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1 Introduction

Showing a lot of advantages in modeling anomalous diffusion processes found ubiquitously in the natural

world, fractional partial differential equations (FPDEs) attract much attention from a variety of fields

(see e.g., [5, 18]). Generally, FPDEs can be divided into three types: time fractional partial differential

equations, space fractional partial differential equations and space-time fractional partial differential

equations. This paper, based on nonuniform meshes, numerically solves the following linear time fractional

partial differential equation,

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
= f(x, t), x ∈ I := (0, 1), t ∈ J := (0, T ), (1.1)

subject to the initial and boundary conditions:

u(x, 0) = u0(x), x ∈ I, (1.2)

u(0, t) = u(1, t) = 0, t ∈ J, (1.3)

where 0 < α < 1, f and u0 are given smooth functions, ∂αu(x,t)
∂tα is the Caputo fractional derivative defined

by
∂αu(x, t)

∂tα
=

1

Γ(1− α)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)α
, (1.4)
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and Γ(z) =
∫∞
0

e−ttz−1dt is the gamma function. The problem has been used to model the sub-diffusion

processes with the asymptotic behavior of their mean square displacement as a function of time

〈x2(t)〉 ∼ tα (1.5)

(see [18]).

Many scholars have been making efforts on numerical solutions to problem (1.1)–(1.3) (see [9, 12, 13,

17, 19]). Among them, Lin and Xu [13] studied finite difference methods for time and spectral methods

for space. In their work, the first-order derivative in the integrand of Caputo definition is discretised by

a finite difference quotient, and the following form for approximation of the time fractional derivative

operator, after calculating the coefficients and re-arranging the indices, is derived:

∂αu(x, t)

∂tα
≈ 1

Γ(2 − α)

k∑
j=0

bj
u(x, tk+1−j)− u(x, tk−1)

(Δt)α
.

Li and Xu [12] studied Galerkin spectral methods where Riemann-Liouville definition is used to de-

fine the time fractional derivatives. McLean and Mustapha [17], Mustapha and McLean [19] developed

discontinuous Galerkin time-stepping methods for time FPDEs.

Another type of time FPDEs that should be mentioned here is

ut =
∂αuxx

∂tα
+ f(x, t),

which is a simple form of Fokker-Planck equation and can be converted into (1.1) under certain conditions

(see [12]). This equation is widely studied by scholars as well. Deng [11] used predictor-corrector approach

originally developed for fractional ODEs (see e.g., [3, 4, 15]). The idea of his approach is that of trans-

forming the equation into a Volterra integral equation with the use of Riemann-Liouville integrator and

then discretizing the Volterra integral equation with finite difference methods. Chen et al. [2] designed an

implicit finite difference scheme for time fractional derivatives and analyzed the stability and convergence

using discrete Fourier methods, via the relationship between Grünwald-Letnikov and Riemann-Liouville

fractional derivatives. Zhuang et al. [21] integrated the Fokker-Planck equation over temporal mesh and

then used quadrature to calculate the integrals where finite difference methods are used to discretize the

space. Zhuang et al. [22] studied a nonlinear Fokker-Planck equation, using a decoupling technique of

decomposing the equation into a system of three equations and then extending the numerical schemes

in [21] to the system.

The motivation of this paper is to simulate the blow-up solutions occurring in some nonlinear fractional

partial differential equations (see [10]). Since the blowup solution u(x, t) has sharp variations both in time

and in space when t approaches to the blow-up time, we need to design stable and convergent numerical

schemes based on nonuniform meshes in time and moving meshes in space. Yet moving mesh methods are

mostly studied for integer-order partial differential equations and rarely for fractional partial differential

equations (most references on convergence analysis and applications of moving mesh methods are included

in the recent book by Huang and Russell [7]), and few literatures, to the best of our knowledge, concern

the numerical solutions to time FPDEs based on nonuniform meshes, except for Ma and Jiang’s work [16]

in which they, with no analysis of the stability and convergence, developed moving collocation methods

for simulating blow-up solutions to nonlinear time fractional partial differential equations. We design a

moving finite element method for problem (1.1)–(1.3) based on nonuniform meshes in time and moving

meshes in space in the present paper. In our method, the finite difference method is used to discretise

the time derivatives, and we obtain the convergence of O(Δt2−α + hr) when the finite element space is

the one consisting of the 3rd-order piecewise polynomials. The major contribution is as follows:

(1) Develop a technique, simple and applicable for the case with nonuniform time grids, to analyze the

stability and convergence of the finite difference method used to discretize the time derivative in (1.1).

(2) Present a moving mesh method for the linear time FPDEs with theoretical analysis of its stability

and convergence, and furthermore provide a way to simulate the blow-up solutions to the nonlinear time

FPDEs with f ≡ up, p > 1.
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In this paper, we assume the solution u is sufficiently smooth, and use the following norms: ‖v‖ =

‖v‖L2(I) and ‖v‖r = ‖v‖Hr(I). C denotes a generic positive constant that does not depend on mesh but

on T, α and the smoothness of u. The rest of this paper is organized as follows: in Section 2, the time

derivative in (1.1) is estimated with the use of a finite difference method; in Section 3, a moving mesh

finite method is presented and its stability and convergence are analyzed; in Section 4, numerical tests

are carried out to support our theoretical findings, and the blow-up solutions for the nonlinear FPDEs

are simulated by the method; in Section 5, conclusions are made.

2 Discretization of time fractional derivative operators

Define a time mesh

0 = t0 < t1 < · · · < tL = T,

and let

tn−1/2 =
tn−1 + tn

2
, Δtn = tn − tn−1, Δt = max

1�n�L
Δtn, n = 0, 1, . . . , L.

The time fractional derivative ∂αu(x,tn)
∂αt can be formulated by

∂αu(x, tn)

∂tα
=

1

Γ(1− α)

n∑
k=1

∫ tk

tk−1

∂u(x, s)

∂s

ds

(tn − s)α

=
1

Γ(1− α)

n∑
k=1

∂

∂t
u(x, tk−1/2)

∫ tk

tk−1

ds

(tn − s)α
+ γ

(n)
1 (x)

=
1

Γ(1− α)

n∑
k=1

b
(n)
k Δuk(x) + γ

(n)
1 (x) +O(Δt2), (2.1)

where

b
(n)
k =

1

Δtk

∫ tk

tk−1

ds

(tn − s)α
, Δuk(x) = u(x, tk)− u(x, tk−1), 1 � k � n, (2.2)

and

γ
(n)
1 (x) =

1

Γ(1− α)

n∑
k=1

∫ tk

tk−1

(
∂u(x, s)

∂s
− ∂

∂t
u(x, tk−1/2)

)
ds

(tn − s)α
. (2.3)

In the following we will estimate b
(n)
k and γ

(n)
1 .

Lemma 2.1. We have the following estimations for b
(n)
k ,

b
(n)
k−1 < b

(n)
k , k = 2, . . . , n, n = 1, . . . , L, (2.4)

b
(n)
k < b

(n−1)
k , k = 1, . . . , n, n = 2, . . . , L, (2.5)

b
(n)
1 > t−α

n , n = 1, . . . , L. (2.6)

Proof. The proof is straightforward by noting that b
(n)
k is just the average of (tn − s)−α on [tk−1, tk).

To estimate γ
(n)
1 , we need the following lemma.

Lemma 2.2. There exists a positive C depending on α such that∣∣∣∣ ∫ T

0

s1−αds−
L∑

k=1

Δtk
2

[t1−α
k−1 + t1−α

k ]

∣∣∣∣ � CΔt2−α. (2.7)

Proof. Since Δt = max1�n�L Δtn, there must be a mesh point ti such that

2Δt � ti < 3Δt. (2.8)
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Write ∫ T

0

s1−αds−
L∑

k=1

Δtk
2

[t1−α
k−1 + t1−α

k ] ≡ TI + TII

with

TI :=

∫ ti

0

s1−αds−
i∑

k=1

Δtk
2

[t1−α
k−1 + t1−α

k ]

and

TII :=
L∑

k=i+1

(∫ tk

tk−1

s1−αds− Δtk
2

[t1−α
k−1 + t1−α

k ]

)
.

Using (2.8), we can derive

|TI | � CΔt2−α. (2.9)

Note that Δtk
2 [t1−α

k−1 + t1−α
k ] is just the trapezoidal rule for the integral

∫ tk
tk−1

s1−αds. Using

d2

ds2
(s1−α) = −(1− α)αs−1−α

and the standard error estimation for trapezoidal rule, we have

|TII | �
L∑

k=i+1

Δt3k
12

max
s∈[tk−1,tk]

∣∣∣∣ d2ds2
(s1−α)

∣∣∣∣
� C

L∑
k=i+1

Δt3k
t1+α
k−1

� CΔt2
L∑

k=i+1

Δtk

t1+α
k−1

. (2.10)

For s ∈ [tk−1, tk], k = i+ 1, . . . , L, we have

g(s) :=
1

(s−Δt)1+α
� 1

(tk −Δt)1+α
� 1

t1+α
k−1

. (2.11)

Combining (2.11) with (2.10) gives

|TII | � CΔt2
L∑

k=i+1

∫ tk

tk−1

g(s)ds � CΔt2
∫ T

2Δt

g(s)ds

=
C

α
Δt2(Δt−α − (T −Δt)−α) � CΔt2−α. (2.12)

By (2.9) and (2.12), we obtain the estimation∣∣∣∣ ∫ T

0

s1−αds−
L∑

k=1

Δtk
2

[t1−α
k−1 + t1−α

k ]

∣∣∣∣ � CΔt2−α.

Thus the proof of this lemma is complete.

Lemma 2.3. Let γ
(n)
1 (x) be given by (2.3). Then we have

|γ(n)
1 (x)| � CΔt2−α. (2.13)

Proof. Using Taylor’s theorem, we can verify that

|γ(n)
1 (x)| � C

∣∣∣∣ n∑
k=1

∫ tk

tk−1

tk−1/2 − s

(tn − s)α
ds

∣∣∣∣+O(Δt2)
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� C

∣∣∣∣ n∑
k=1

∫ tk

tk−1

tk−1 + tk − 2s

(tn − s)α
ds

∣∣∣∣+O(Δt2).

We estimate the first term on the right-hand side in the above equation as follows:

n∑
k=1

∫ tk

tk−1

tk−1 + tk − 2s

(tn − s)α
ds = −

n∑
k=1

tk−1 + tk
1− α

[(tn − tk)
1−α − (tn − tk−1)

1−α]

+

n∑
k=1

2

1− α
[tk(tn − tk)

1−α − tk−1(tn − tk−1)
1−α]

− 2

1− α

∫ tn

0

(tn − s)1−αds

=
2

1− α

n∑
k=1

Δtk
2

[(tn − tk)
1−α + (tn − tk−1)

1−α]

− 2

1− α

∫ tn

0

(tn − s)1−αds.

Noting that
n∑

k=1

Δtk
2

[(tn − tk)
1−α + (tn − tk−1)

1−α]

is just the trapezoidal rule for ∫ tn

0

(tn − s)1−αds,

we have, by Lemma 2.2, that ∣∣∣∣ n∑
k=1

∫ tk

tk−1

tk−1 + tk − 2s

(tn − s)α
ds

∣∣∣∣ � CΔt2−α,

and thereby (2.13) is obtained.

The following two lemmas are also crucial to the analysis of the stability and convergence of moving

finite element methods.

Lemma 2.4. Let M be an integer satisfying 1 � M � L, and μ be a positive number. If a series of

positives εn, n = 0, 1, . . . ,M , satisfy that

b(n)n εn �
n∑

k=2

(b
(n)
k − b

(n)
k−1)εk−1 + b

(n)
1 μ, n = 1, . . . ,M, (2.14)

we have

εn � μ, n = 1, . . . ,M. (2.15)

Proof. We prove the lemma by induction. It is direct to verify that ε1 � μ. Suppose that (2.15) holds

for 1 � n � j − 1 with some j � M . By (2.14) we have

b
(j)
j εj =

j∑
k=2

(b
(j)
k − b

(j)
k−1)μ+ b

(j)
1 μ � b

(j)
j μ.

Therefore we obtain εj � μ.

Lemma 2.5. Suppose that positives εn, n = 0, 1, . . . , L, satisfy

b(n)n εn �
n∑

k=2

(b
(n)
k − b

(n)
k−1)εk−1 + b

(n)
1 μ+ κ, n = 1, . . . , L, (2.16)

where κ, μ are positives. Then we have

εM � μ+ κ/b
(M)
1 , M = 1, . . . , L. (2.17)
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Proof. For any integer M satisfying 1 � M � L, by (2.5) and (2.16), we have

b(n)n εn �
n∑

k=2

(b
(n)
k − b

(n)
k−1)εk−1 + b

(n)
1 (μ+ κ/b

(M)
1 ), n = 1, . . . ,M. (2.18)

By Lemma 2.4, we obtain (2.17).

3 Moving finite element methods

Let N be a positive integer, and define time-dependent spatial grids at time tn (n = 0, 1, . . .) by

0 = x
(n)
0 < x

(n)
1 < · · · < x

(n)
N = 1.

Let

h(n) := max
1�k�N

(x
(n)
k − x

(n)
k−1), hn := max

0�m�n
h(m).

Assume the mesh moving speed satisfies

|x(n)
i − x

(n−1)
i | � CΔtn, i = 1, . . . , N − 1, n = 1, . . . , L. (3.1)

Denote a piecewise polynomial space

V (n) := {v ∈ C(I) : v|
[x

(n)
k ,x

(n)
k+1]

∈ Pr, k = 0, 1, . . . , N − 1},

where Pr denotes the set of piecewise polynomials of degree not exceeding r. Insert in [x
(n)
k , x

(n)
k+1] by

r − 1 points

x
(n)
k+j/r = x

(n)
k +

j

r
(x

(n)
k+1 − x

(n)
k ), j = 1, . . . , r − 1.

Define an interpolant operator

Π(n)
r : C(I) → V (n),

with Π
(n)
r |

[x
(n)
k ,x

(n)
k+1]

being an r-th order polynomial interpolant on

[x
(n)
k , x

(n)
k+1], k = 0, 1, . . . , N − 1,

associated with local grid points x
(n)
k+j/r , j = 0, 1, . . . , r.

The weak form of (1.1)–(1.3) is given by(
∂α

∂tα
u, v

)
+ a(u, v) = (f, v), ∀ v ∈ H1

0 (I), (3.2)

where (·, ·) is the inner product in L2(I) and

a(u, v) =

∫
I

uxvx dx.

The moving finite element method is defined by: Find U (n)(x) ∈ V (n), n = 1, 2, . . . , L, such that

b(n)n (U (n)(x), v) + Γ(1− α)a(U (n)(x), v) =

n∑
k=2

(b
(n)
k − b

(n)
k−1)(Ũ

(k−1)(x), v)

+ b
(n)
1 (Ũ (0)(x), v) + Γ(1− α)(fn, v), ∀ v ∈ V (n), (3.3)

where fn := f(x, tn), b
(n)
k is given by (2.2), and Ũ (k−1) ∈ V (n) satisfies

(Ũ (k−1)(x), v) = (U (k−1), v), ∀ v ∈ V (n), k = 1, . . . , n. (3.4)
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Due to the L2 projection (3.4), scheme (3.3) is equivalent to

b(n)n (U (n)(x), v) + Γ(1− α)a(U (n)(x), v) =

n∑
k=2

(b
(n)
k − b

(n)
k−1)(U

(k−1)(x), v)

+ b
(n)
1 (U (0)(x), v) + Γ(1− α)(fn, v), ∀ v ∈ V (n). (3.5)

Now we present the truncation error formula for scheme (3.5). Define

γ
(n)
2 (x) :=

1

Γ(1− α)

n∑
k=1

b
(n)
k (Δuk(x)−Π(k)

r Δuk(x))

− 1

Γ(1− α)

n∑
k=1

b
(n)
k [Π(k)

r u(x, tk−1)−Π(k−1)
r u(x, tk−1)], (3.6)

and

γ
(n)
3 := γ

(n)
1 + γ

(n)
2 +O(Δt2), (3.7)

γ
(n)
4 (x) := u(x, tn)− u(n)(x), (3.8)

where Δuk(x) := u(x, tk)− u(x, tk−1) and

u(n)(x) = Π(n)
r u(x, tn). (3.9)

Then we have the following lemma.

Lemma 3.1. Let γ
(n)
1 , γ

(n)
2 , γ

(n)
3 and γ

(n)
4 be given by (2.3), (3.6), (3.7) and (3.8), respectively. Then

the truncation error formula for scheme (3.5) is given by

b(n)n (u(n)(x), v) + Γ(1 − α)a(u(n)(x), v)

=
n∑

k=2

(b
(n)
k − b

(n)
k−1)(u

(k−1)(x), v)

+ b
(n)
1 (u(0)(x), v) + Γ(1− α)[(fn, v)− (γ

(n)
3 (x), v) − a(γ

(n)
4 (x), v)], ∀ v ∈ H1

0 (I), (3.10)

with estimation (2.13) and

|γ(n)
2 (x)| � C((hn)

r +Δt2−α), (3.11)

|γ(n)
3 (x)| � C((hn)

r +Δt2−α), (3.12)

|γ(n)
4 (x)|H1

0 (I)
� C((hn)

r +Δt2−α), (3.13)

where hn := max0�m�nh
(m).

Proof. From the standard interpolation theory, it is easy to know that

Δuk(x) = Π(n)
r Δuk(x) +O(Δtn(h

(n))r+1). (3.14)

Using the condition on the mesh speed (3.1), we can prove that

Π(n)
r u(x, tn−1)−Π(n−1)

r u(x, tn−1) = O(Δtn(h
(n))r). (3.15)

By (3.14) and (3.15) we obtain (3.11), and by (2.13) and (3.11) we derive (3.12). Again from the standard

interpolation theory, we obtain the estimation (3.13). Using (3.6), we can re-write (2.1) as

∂αu(x, tn)

∂tα
=

1

Γ(1− α)

n∑
k=1

b
(n)
k [u(k)(x) − u(k−1)(x)] + γ

(n)
2 (x) + γ

(n)
1 (x) +O(Δt2)
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=
1

Γ(1− α)

(
b(n)n u(n)(x) −

n∑
k=2

(b
(n)
k − b

(n)
k−1)u

(k−1)(x) − b
(n)
1 u(0)(x)

)
+ γ

(n)
2 (x) + γ

(n)
1 (x) +O(Δt2). (3.16)

Substituting u(x, tn) = u(n)(x)+γ
(n)
4 (x) and (3.16) into (3.2) gives the truncation error formula (3.10).

We are now ready to show the stability of the moving finite element method (3.5).

Theorem 3.2. Let U (0)(x) ∈ V (0) and U (n)(x) ∈ V (n), n = 1, 2, . . . , L, be generated by (3.5) with

fn ≡ 0. Then we have

‖U (n)(x)‖ � ‖U (0)(x)‖, n = 1, 2, . . . , L. (3.17)

Proof. Taking v = U (n)(x) in (3.5) and noting that a(U (n)(x), U (n)(x)) � 0 and fn = 0, we have

b(n)n (U (n)(x), U (n)(x)) �
n∑

k=2

(b
(n)
k − b

(n)
k−1)(U

(k−1)(x), U (n)(x)) + b
(n)
1 (U (0)(x), U (n)(x))

�
n∑

k=2

(b
(n)
k − b

(n)
k−1)‖U (k−1)(x)‖‖U (n)(x))‖ + b

(n)
1 ‖U (0)(x)‖‖U (n)(x))‖. (3.18)

Therefore,

b(n)n ‖U (n)(x)‖ �
n∑

k=2

(b
(n)
k − b

(n)
k−1)‖U (k−1)(x)‖ + b

(n)
1 ‖U (0)(x)‖. (3.19)

Then (3.17) follows from Lemma 2.4.

Now we present the error estimation of the moving finite element method.

Theorem 3.3. Let U (0)(x) ∈ V (0) and U (n)(x) ∈ V (n), n = 1, 2, . . . , L, be generated by (3.5). Then

we have

‖η(n)(x)‖ � ‖η(0)(x)‖ + C((hn)
r +Δt2−α), n = 1, 2, . . . , L, (3.20)

where η(n)(x) := U (n)(x) − u(n)(x). Furthermore, we have

‖e(n)(x)‖ � ‖e(0)(x)‖ + C((hn)
r +Δt2−α), n = 1, 2, . . . , L, (3.21)

where e(n)(x) := u(x, tn)− U (n)(x).

Proof. Taking v = η(n)(x) in (3.10) and (3.5), and substracting (3.10) from (3.5), we have

b(n)n ‖η(n)‖2 + Γ(1− α)|η(n)|2H1
0 (I)

=

n∑
k=2

(b
(n)
k − b

(n)
k−1)(η

(k−1), η(n)) + b
(n)
1 (η(0), η(n)) + (γ

(n)
3 , η(n)) + a(γ

(n)
4 , η(n))

�
n∑

k=2

(b
(n)
k − b

(n)
k−1)

‖η(k−1)‖2 + ‖η(n)‖2
2

+ b
(n)
1

‖η(0)‖2 + ‖η(n)‖2
2

+ Γ(1− α)
‖γ(n)

3 ‖2λ+ ‖η(n)‖2/λ
2

+ Γ(1− α)
|γ(n)

4 |2
H1

0 (I)
+ |η(n)|2

H1
0 (I)

2
, (3.22)

where λ is an arbitrary positive and |η(n)|H1
0 (I)

=
√
a(η(n), η(n)) is the semi-norm of η(n) in H1

0 (I). Since

η(n) ∈ H1
0 (I), by Poincaré-Friedrichs inequalities (see e.g., [1]), we can choose a positive λ depending on

the interval I such that

‖η(n)‖2/λ � |η(n)|2H1
0 (I)

.

Combining (3.22) with (3.12) and (3.13), we obtain

b(n)n ‖η(n)(x)‖2 �
n∑

k=2

(b
(n)
k − b

(n)
k−1)‖η(k−1)(x)‖2 + b

(n)
1 ‖η(0)(x)‖2 + Γ(1− α)(λ‖γ(n)

3 ‖2 + γ
(n)
4 |2H1

0 (I)
)
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�
n∑

k=2

(b
(n)
k − b

(n)
k−1)‖η(k−1)(x)‖2 + b

(n)
1 ‖η(0)(x)‖2 + C(Δt4−2α + (hn)

2r). (3.23)

From Lemma 2.4, we have

‖η(n)(x)‖2 � ‖η(0)(x)‖2 + C(Δt4−2α + (hn)
2r)/b

(n)
1

� ‖η(0)(x)‖2 + CTα(Δt4−2α + (hn)
2r), (3.24)

where the last inequality is by (2.6), which proves (3.20). Consequently, it follows from the triangle

inequality and (3.9) that

‖e(n)‖ = ‖u(x, tn)− Un(x)‖
� ‖u(x, tn)− u(n)(x)‖ + ‖u(n)(x)− Un(x)‖
= ‖u(x, tn)−Π(n)

r u(x, tn)‖+ ‖η(n)(x)‖. (3.25)

Using standard interpolation theory and (3.20), we prove (3.21) from (3.25).

Remark 3.4. Theorem 3.3 shows that the convergence rate of the moving finite element methods is

O((hn)
r) for space variable, while Jiang and Ma [9] proved that the convergence rate of finite element

methods on fixed spatial grids is O(hr+1). (In fact, combining Lemma 2.5 and [9], the convergence order

can reach O(hr+1) + O(Δt2−α) if we use the nonuniform temporal mesh as well as the uniform space

mesh.) The reason for losing one order of the convergence for moving finite element methods is that the

L2 projections (3.4) from finite element spaces V (k), k = 0, . . . , n − 1 to space V (n) cause additional

errors. It is hopeful to improve the convergence rates using higher-order interpolation between spaces

V (k) and V (n), which is not investigated in this paper.

Remark 3.5. From the proof of Theorem 3.2, we can easily know that

‖u(x, tn)− U (n)‖ � ‖η(0)(x)‖ + C max
1�j�n

errorj + ‖u(x, tn)−Π(n)
r u(x, tn)‖,

where errorj is the one determined by γ
(j)
1 , γ

(j)
2 and γ

(j)
4 . When the solutions have sharp variations in

regions, we can choose meshes to make the above error bounds as small as possible. A natural way to

do this is using moving meshes on which the interpolation errors of the solutions are as small as possible

(see [8] and references therein). Thus using moving meshes helps to achieve better convergence when the

solutions have sharp variations in regions.

4 Numerical examples

In this section, we provide four examples: the first one is used to test the convergence rates of the finite

element method based on the nonuniform grids in time and uniform meshes in space; the second one to

make comparison of convergence results between uniform grids and nonuniform ones in time; the third

one to make comparison of convergence results between uniform meshes and nonuniform meshes in space

and test the convergence order of the moving mesh method; and the fourth one to simulate the blow-up

solutions to some time FPDEs.

In the test, the finite element method is based on the finite spaces of the 3rd-order piecewise polynomials

on grid {x(n)
k }Nk=0. The finite spaces of polynomials of degree less than or equal to three on grid {xk}Nk=0

are constructed by

Vh =

{ 3N−1∑
k=1

vkφk/3, vk ∈ R, k = 1, . . . , 3N − 1

}
,

where φk/3, k = 1, . . . , 3N − 1, are basis functions defined in the following way: let xk+1/3 = xk + (xk+1

−xk)/3, xk+2/3 = xk + 2(xk+1 − xk)/3 and denote lk,j(x), j = 0, 1, 2, 3, the basis functions of the cubic
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Lagrange interpolation with respect to points xk, xk+1/3, xk+2/3, xk+1 and

φk =

⎧⎪⎪⎨⎪⎪⎩
lk−1,3(x), x ∈ [xk−1, xk],

lk,0(x), x ∈ [xk, xk+1],

0, otherwise,

k = 1, . . . , N − 1;

φk+j/3 =

{
lk,j(x), x ∈ [xk, xk+1],

0, otherwise,
j = 1, 2, k = 0, 1, . . . , N − 1.

The moving meshes, based on which the moving finite element method is carried out, are generated

by solving the MMPDE6

−∂2ẋ

∂ξ2
=

1

τ

∂

∂ξ

(
M

∂x

∂ξ

)
(4.1)

(see e.g., [6]). In the test, the numerical solutions to MMPDE6 are approximated with the use of

the central difference method for the spatial derivatives and the backward Euler method for the time

derivatives.

Example 4.1. Consider

∂αu

∂tα
− ∂2u

∂x2
= f(x, t), (x, t) ∈ [0, 1]× [0, 1], (4.2)

where

f(x, t) = 100 sin(2πx)

(
Γ(3)

Γ(3− α)
t2−α − Γ(2)

Γ(2− α)
t1−α

)
+ 400(t− 0.5)2π2 sin(2πx),

with the initial condition u0(x) = 25 sin(2πx) and homogeneous boundary conditions. The exact solution

to the problem is given by

u(x, t) = 100(t− 0.5)2 sin(2πx).

Here, uniform spatial grids and nonuniform temporal meshes are used in the computations. The

temporal meshes are taken as

tk =

⎧⎪⎪⎨⎪⎪⎩
(
k

L

)2
T

2
, k = 1, 2, . . . ,

L

2
+ 1,

T

2
+

(
1−

(
k

L

)2)
T

2
, k =

L

2
+ 1, . . . , L+ 1,

(4.3)

and space grids are xk := kh, k = 0, . . . , N with h = 1/N . The numerical results are listed in Tables 1–2,

where

e(n) := u(x, tn)− U (n)(x),

and the rates of the convergence are computed by

Rate for space =

∣∣∣∣ ln(‖Error on finer grid‖/‖Error on coarser grid‖)
ln(N of finer grid/N of coarser grid)

∣∣∣∣,
Rate for time =

∣∣∣∣ ln(‖Error on finer grid‖/‖Error on coarser grid‖)
ln(L of finer grid/L of coarser grid)

∣∣∣∣.
The tables show that the convergence rate for space is 4 and the convergence rate for time is 2− α.

Example 4.2. Consider problem (4.2) with

f(x, t) = [Γ(1 + α) + 4π2tα] sin(2πx),

and initial condition u0(x) = 0 and homogeneous boundary conditions. The exact solution to the problem

is given by

u(x, t) = tα sin(2πx).
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Table 1 Convergence rate for space for Example 4.1 with α = 0.5 and L = 20000

N 10 15 20 25

maxn ‖e(n)‖∞ 2.1305× 10−3 4.2703× 10−4 1.3516× 10−4 5.5895× 10−5

maxn ‖e(n)‖ 4.5864× 10−4 9.0742× 10−5 2.8709× 10−5 1.1745× 10−5

Conv. rate – 3.9960 4.0001 4.0052

N 30 35 40

maxn ‖e(n)‖∞ 2.7013× 10−5 1.4603× 10−5 8.5568× 10−6

maxn ‖e(n)‖ 5.6501× 10−6 3.0364× 10−6 1.7678× 10−6

Conv. rate 4.0139 4.0283 4.0510

Table 2 Convergence rate for time for Example 4.1 with α = 0.5 and N = 100

L 100 200 400 800

maxn ‖e(n)‖∞ 3.0032× 10−3 1.0859× 10−3 3.9002× 10−4 1.3943× 10−4

maxn ‖e(n)‖ 2.1236× 10−3 7.6788× 10−4 2.7579× 10−4 9.8596× 10−5

Conv. rate – 1.4675 1.4773 1.4840

L 1600 3200 6400

maxn ‖e(n)‖∞ 4.9691× 10−5 1.7671× 10−5 6.2748× 10−6

maxn ‖e(n)‖ 3.5136× 10−5 1.2495× 10−5 4.4370× 10−6

Conv. rate 1.4886 1.4916 1.4938

Since the derivative of the solution is singular at t = 0, we take the graded grids in time as

tk =

(
k

L

)4

T, k = 0, 1, . . . , L, (4.4)

and again take uniform space meshes {xk}Nk=0 with mesh size h = 1/N . Table 3 shows that the errors

of the finite element method on graded grids in time are much smaller than those on uniform temporal

grids. In this example, the errors are measured in infinity norm.

Example 4.3. Consider problem (4.2) with

f(x, t) =
Γ(3)

Γ(3− α)
t2−α(e−

(x−0.5)2

ε − e−
0.52

ε ) + t2
(
2

ε
e−

(x−0.5)2

ε − 4(x− 0.5)2

ε2
e−

(x−1/2)2

ε

)
,

subject to initial condition u0(x) = 0 and homogeneous boundary conditions, where ε = 0.0001. The

exact solution to the problem is

u(x, t) = t2(e−
(x−0.5)2

ε − e−
0.52

ε ).

Table 4 lists the convergence results obtained on uniform space meshes and those on moving meshes

respectively. It shows that the approximations obtained on moving meshes are better than those obtained

on uniform space meshes (the solution u has sharp variations near x = 0.5 when t goes larger). Here we

take uniform time grid, and the space meshes are generated by solving MMPDE6 (4.1) with τ = 0.1,

M =
√

1 + u2
x.

In the computation, the monitor functions are smoothed ten times by the following schedule,

Mi = (3Mi−1 + 4Mi + 3Mi+1)/10.

Table 5 lists data showing the convergence order. The uniform time grid is used and the space meshes

are generated in the following way: obtain the initial moving mesh (N = 50) by solving MMPDE6 (4.1),
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and generate meshes for N = 100, 150, 200, . . . , by dividing every initial space interval into 2, 3, 4, . . .

equal parts respectively. The data in Table 5 show that the space convergence order of the moving mesh

method is 4, one order higher than that in our theoretical analysis.

Example 4.4. Consider

∂αu

∂tα
− ∂2u

∂x2
= up, (x, t) ∈ [0, 1]× [0, T ] (4.5)

with initial condition u0(x) = 20 sin(πx) and homogeneous boundary conditions.

In this example we use moving mesh methods to simulate the blow-up solutions. The time step sizes

are determined by

Δtn =
ν

(maxx u(x, tn−1))γ
, (4.6)

with γ = (p−α)/α and ν being a positive constant. The space meshes are generated by solving MMPDE6

(4.1) with M = u, τ = 100Δtn for generating space grids at tn level. The simulation results are drawn

in Figures 1–3 for α = 0.5 with p = 2, 3, 4.

Table 3 Comparisons of convergence results between uniform and graded grids in time

with α = 0.5 and N = 100 when solution u has a singularity at t = 0

L 500 1000 2000

maxn ‖e(n)‖∞ on uniform mesh 3.7421× 10−3 3.2217× 10−3 2.6923 × 10−3

maxn ‖e(n)‖∞ on graded mesh 1.3279× 10−5 4.7802× 10−5 1.7123 × 10−6

Table 4 Comparisons of convergence results between uniform and moving meshes

in space with α = 0.5 and L = 8000

N 50 80 110 140

maxn ‖e(n)‖∞ on uniform mesh 8.8546 × 10−2 7.0615 × 10−3 1.2664 × 10−3 9.0356 × 10−4

maxn ‖e(n)‖∞ on moving mesh 2.9521 × 10−3 7.3699 × 10−5 2.6463 × 10−5 1.1533 × 10−5

Table 5 Test of convergence order for moving mesh method with α = 0.5 and L = 2000

N 50 100 150 200 250 300

maxn ‖e(n)‖∞ 1.35× 10−2 3.28× 10−4 9.37× 10−5 3.68× 10−5 1.66× 10−5 8.45× 10−6

maxn ‖e(n)‖ 4.95× 10−3 3.32× 10−5 8.97× 10−6 2.89× 10−6 1.19× 10−6 5.77× 10−7

Conv. rate – 7.22 3.23 3.94 3.97 3.98
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Figure 1 For Example 4.4 with α = 0.5, p = 2. (a) t vs lg(Δtn); (b) moving mesh trajectory xj(t);

(c) for the scaled blow-up profiles
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Figure 2 For Example 4.4 with α = 0.5, p = 3. (a) t vs lg(Δtn); (b) for moving mesh trajectory xj(t);

(c) for the scaled blow-up profiles
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Figure 3 For Example 4.4 with α = 0.5, p = 4. (a) t vs lg(Δtn); (b) for moving mesh trajectory xj(t);

(c) for the scaled blow-up profiles

5 Conclusions

In this paper, we proposed a moving finite element method to solve time fractional partial differential

equations and proved the stability and convergence rates. Then we used the method to simulate blow-

up solutions to some nonlinear time FPDE. Although the method theoretically has one-order lower

convergence than that of the fixed finite element methods as discussed in Remark 3.4, the moving finite

element method is unconditionally stable and can be used to solve the blow-up problems effectively. In

the future we will further study the stability and convergence of moving finite element methods with

higher-order interpolations at different levels of finite element spaces and the stability and convergence

of discontinuous Galerkin methods (see e.g., [14, 20]).
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