖v(·, t)‖1 = ‖v0‖1 +

∫ ∞

0

‖uq(s)‖1ds.

(iii) If a, b > N , p, q > 1 + 2
N , with λ and μ small enough, then (u, v) satisfies (4.3) and

lim
t→∞ t

N
2 ‖u(·, t)−N0G(·, t)‖∞ = 0, (4.4)

with

N0 = lim
t→∞ ‖u(·, t)‖1 = ‖u0‖1 +

∫ ∞

0

‖vp(s)‖1ds.

To prove the theorem we need more precise time-decay rates for the global solutions, namely, the

following lemma.

Lemma 4.2. Assume the conditions of Theorem 4.1 for the items (i)–(iii) are satisfied respectively.

(i) It is true with γ ∈ (max{ 2+a
pb ,

2+b
qa }, 1) that

‖u‖ N
γa
, ‖v‖ N

γb
� C, ‖u‖∞ � C(1 + t)−

γa
2 , ‖v‖∞ � C(1 + t)−

γb
2 . (4.5)

(ii) It is true with γ1 ∈ (max{ 2+a
pN , 2+N

qa }, 1) that

‖u‖ N
γ1a

, ‖v‖1 � C, ‖u‖∞ � C(1 + t)−
γ1a
2 , ‖v‖∞ � C(1 + t)−

N
2 . (4.6)

(iii) It holds that

‖u‖1, ‖v‖1 � C, ‖u‖∞ � C(1 + t)−
N
2 , ‖v‖∞ � C(1 + t)−

N
2 . (4.7)

Proof. Similarly to the proof of Proposition 3.2, assume p, q > 1. Under the conditions of the case (i),

set

Y = C([0,∞);C(RN ) ∩ L N
γa (RN ) ∩ L∞(RN ))× C([0,∞);C(RN ) ∩ L N

γb (RN ) ∩ L∞(RN )),

with

‖(u, v)‖Y = sup
t∈[0,∞)

{‖u(t)‖ N
γa

+ ‖v(t)‖ N
γb

+ (1 + t)
γa
2 ‖u(t)‖∞ + (1 + t)

γb
2 ‖v(t)‖∞}. (4.8)

Set (u, v) ∈ Y ∩Bε1 with Bε1 = {(u, v) | ‖(u, v)‖Y � ε1}, and ε1 > 0 to be determined. By (3.4), (3.6),

and (4.8), with pb > a+ 2 and max{ 2+a
pb ,

2+b
qa } < γ < 1, we have

‖M1[u]‖∞ � ‖G(t)u0‖∞ +

∫ t

0

‖G(t− s)Bvp(s)‖∞ds

� C(1 + t)−
γa
2 (‖u0‖∞ + ‖u0‖ N

γa
) + C

∫ t
2

0

e−
κ(t−s)

α ‖v(s)‖p∞ds

+ C

∫ t
2

0

(1 + t− s)−
γa
2 ‖vp(s)‖ N

γa
ds+ C

∫ t

t
2

‖v(s)‖p∞ds
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� C(1 + t)−
γa
2 (‖u0‖∞ + ‖u0‖ N

γa
) + C

∫ t
2

0

e−
κ(t−s)

α (1 + s)−
γbp
2 ds‖(u, v)‖pY

+ C(1 + t)−
γa
2

∫ t
2

0

‖v(s)‖p− a
b∞ ‖v(s)‖ a

b
N
γb

ds+ C

∫ t

t
2

(1 + s)−
γbp
2 ds‖(u, v)‖pY

� C(1 + t)−
γa
2 (‖u0‖∞ + ‖u0‖ N

γa
) + Ce−

κt
2α

∫ t
2

0

(1 + s)−
γbp
2 ds‖(u, v)‖pY

+ C(1 + t)−
γa
2

∫ t
2

0

(1 + s)−
γ(pb−a)

2 ds‖(u, v)‖pY + C(1 + t)−
γbp
2 +1‖(u, v)‖pY ,

which indicates that

‖M1[u]‖∞ � C(1 + t)−
γa
2 (‖u0‖∞ + ‖u0‖ N

γa
) + C(1 + t)−

γa
2 ‖(u, v)‖pY ,

and similarly,

‖M2[v]‖∞ � C(1 + t)−
γb
2 (‖v0‖∞ + ‖v0‖ N

γb
) + C(1 + t)−

γb
2 ‖(u, v)‖qY ,

‖M1[u]‖ N
γa

� C‖u0‖ N
γa

+ C‖(u, v)‖pY , ‖M2[v]‖ N
γb

� C‖v0‖ N
γb

+ C‖(u, v)‖qY .

In addition, we can also have the estimates like (3.15)–(3.18). By similar arguments as in the proof of

Proposition 3.2, we can prove that for ε1 small enough and ‖u0‖∞ + ‖v0‖∞ + ‖u0‖ N
γa

+ ‖v0‖ N
γb

small

enough, M : Y ∩Bε1 → Y ∩Bε1 is a contraction, and the global existence of solutions with the estimates

in (4.5) follows immediately.

The case (ii) can be treated in the same way. The proof for (iii) is similar to [5, Theorem 3.4]. We

omit the details.

Lemma 4.2 enables us to fix the time-decay profiles for the global solutions.

Proof of Theorem 4.1. First treat the case (i) with a, b < N . By the representation (1.5),

‖u−AG(x, t) ∗ (1 + |x|)−a‖∞ � ‖G(t)u0 −AG(x, t) ∗ (1 + |x|)−a‖∞ +

∫ t

0

‖G(t− s)Bvp(s)‖∞ds

=: K̃1 + K̃2.

It follows from (1.6) with (3.4)–(3.6) that

K̃1 � ‖G(x, t) ∗ u0 −AG(x, t) ∗ (1 + |x|)−a‖∞ + e−
t
α

N∑
i=0

ti

i!αi
‖Biu0‖∞ + ‖R(t)u0‖∞

� ‖G(x, t) ∗ u0 −AG(x, t) ∗ (1 + |x|)−a‖∞ + Ce−
t
α (1 + t)N‖u0‖∞ + C(1 + t)−

(γa+2)
2 ‖u0‖ N

γa
,

with γ ∈ (max{ 2+a
pb ,

2+b
qa ,

a−2
a }, 1). In addition, we know by [23] that limt→∞ t

a
2 ‖G(x, t) ∗ u0 − AG(x, t)

∗ (1 + |x|)−a‖∞ = 0. Consequently, limt→∞ t
a
2 K̃1 = 0. On the other hand, choosing δ1 > 1 with

γpb− δ1a > 2 and δ1a < N , we have by (3.4), (3.6) and (4.5) that

K̃2 � C

∫ t
2

0

e−
κ(t−s)

α ‖v(s)‖p∞ds+ C

∫ t
2

0

(1 + t− s)−
δ1a
2 ‖vp(s)‖ N

δ1a
ds+

∫ t

t
2

‖v(s)‖p∞ds

� C

∫ t
2

0

e−
κ(t−s)

α (1 + s)−
γbp
2 ds‖(u, v)‖pY + C

∫ t
2

0

(1 + t− s)−
δ1a
2 ‖v(s)‖p−

δ1a
γb∞ ‖v(s)‖

δ1a
γb
N
γb

ds

+

∫ t

t
2

(1 + s)−
γbp
2 ds‖(u, v)‖pY

� C(1 + t)−
δ1a

2 ‖(u, v)‖pY + C

∫ t
2

0

(1 + t− s)−
δ1a

2 (1 + s)−
γpb−δ1a

2 ds‖(u, v)‖pY
+ C(1 + t)−

δ1a
2 ‖(u, v)‖pY
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� C(1 + t)−
δ1a
2 ‖(u, v)‖pY + C(1 + t)−

δ1a
2 ds‖(u, v)‖pY + C(1 + t)−

δ1a
2 ‖(u, v)‖pY ,

which indicates limt→∞ t
a
2 K̃2 = 0. This proves the part (i).

In what follows, we prove the part (ii) with a < N < b by using the idea in [26]. We first assert that

limt→∞ ‖v(x, t)‖1 exists. By (1.5),∣∣∣∣‖v(x, t)‖1 − ‖v0‖1 −
∫ ∞

0

‖Buq(s)‖1ds
∣∣∣∣

� |‖G(t)v0‖1 − ‖v0‖1|+
∫ t

0

|‖G(t− s)Buq(s)‖1 − ‖Buq(s)‖1|ds+
∫ ∞

t

‖Buq(s)‖1ds

=: L̃1 + L̃2 + L̃3. (4.9)

Due to (1.6) and ‖G(x, t) ∗ v0‖1 = ‖v0‖1, we obtain

L̃1 � |‖G(x, t) ∗ v0‖1 − ‖v0‖1|+ Ce−
t
α (1 + t)N‖v0‖1 + C(1 + t)−1‖v0‖1 � C(1 + t)−1‖v0‖1. (4.10)

Similarly,

‖G(t− s)Buq(s)− Buq(s)‖1 � C(1 + t− s)−1‖Buq(s)‖1.
Together with (3.4), (4.6) and γ1aq > N + 2, we have

L̃2 �
∫ t

2

0

(1 + t− s)−1‖Buq(s)‖1ds+
∫ t

t
2

‖Buq(s)‖1ds

� C(1 + t)−1

∫ t
2

0

‖u(s)‖q−
N

γ1a
∞ ‖u(s)‖

N
γ1a

N
γ1a

ds+

∫ t

t
2

‖u(s)‖q−
N

γ1a
∞ ‖u(s)‖

N
γ1a

N
γ1a

ds

� C(1 + t)−1

∫ t
2

0

(1 + s)−
γ1aq−N

2 ds+

∫ t

t
2

(1 + s)−
γ1aq−N

2 ds

� C(1 + t)−1 + C(1 + t)1−
γ1aq−N

2 , (4.11)

L̃3 �
∫ ∞

t

(1 + s)−
γ1aq−N

2 ds � C(1 + t)−
γ1aq−N

2 +1. (4.12)

It follows from (4.9)–(4.12) that

lim
t→∞

∣∣∣∣‖v(t)‖1 − ‖v0‖1 −
∫ ∞

0

‖Buq(s)‖1ds
∣∣∣∣ = 0,

which together with ‖Bφ‖1 = ‖φ‖1 for arbitrary φ ∈ L1(RN ) leads to

lim
t→∞ ‖v(t)‖1 = ‖v0‖1 +

∫ ∞

0

‖uq(s)‖1ds :=M0.

Write the second equation of (1.5) as v(x, t) = G(t− τ)v(τ) +
∫ t

τ G(t− s)Buq(s)ds. Then

‖v(·, t)−M0G(·, t)‖∞ � ‖v(·, t)− G(t− τ)v(τ)‖∞ + ‖G(t− τ)v(τ) − ‖v(τ)‖1G(·, t− τ)‖∞
+ ‖‖v(τ)‖1G(·, t− τ)− ‖v(τ)‖1G(·, t)‖∞ + ‖(‖v(τ)‖1 −M0)G(·, t)‖∞

�
∫ t

τ

‖G(t− s)Buq(s)‖∞ds+ ‖G(t− τ)v(τ) − ‖v(τ)‖1G(·, t− τ)‖∞

+ C(1 + t)−
N
2 −1‖v(τ)‖1 + C(1 + t)−

N
2 |‖v(τ)‖1 −M0|.

By using (3.4) and (3.6), we have∫ t

τ

‖G(t− s)Buq(s)‖∞ds
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� C

∫ t
2

τ

e−
κ(t−s)

α ‖Buq(s)‖∞ds+ C

∫ t
2

τ

(1 + t− s)−
N
2 ‖uq(s)‖1ds+ C

∫ t

t
2

‖uq(s)‖∞ds

� C(1 + t)−
γ1aq

2 +1 + C(1 + t)−
N
2

∫ t

τ

(1 + s)−
γ1aq−N

2 ds. (4.13)

In addition, by (1.6),

‖G(t− τ)v(τ) − ‖v(τ)‖1G(·, t− τ)‖∞ � ‖G(·, t− τ) ∗ v(τ) − ‖v(τ)‖1G(·, t− τ)‖∞
+ e−

κt
α (1 + t)N‖v(τ)‖∞ + (1 + t)−1−N

2 ‖v(τ)‖1.

It is well known that limt→∞ t
N
2 ‖G(x, t− τ) ∗ v(τ) − ‖v(τ)‖1G(·, t− τ)‖∞ = 0, and thus

lim
t→∞ t

N
2 ‖G(t− τ)v(τ) − ‖v(τ)‖1G(x, t− τ)‖∞ = 0. (4.14)

By (4.13) and (4.14) with γ1aq > N + 2, we have

lim
t→∞ t

N
2 ‖v(·, t)−M0G(·, t)‖∞ � C

∫ ∞

τ

(1 + s)−
γ1aq−N

2 ds+ C|‖v(τ)‖1 −M0|.

Letting τ → ∞, we prove (4.3). The proof for (4.1) is similar to that in (i).

The case (iii) for a, b > N can be proved via the arguments for (4.3) in (ii).

Remark 4.3. It is pointed out that the assumptions in Theorem 4.1 are optimal. Consider (iii) with

L1 initial data as an example with a, b > N . If p, q > 1 + 2
N is not satisfied, e.g., 1 < q < 1 + 2

N

with pq > (pq)c, then for u0 = v0 = ε(1 + |x|)−σ with σ ∈ (N, N+2
q ) and ε small enough, it is known by

constructing a subsolution (similar to [27]) that the unique global solution to (1.1) ensured by Theorem 3.1

satisfies u � C(1 + t+ |x|2)− σ
2 . Hence, by (1.6) and (3.5), it holds for t large enough that

‖v(·, t)‖∞ �
∫ t

t
2

∫
RN

G(y, t− s)uq(y, s)dyds−
∫ t

t
2

(1 + t)−
N
2 −1‖uq(s)‖1ds

� C

∫ t

t
2

∫
RN

e−
|y|2
4 (1 + s+ (t− s)|y|2)− σq

2 dyds−
∫ t

t
2

(1 + s)−
N
2 −1‖u(s)‖1ds

� C

∫ t

0

∫
RN

e−
|y|2
4 (1 + s)−

σq
2 (1 + |y|2)− σq

2 dyds− C(1 + t)−
N
2

� C(1 + t)−
σq
2 +1 − C(1 + t)−

N
2


 C(1 + t)−
N
2 ,

which destroys (4.3), since ‖G(·, t)‖∞ = O(t−N/2) there.
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