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1 Introduction

In this paper we consider a first-order random coefficient integer-valued autoregressive (abbreviated as
RCINAR(1)) process that was introduced by Zheng et al. [53]. While [53] as well as a subsequent work
have been focused mostly on direct statistical applications of the model, the primary goal of this paper
is to contribute to the understanding of its probabilistic structure.

Let @ := (¢n)nez be an i.i.d. sequence of reals, each one taking values in the closed interval [0, 1]. Fur-
ther, let Z := (Z,,)nez be a sequence of i.i.d. integer-valued non-negative random variables, independent
of ®. The pair (®, Z) is referred to in [53] as a sequence of random coefficients associated with the model.

Let Z, denote the set of non-negative integers {n € Z : n > 0}. The RCINAR(1) process X :=
(Xn)nez, is then defined as follows. Let B := (B, k)nez,kez be a collection of Bernoulli random variables
independent of Z and such that, given a realization of ®, the variables B,, ; are independent and

P@(Bn,kzl):(bn and P@(Bmk:()):l—(bm VkeN,
where Pg stands for the underlying probability measure conditional on ®. Let Xy = 0 and consider the
following linear recursion:

KXn-1

X, = Z Buk+ Zn, neN, (1.1)
k=1

where we make the usual convention that an empty sum is equal to zero. To emphasize the formal
dependence on the initial condition, we will denote the underlying probability measure (i.e., the joint law
of @, Z, B, and X) conditional on {Xy = 0} by Py and denote the corresponding expectation by Ey. For

*Corresponding author

(© Science China Press and Springer-Verlag Berlin Heidelberg 2012 math.scichina.com  www.springerlink.com



178 Roitershtein A et al. Sci China Math January 2013 Vol. 56 No.1

the most of the paper we will consider a natural initial assumption Xy = 0 and hence consistently state
our results for the measure Py. We remark however that all our results (stated below in Section 2) are
robust with respect to the initial condition Xj.

The RCINAR(1) process X defined by (1.1) is a generalization of the integer-valued autoregressive of
order one (abbreviated as INAR(1)) model, in which the parameters ¢,, are deterministic and identical
for all n € Z. The model introduced in [53] has been further extended in [18,46,49-53]. We refer the
reader to [25,33,35,47] for a general review of integer-valued (data counting) time series models and their
applications.

Formally, RCINAR(1) can be classified as a special kind of branching processes with immigration in
the random environment ® (cf. [27]). In particular, the process can be rigorously constructed on the
state space of “genealogical trees” (see [22, Chapter VI]). The random variable X, is then interpreted as
the total number of individuals present at generation n. At the beginning of the n-th period of time, Z,
immigrants enter the system. Simultaneously and independently of it, each particle from the previous
generation exits the system, producing in the next generation either one child (with probability ¢,) or
none (with the complementary probability 1 — qbn)l). The branching processes interpretation is a useful
point of view on RCINAR(1) which provides powerful tools for the asymptotic analysis of the model.

In this paper we focus on the case where production and immigration mechanisms are both defined by
an ii.d. environment and, furthermore, are independent of each other. More general type of branching
process with immigration in random environment is considered, for instance, in [24,27,40]. Assuming
suitable moment conditions and ergodic/mixing properties of the environment, a law of large numbers
and a central limit theorem for such processes are obtained in [40]. It would be interesting to carry
over to a more general setting the results of this paper which rest on the regular variation property of
the coefficients when the moment conditions of [40] are not satisfied. It is plausible to assume and we
leave this as a topic for future research that such an extension can be obtained by an adaptation of the
techniques exploited in this paper for the case of Markovian coefficients with a possible correlation between
production and immigration mechanisms. We remark that a bottleneck for such a generalization of our
results appears to be a suitable extension to a more general setup of the identity (3.1) and Lemma 3.1
below.

Let Ay denote the set of non-negative integer-valued random variables in the underlying probability
space. The first term on the right-hand side of (1.1) can be thought of as the result of applying to X,
a binomial thinning operator which is associated with ¢,. More precisely, using the following operator
notation introduced by Steutel and van Harn [44]:

X
¢n o X = Zank’ X ENJ,_,

n=1

(1.1) can be written as
X, =¢pp0Xn 1+ Z,, neN. (1.2)

This form of the recursion indicates that an insight into the probabilistic structure of the RCINAR(1)
process can be gained by comparing it to the classical AR(1) (first-order autoregressive) model for real-
valued data. The latter is defined by means of i.i.d. pairs (¢, Z, )nez of real-valued random coefficients,
through the following linear recursion:

Yo, =¢uYn 1+ Z,, neN. (1.3)

In this paper we explore one of the aspects of the similarity between the RCINAR(1) and AR(1) processes.
Namely, we show in Theorem 2.5 below that if Z,, are in the domain of attraction of a stable law so is the
limiting distribution of X,,, and then consider some implications of this result for the asymptotic behavior

D) Alternatively, one can think that each particle either survives to the next generation (with probability ¢n) or dies out
(with probability 1 — ¢y,).
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of the sequence X,,. A prototype of Theorem 2.5 for AR(1) processes has been obtained in [19,21]. Our
proof of Theorem 2.5 relies on an adaptation of the technique which has been developed in [19].

We conclude the introduction with the following remarks on the motivation for our study. Although
it appears that most of our results (stated in Section 2 below) could be extended to a more general
type of processes than is considered here, we prefer to focus on one important model. It is well known
that certain quenched characteristics of branching processes in random environment satisfy the linear
difference (1.3). In two different settings, both yielding stationary solutions to (1.3) with regularly varying
tails, this observation has been used to obtain the asymptotic behavior of the extinction probabilities
in a branching processes in random environment [19,20] and the cumulative population for branching
processes in random environment with immigration [26,27]. These studies make it appealing to consider
a model like (1.2) which evidently combines features of both branching processes in random environment
(with immigration) and AR(1) time series.

In general, probabilistic analysis of the future behavior of average and extreme value characteristics
of the underlying system might be handy for typical real-world applications of a counting data model.
Our results thus constitute a natural complement to the statistical inference tools developed for the
RCINAR(1) processes in [53]. For the sake of example, consider

1) maximal number of unemployed per month in an economy, according to the model discussed in [53,
Section 1];

2) a variation of the model for city size distributions studied in [16,17] where the underlying AR(1)
equation is replaced by its suitable integer-valued analogue. More precisely, while it is argued in [16,17]
that the evolution of the normalized (to the total size of the population) size of a city Y,, obeys (1.3), we
propose (1.2) as a possible alternative model for non-normalized size of the city population X,,, where
¢y 1s an average proportion of the population which will continue to live in the city in the observation
epoch n + 1 and Z,, is the factor accumulating both the natural population growth and migration;

3) total number of arrivals in the random coefficient variation of the queueing system proposed in [1,
Subsection 3.2].

On the technical side, in contrary to [53], we do not restrict ourselves to a setup with E[Z3] < cc.
This finite variance condition apparently does not pose a real limitation on the possibility of applications
of RCINAR(1) to, say, the unemployment rate and the cities growth models mentioned above. In both
the cases, it is reasonable to assume that the innovations Z, are typically relatively small comparing
to X, and, furthermore, large fluctuations of their values are not very likely to occur. However, the
situation seems to be quite different if one wishes to apply the theory of RCINAR(1) processes to the
models of queueing theory (as it has been done in [1]) when the latter are assumed to operate under
a heavy traffic regime. See, for instance, [3,5,10,13,37,54] and [6,38,41] for queueing network models
where it is assumed that the network input has sub-exponential or, more specifically, regularly varying
distribution tails (typically resulting from the distribution of the length of ON/OFF periods). We remark
that the extensive literature on queueing networks in a heavy traffic regime is partially motivated by the
research on the Internet network activity where it has been shown that in many instances a web traffic
is well-described by heavy-tailed random patterns; see, for instance, [11,31,39,48].

2 Statement of results

This section contains the statement of our main results, and is structured as follows. We start with
a formulation of our specific assumptions on the coefficients (®, Z) of the model (see Assumptions 2.1
and 2.2 below). Proposition 2.3 then ensures the existence of the limiting distribution of X,, and also
states formally some related basic properties of this Markov chain. Theorem 2.5 is concerned with the
asymptotic of the tail of the limiting distribution in the case where the additive coefficients Z,, belong to
the domain of attraction of a stable law. The theorem shows that in this case, the tails of the limiting
distribution inherit the structure of the tails of Zy. This observation leads us to Theorem 2.6, which is an
extreme value limit theorem for the sequence (X, )nez, . Weak convergence of suitably normalized partial
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sums of X,, is the content of Theorems 2.11 and 2.12. The proof of these limit theorems exploit the
branching process representation of a regenerative structure which is described by Proposition 2.7. T'wo
curious implications of the existence of this regenerative structure are stated in Propositions 2.8 and 2.9.
The proofs of main theorems stated below in this section are given in Section 3 while the proofs of two
auxiliary propositions are deferred to the Appendix.

Specific assumptions on the random coefficients.  Recall that a function f : R — R is called
regularly varying if f(t) = t*L(t) for some o € R and a function L such that lim;_, o, L(At)/L(t) = 1 for
all A > 0. The parameter « is called the index of the regular variation. If a = 0, then f is said to be
slowly varying. We will denote by R,, the class of all regularly varying real-valued functions with index
a. We will impose the following assumption on the coefficients of the model defined by (1.1).

Assumption 2.1. (Al) P(¢o=1) < 1.
(A2) For some o > 0, there exists h € Ry such that limy_,o h(t) - P(Z, > t) = 1.

Throughout the paper we will assume (actually, without loss of generality in view of (A2) and [4,
Theorem 1.5.4] which ensures the existence of a non-decreasing equivalent for h) that the following
condition is included in Assumption 2.1:

(A3) Let h: (0,00) = R be as in (A2). Then sup,~qh(t) - P(Z, >t) < cc.

The assumption of heavy-tailed innovations (noise terms) in autoregressive models is quite common
in the applied probability literature. It is a well-known paradigm that such an assumption yields a rich
probabilistic structure of the stationary solution and allows for a great flexibility in the modeling of its
asymptotic behavior. See for instance [19,21], more recent articles [8,9,23,29, 36,42, 43], and references
therein.

In a few occasions (including a central limit theorem stated below in Theorem 2.14) we will use the
following weaker version of Assumption 2.1:

Assumption 2.2.  Condition (Al) of Assumption 2.1 is satisfied and, in addition, the following holds:

(A4) E[Z(’)B] < oo for some 8> 0.

Assumption 2.2 is stronger than the usual F(log™ |Zo|) < +o0, where zt := max{z,0} for z € R,

which is essentially required for the existence and uniqueness of the stationary solution to (1.2). It can
be seen through the formula E[Zg] = fooo BaxP=1P(Zy > x)dx (recall that Zy > 0) that (A4) is basically
equivalent to the assumption that the distribution tails of Zy are “not too thick”.
Limiting distribution of X,,. Let Y,, = Y, stand for the convergence in distribution of a sequence
of random variables (Y},),en to a random variable Y., (we will usually omit the indication “as n — c0”).
We will use the notation X =p Y to indicate that the distributions of random variables X and Y coincide
under the law Py. For X € N, define I o X := X and, recursively, ITx41 0 X := ¢py1 o (Il o X). This
defines a sequence of random operators acting in A} as follows:

MyoX =¢rogp_10--0op10X, XeN,. (2.1)

The existence of the stationary distribution for the sequence X = (X,,)n>0 introduced in (1.1) is the
content of the following proposition.

Proposition 2.3.  Let Assumption 2.2 hold. Then,
(a) The following series converges to a finite limit with probability one:

Xoo = ZXO’k’ (22)
k=0

where the random variables (Xo,k)keZ+ are independent, and Xo  =p ll o Zy for any k € N.

(b) X,y = X for any Xo € Ny. Here (Xy)nez, is understood as the sequence produced by the
recursion rule (1.1) with an arbitrary initial value Xo.

(c) The distribution of X is the unique distribution of Xo which makes (Xy)nez, into a stationary
sequence.
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The proof of the proposition is deferred to the appendix. We remark that if E[Z2] < oo is assumed, the
above statement is essentially [53, Proposition 2.2]. For a counterpart of this result for AR(1) processes
see, for instance, [7, Theorem 1]. It is not hard to deduce from the above proposition the following
corollary, whose proof is omitted:

Corollary 2.4.  Suppose that Assumption 2.2 holds, and let X = (Xp)nez, be a random sequence de-
fined by (1.1). Then X is an irreducible, aperiodic, and positive-recurrent Markov chain whose stationary
measure is supported on a set of integers {k € Zy : k = kmin}, where kyin := min{k € Z, : P(Zy = k) >
0}. In particular, X is an ergodic sequence.

It follows from the above proposition that X., is the unique solution to the distributional fixed
point equation X =p ¢g o X + Zy which is independent of (¢, Bo, Zp), where By denotes the se-
quence (Bog)ken. In fact, the explicit form (2.2) of the stationary distribution along with the iden-
tity (@ny Zn)nez =b (¢—n, Z—n)nez, implies that the unique stationary solution to (1.1) is given by the
following infinite series:

X, = f: Xpom, (2.3)

k=—o00

where the random variables (X4, )rez are independent, and
Xkn =P Pn—10Pp_20---0¢py1 02y, k< n.
By means of the branching process interpretation,
Xi.n = #{progeny alive at time n of all the immigrants who arrived at time &}, (2.4)

with the convention that X, , = Z,, and X}, , = 0 for & > n. Thus (2.3) states that the stationary solution
to (1.1) is formally obtained by letting the zero generation to be formed as a union of the following two
groups of individuals:

1. Zy immigrants arriving at time zero, and

2. descendants, present in the population at time zero, of all “demo-immigrants” who has entered the
system at the negative times k = —1, -2, ...
The random variables X}, ,, can be defined rigorously on the natural state space of the branching process,
which is a space of family trees describing the “genealogy” of the individuals (see [22, Chapter VI]).
To distinguish between the branching process starting at time zero with Xy = 0 and its stationary
version “starting at time —oo”, we will denote by P the distribution of the latter, while continuing to
use Py for the probability law of the former. We will denote by E the expectation operator associated
with the probability measure P. We will use the notation X =p Y to indicate that the distributions of
random variables X and Y coincide under the stationary law P. As it has been mentioned earlier, we will
consistently state our results for the underlying process under the law Py and thus will consider measure
P as an auxiliary tool rather than a primary object of interest.

In the case when the additive term in the underlying random linear recursion belongs to the domain
of attraction of a stable law we have the following theorem:

Theorem 2.5.  Let Assumption 2.1 hold. Then,

lim h(t) - P(Xoo > t) = (1 — E[¢g]) " € (0, 00).

t—o0

A prototype of this result for AR(1) processes has been obtained in [19,21]. The proof of Theorem 2.5
given in Subsection 3.1 relies on an adaptation to our setup of a technique which has been developed
in [19].

Extreme values of X. We next show that the running maximum of the sequence X exhibits the
same asymptotic behavior as that of Z = (Z,)nez, . Let

M, = max{X1,...,X,}, neN, (2.5)
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and
by, = inf{t > 0: h(t) = n}, (2.6)

where h(t) is the function introduced in Assumption 2.1.
The proof of the following theorem is given in Subsection 3.2 below.

Theorem 2.6.  Let Assumption 2.1 hold. Then, under the law Py, M, /b, = M, where My is a
proper random variable with the following distribution function:

Po(Ms>z)=e* """ z>0,
where a > 0 is the constant introduced in Assumption 2.1.

The distribution of M., belongs to the class of the so-called Fréchet extreme value distributions and
in fact (see, for instance, [14, Subsection 3.3]),

Py(My > x) = lim P( max Zj >xbn), x> 0.

n—00 1<k<n

It is quite remarkable that the distribution of ¢ does not play any role in the result of Theorem 2.6. An
intuitive explanation for this phenomenon, which can be derived from the proof, is as follows. Due to the
basic property of regular variation, two independent terms ¢,, o X,,_1 and Z,, are unlikely to “help” each
other in creating a large value of the sum X,, 11 = ¢, 0 X;,_1 + Z,,. Moreover, the law of large numbers
ensures that the ratio ¢, o X,,_1/X,,—1 is bounded away from one with an overwhelming probability
whenever ¢,, o X,,_ is large. Therefore, the asymptotic of the extreme value of the sequence X, follows
that of Z,,.

Regenerative structure of X. Let
vo=1 and v, =inf{i >v,_1:¢;0X;,_1 =0}, (2.7)

with the usual convention that the infimum over an empty set is co. We will refer to v,, as a regeneration
time and to the time elapsing from v, 1 until v, — 1 as the n-th renewal epoch. In the language of
branching processes, at the regeneration times the extinction occurs and and the process starts again
with the next wave of the immigration. For n € N, let

On=Vn—Vp—1 and R, =(X;:vp_1 <i<vuy,)

be, respectively, the length of the n-th renewal epoch and the list of the values of X; recorded during the
n-th renewal epoch.
The proof of the following proposition is given in the Appendix.

Proposition 2.7.  Let Assumption 2.2 hold. Then,
(a) Po(vn < 00) =1 for all n € N. Moreover, the pairs (oy, Rp)nen form an i.i.d. sequence.
(b) There exist positive constants K1 > 0 and Ko > 0 such that

Py(oy > t) < Kje %2 vt >o0. (2.8)

While the first part of the proposition is a standard Markov chain exercise, the exponential bound in
(2.8) is a delicate result. A similar bound has been proved for a general type of branching processes with
immigration in [27]. An argument which is due to Kozlov and which has been adapted for the proof
of [27, Theorem 4.2] goes through almost verbatim for our setting. We provide a suitable variation of
this argument in the appendix.

The existence of the “life-cycles” (i.e., renewal epochs) for the branching process implies, for instance,
the following. Recall X}, ,, from (2.4). Let

1 X (n—k
A =n—max{k <n:Xp, >0} and 7, = 2 b (n=k)
2 k=1 Xkn

be, respectively, the maximal and the average age of the individuals present at generation n (see the
above footnote remark on page 178).
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Proposition 2.8.  Let Assumption 2.2 hold. Then both X\, and n, converge weakly, as n — oo, to
proper distributions. More precisely, under the law Py,

_ Zg:—oo Xk, - k
> ke oo Xk

where U is a random wvariable which is independent of o1 and is distributed uniformly over the
interval [0, 1].

Ap=01-U and 7, =

)

The first result in the above proposition is a direct implication of the renewal theorem whereas the
second one is a consequence of the explicit formula for 7, given above and the fact that X o = 0 for
k < v_y and P(v_q < o0) = 1. Here v_; is time of the last renewal up to time zero for the process
starting at —oo. We leave details to the reader.

Another interesting implication of the existence of the regenerative structure is the convergence in
distribution of the coalescence time at generation n. Suppose that X,, > 2 and sample at random two
individuals present at generation n. Then the coalescence time T, is defined as n — k if the immigrant
ancestors of both individuals have entered the system at the same time k € Z, and is set to be infinity

otherwise (cf., for instance, [30]). Since the probability of sampling of both individuals among the
Xin (Xg,n—1)
Xn(Xp—1) 7

Zzzn—t Xk,n(Xk,n - 1) :|
ZZ:l Xk,n(zzzl Xk,n - ]-) ’

We have thus obtained the following proposition:

descendants of the immigration wave k is

PO(Tngt):E[

Proposition 2.9.  Let Assumption 2.2 hold. Then T, converges weakly under Py, as n — oo, to a
proper random variable with the following distribution function on N'U {0, 400}:

[ S Xno(Xko —1)
S oo Xk0(X e oo Xko — 1)

where 8 inside the expectation is interpreted as 0.

F(t)=F ] 1 < oo,

Growth rate and fluctuations of the partial sums of X. Let S,, = ZZ=1 Xj. The following law
of large numbers is a direct consequence of Corollary 2.4.

Proposition 2.10.  Let Assumption 2.2 hold with 8 = 1. Then

Su _ gy = FlZ

Py-a.s.
n—oo Mn ]_—E[QSO]’ 0-a-9

The next theorem is concerned with the rate of the growth of the partial sums when Z; has infinite
mean. For a € (0,2] and b > 0 denote by L, the strictly asymmetric stable law of index « with the
characteristic function

log L p(£) = —blt[* (1 +i|§|fa(t)>, (2.9)

where f,(t) = —tan ga if @ £ 1, f1(t) = 2/wlogt. With a slight abuse of notation we use the same
symbol for the distribution function of this law. If o < 1, L, is supported on the positive reals, and if
a € (1,2], it has zero mean [14, Section 2.2].

Recall b, from (2.6). The following result is proved in Subsection 3.3 below by using an approximation
of the partial sums of the process by those of a stationary strongly mixing sequence for which we are able
to verify the conditions of a general stable limit theorem.

Theorem 2.11.  Let Assumption 2.1 hold with o € (0,1). Then b,,1S,, = Loy

We next study the fluctuations of the partial sums in the case where nontrivial centering of X,, is
required to obtain a proper weak limit for the partial sums.
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Theorem 2.12.  Let Assumption 2.1 hold with a € [1,2]. For n € N, define

by, where by, is defined in (2.6), if a<?2,
Ay =
" inf{t>0:nt"2 E[X2 Xo<t] <1}, if a=2

Denote p := E[Xo]. Then the following holds for some b > 0:
(i) If « =1, then a,* (S, — ¢n) = L1 with ¢, = nE[Xo; Xo < an].
(i) If a € (1,2), then a,*(Sn — np) = Lap.
(iii) If o =2 and E[Z] = oo, then a,; ' (S, — np) = Lop.
Recall v, from (2.7) and define

Vp—1
W, = Z X;, meN.

1=Vp_1

Theorem 2.12 can be derived from stable limit theorems for partial sums of i.i.d. variables, using the
regenerative structure and the following lemma.

Lemma 2.13.  Let Assumption 2.1 hold. Then the following limit exists:

lim h(t) . P()(W1 > t).

t—o0

Moreover, the limit is finite and strictly positive.

The proof of the lemma given below in Subsection 3.4 is (although technical details are quite different)
along the line of the proof of a similar result given for a different branching process in [26]. We remark
that though a similar technique can be used to obtain Theorem 2.11, we prefer to employe a more
direct approach in the case « € (0,1). Theorem 2.12 follows from the above lemma by using a standard
argument, which is outlined in [26] for the case h(z) = z~!. Since only an obvious minor modification is
required to extend the argument to a general h (see, for instance, [32] for h(z) = 72), we omit details
of this argument here.

If an appropriate second moment condition is assumed, one can establish the following functional limit
theorem for normalized partial sums of X. Let D(R4,R) denote the set of real-valued cadlag functions
on Ry := [0, 00), endowed with the Skorokhod .J;-topology. Let |z| denote the integer part of x € R. We
have the following theorem:

Theorem 2.14.  Let Assumption 2.2 hold with a constant > 2. Then, as n — 0o, the sequence of
processes

S0 =0 2 (S g ), 1€ 0.1]

in D(R4,R) converges weakly to a non-degenerate Brownian motion Wy, t € [0, 1].

Theorem 2.14 is a particular case of [40, Theorem 1.5], and therefore its proof is omitted. Notice that
the conditions of the theorem are satisfied if Assumption 2.1 holds with o > 2.
3 Proof of the main results

This section is devoted to the proof of the theorems stated in Section 2 (namely, Theorems 2.5, 2.6, 2.11
and 2.12), and is divided into four subsections correspondingly.

3.1 Proof of Theorem 2.5

First, we observe the following lemma:



Roitershtein A et al. Sct China Math January 2013 Vol. 56 No.1 185

Lemma 3.1. Let X € Ny be a random wvariable in the underlying probability space such that
(i) X is independent of (¢n, Zn, Bn)nez, , where By := (B k)ken-
(ii) limy—oo h(t) - Po(X >1t) =1 for some h € Ry, o > 0.

Then lim;_yo0 h(t) - Pp(po o X > t) = ¢5.

Proof.  Fix a constant € € (0,1). For ¢t > 0 define the following three events:

At,e = {X >1- ((;5(;1 +E)}a
Bre={t (¢ —e) <X <t-(¢p' +e)},
Cre ={X <t- (95" —2)}-

We will use the following splitting formula:
Pq>(¢)0 o X > t) = Pq;.(gf)o o X >t At,s) + P@((j)o oX >t Bt,s) + Pq>((i)0 o X >t Ct,6)~
By the law of large numbers,

1 n
lim Z By = ¢, P-as.
k=1

n—oo N

Since h(t) is regularly varying, Chernoft’s bound (Cramér’s large deviation theorem for coin flipping,
see [12]) applied to the partial sums > ;_,; By, implies that

t(pot—
0 < limsuph(t) - Pe(poo X >t; Crc) < limsuph(t) - Py (ZL @ E”Bk > t) =0.

t—o0 t—o0 k=1

Next, by the conditions of the lemma,
Jm A(t) - Pe(¢o o X > 15 Bro) < lim A(t) - Po(By.c)
=[(¢5" =€) = (¢ +€)7] 2es0 0.
Finally, using again the large deviation principle for Y ,_; By,

liminf A(t) - Pe(¢oo X > t; Are) = litlginf h(t) - [Po(Ase) — Po(poo X < t; Ay )]

t—o00

> liminf h(t) - Pop(Aie) = ((1561 +e)

t—o0

On the other hand, clearly,

lim inf h(t) - Po(¢o © X > t; Arc) < liminf A(t) - Po(Ay ) = (ot +e)7 .

Since € > 0 is arbitrary and ((;351 +e)7% = ¢ as e goes to zero, this completes the proof of the lemma.

Remark 3.2.  The above proof of Lemma 3.1 can be adopted without modification for a more general
type of sums 22(:1 By, where X € N, has regularly varying distribution tails and (Bj)ren are inde-
pendent of X. In fact, the only property of the sequence By required by the proof is the availability of
a non-trivial large deviations upper bound for its partial sums. Note that if f(\) := Eg[e*P1] is finite
in a neighborhood of zero, such a bound in the form Pe (|} >}_, By — Ea[B1]| > z) < c(z)e ™®) with
suitable constants c(x), I(x) > 0 holds for any & > 0 (see, for instance, the first inequality in the proof
of [12, Lemma 2.2.20]).

Recall (see, for instance, [14, Lemma 1.3.1]) that if X and Y are two independent random variables
such that limg_ oo A(x) - P(X > 2) = ¢; > 0 and limy_,oc h(x) - P(Y > x) = ¢o > 0 for some h € R,
a > 0, then

lim h(z) - P(X +Y >2) =c +ca. (3.1)

T—00
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Using this property and iterating (1.1), one can deduce from Lemma 3.1 the following corollary. Consider
(in an enlarged probability space, if needed) a sequence X = (X,)ncz, which solves (1.1), that is a
sequence such that

Xn—1
Xo= Y Bup+Z,, neN, (32)
k=1

for some initial (not necessarily equal to zero) random value Xo.

Corollary 3.3.  Let Assumption 2.1 hold and suppose in addition that the following two conditions are
satisfied:
(1) X, is independent of (¢, Bk, Zk) k>0, where By = (B ;)jeN-
(ii) limy_o0 h(t) - Po(Xo > t) = co for some random variable co = co(®).
Then lim;_, o0 h(t) - P¢(X'n > t) = ¢, for any n € N, where the random variables ¢, = ¢, (®) are defined
recursively by
Cngl = CnPpi +1, neZy. (3.3)

The recursive relation (3.3) implies that

cn—cn—l—concﬁj, where cn—1+ZH¢], (3.4)

k=2 j=k

and hence (see, for instance, [7, Theorem 1]) the random variables ¢,, converge in distribution, as n — oo,
t0 Coo =14 > 70 Hf:o ¢ ,. Furthermore, we have the following:

Corollary 3.4.  Suppose that the conditions of Corollary 3.3 are satisfied and, in addition, there exists
a positive constant C > 0 such that the following holds:

P(sup{h(t) Py (X > 1)} < C) =

t>0

Then the following limit exists and the identity holds:
lim A(t)- P(X, >t) = E[c,], neN,
n— oo

where ¢, are random variables defined in (3.4).

Proof.  Corollary 3.3 and the bounded convergence theorem imply that
lim h(t) - P(X, >t) = Jim (1) E[P3(X, > t)]
t—o0

- E[tlim h(t) - Po(X, > t)} = Elca). (3.5)
To justify interchanging of the limit with the expectation, observe that )Z'n < X’o + ZZ=1 Z, and hence,
by virtue of (A3) in Assumption 2.1, the following inequalities hold with probability one for some positive
constant Cq > 0:

h(t) - Po(Xn > t) < h(t) - Po(Xo > t/2) + h(t (sz>t/2)
< h(t) - Pp(Xo > t/2) + nh(t) - P(Zy > t/(2n))
<c M) Lo, M)

h(t/2) h(t/(2n))
It follows (see, for instance, [19, Lemma 1]) that there exists a constant Co > 0 such that
P(sup{h(t) Pp(X, > 1)} < 02) ~ 1
t>to

This enables one to apply the bounded convergence theorem in (3.5) and thus completes the proof of
the corollary.
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In what follows notations X <p Y and X >p Y for random variables X and Y are used to indicate
that P(X >t) < P(Y > t) or, respectively, P(X >1t) > P(Y > ¢) holds for all t € R. In order to exploit
Corollary 3.4 in the proof of Theorem 2.5, we need the following lemma:

Lemma 3.5. Suppose that the conditions of Corollary 3.4 are satisfied. Then
(a) Ion <p Xl, then Xn <p Xn+1 for all n € N.
(b) Ion >p Xl, then Xn >p Xn+1 for all n € N.

Proof.  The proof is by induction. Suppose first that X,_1<p X, for somen € N , X, 1 is independent
of (¢r, Bk, Zk)k>n—1, and X, is independent of (¢, B, Zi)k>n- We will now use the following standard
trick to construct an auxiliary random pair (V,,—1,V,,) such that

PWVp i <Vu=1), Vp1=p Xn_1, and V, =p X,. (3.6)

Let U be a uniform random variable on [0, 1], independent of the random coefficients sequence (®, Z).
Denote by F,, and F,_1, respectively, the distribution functions of X,, and X,,_1. Set V;, = F;}(U) and
Vi1 = FE7 1 (U), where F~1(y) := inf{z € R: F(z) >y}, y € [0,1], with the convention that inf () = co.

n—1
Let Xn+1 = @py1 0 X, + Zp+1- Then Xn+1 is independent of (¢, Bk, Zk)k>n+1. Furthermore, since
(Va—1,V,,) is independent of (®, Z), we obtain for any ¢ > 0,

P(Xpi1>1) = P(¢ni10 Xp + Zns1 > 1) = P(¢ns1 0 Vi + Zia > 1)
P((bn—i-l oVi1+ Zpy1 > t) = P(¢n oVi1+ 2y > t)
= P(¢n 0 X1+ Zyp >1t) = P(X,, > 1). (3.7)

WV

This shows that part (a) of the lemma holds true. The same argument, but with < replaced by > and
vice versa in the base of induction, (3.6) and (3.7), yields part (b).

We are now in a position to complete the proof of Theorem 2.5. First, we have the following lemma:
Lemma 3.6.  There exists a random variable Xo 0 satisfying the conditions of Corollary 3.4, such
that X1 >D XO.

Proof.  Set )?0 =7Z_1.
In view of Lemma 3.5, this implies that we can find a sequence X, that solves (1.1) and such that

X, <p )?oo, while X satisfies the conditions of Corollary 3.4. Combining this result with the conclusion
of the corollary yields

liminf h(t) - P(Xoo > ) > lim A(t) - P(X, >t)=Elc,), neN.
— 00

t—o0

Hence

liminf h(t) - P(Xeo >t) = lim Ele,] = !

t—o0 n—00 — E[(j)g] '

(3.8)

On the other hand, we have the following lemma:
Lemma 3.7.  Let Assumption 2.1 hold. There exists a random variable )A(:o > 0 satisfying the conditions
of Lemma 3.1 such that X1 <p Xo.

Proof.  Given a realization of the sequence ®, choose a constant ¢g in such a way that

1
- Ele§]

Let Yo = c(l)/aZ_l. Then lim;_, o h(t) - P(Yo > t) = co. If we would choose X = Yy, we would have
c1 = limy_eo h(t~) - P(X1 > t) < ¢ by virtue of (3.3) and Corollary 3.4. This would imply that

P(Xy >t) < P(Xo >t) for t > tg, where ty > 0 is a positive constant which depends on ¢y. Consider

co >
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now (in an enlarged probability space, if needed) a random variable )A(:o such that X’o is independent of
(®k, Br, Zk)kez and

P(Xo>t)=P(Yy >t| Yy > to).

Note that such X, satisfies the conditions of Corollary 3.4 because Py(Xo > t) = P(X, > t) with
probability one, and for t > g,
1 h(t)

h(t) - P(Xo > 1) < P(c§Z0 > to)  h(tes®)

(hlteg®) - P(Zo > tey?)),

and sup,~ h(t)/h(tcy @) < oo (see, for instance, [19, Lemma 1]). Then, for ¢ > to,

P(p10Xo+ 21 >t) = P(¢10Yo+Z1 >t | Yy >tg)
_ P(pr1oYo+ Z1 > 1Yy > to) P P(p1oYy+ 2y > t)
P(YO > to) = P(YO >t0)
P(Yy > t)

< =Py >t|Yy>ty) = P(Xo>t).
P(Yo > t) (Yo >t | Yo > to) (Xo > 1)

On the other hand, if ¢ < ¢ty then
P(Xo>t)=P(Xo>t| Xo>to) = 1.
Thus
P(¢r0Xo+Z1 >t) < P(Xo > t)

for all t > tp, and we can set )?0 as the initial value for the recursion.

Combining this result with Corollary 3.4 yields

limsup h(t) - P(Xoo > t) < tlirn h(t) - Po(Xp, >t) = Elcn], neN.

t—o00

Hence,

1
limsuph(t) - P(Xo > 1) < lim Fle,| = .
mspA(t) P(Xoo > 1) < Jim Blead = | po

The proof of Theorem 2.5 is completed in view of (3.8).
3.2 Proof of Theorem 2.6

For n € N, denote K, = maxjgi<n Zi. It follows from (1.1) that M,, >p K,. To conclude the proof of
the theorem, it thus suffices to show that

limsup Py(M,, > xb,) < lim Py(K,, > xb,) = e*””_l/a, x> 0.
n—00 n—00
Observe that, under the stationary law P, the branching process (without immigration) originated by the
initial X individuals will eventually die out. Therefore, the total number of progeny of the individuals
in the zero generation is P-a.s. finite. Furthermore, the branching process X,, — 22:700 Xim, n €N,
obtained by excluding the contribution of these individuals from the original one, is distributed under P
as X,, n € N, under Py. It thus suffices to show that

limsup P(M,, > xb,) < lim P(K, > xb,) = e*“’_l/a, x> 0.

n—o0o n—oo

Toward this end, define the following events. For x > 0, § > 0, and € € (0,1/2), let

AU = {aby < My, < 2(1+8)bn}, n €N,
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B = AT N {z(1 - e)by < Ky < 2(1+ )by}, neN,

CY = Al N (X > aby, eaby, < Zy <ax(l—e)by}, neN, k=1,2,...n,

DY = A" 0 { Xy > aby, Zi < aeby), neN, k=12, .. .n.
Then

k k
P < s (U et) (U ptit)
k=1
< P(a(l— )b, < Kn < a(1+8)by) +nP(C5Y) + nP(DI5Y)). (3.9)

Taking into account the independence of the pair (¢x, Xi—1) of Zy, it follows from (1.2), Assumption 2.1
and Lemma 3.1 that for any positive constants J,x,e > 0

lim sup nP(Ci"E’E) < lim n P(¢y 0 Xo > exby,, Z1 > exby,) = (3.10)
n—00 n—00

Furthermore,

2 (14-6)br |
<P< > Bo,i>(1—a)xbn)
i=1

1 [z (14-6)bn | 1—¢
= E[Rp(x(Hé)bn ; By > 1+5)]. (3.11)

Assume now that the constants § > 0 and € > 0 are chosen so small that | +5 > El¢ol, and hence

145 > nE[¢o] for some n > 1. (3.12)

We next derive a simple large-deviations type upper bound for the right-most expression in (3.11). Denote
Ty = 1 4s- 1t follows from Chebyshev’s inequality that for any A > 0,

[ < ZBOZ 1+§>]< e "M B[(1 — ¢o + doe™)"].

Thus for all A > 0 small enough, namely for all A > 0 such that e* < 14 7\, we have

Bl B> g )| <o B s

= e_"/\’”OE[(l + ponA)"] < e_”)‘”OE[e%'”")‘].

Therefore, for all A > 0 small enough we have

1
i (152 )] g

Given n, let f(\) =

log E[e"%0]. By the bounded convergence theorem, f’(0) =
of (3.12),

E[¢o]. Hence, in view

5
lim su 10 P B < 0.
moup o | z L
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Since b, is a regularly varying sequence, it follows from (3.11) that

lim nP(D{;Y) = 0. (3.13)

n—oo

Therefore, since € > 0 above can be made arbitrary small (in particular, the left-hand side of (3.12) is an
increasing function of ¢), combining (3.13) together with (3.10) and (3.11) yields,

lim sup P(A;E;Lg) < P(zb, < Ky, < 2(146)by),

n— 00
and hence

limsup P(M,, > xb,,) = 1imsupZP((1 + kd)ab, < My, < (14 kd+ 6)aby,)

n—00 n—00
k=0

o0

< Zlimsup P((1 + ko)xb, < M,, < (1+ kd +6)xby,)

k=0 n—oo

<Y P((1+ kd)aby < K, < (14 kb + 8)aby) = P(K, > aby,).
k=0

The proof of Theorem 2.6 is complete.

3.3 Proof of Theorem 2.11

For n € Z, let

o0
Y, = Z Xt (3.14)
t=n

be the total number of progeny at all generations of all the immigrants entered at time n, including the
immigrants themselves. Then

n n k n n n oo
IEASHILTES HILTES N OIS
k=1 t

k=1t=0 t=0 k=t t=0

T X) S A S SN
t=0

k= k=n-+1 t=0 k=n+1

Notice that

n o) 0 e8] 0 e} 0 o) 121
Z Z Xtk =D ZZXt,k< Z ZXt,k: Z ZXt,k< Z Y < 0.

t=0 k=n-+1 t=—n k=1 t=—o00 k=1 t=—v_1 k=1 t=—v_

Hence, in order to show that S, /b, converges in distribution, it suffices to show that b, 12;;:1 Y
converges to the same limit. Note that the sequence (Y;,)nez has the same distribution under Py as it
has under P.

The following series of technical lemmas will enable us to apply a general stable limit theorem (namely,
[45, Theorem 1.1]; see also [28, Corollary 5.7]) to the partial sums of the sequence Y,.

Lemma 3.8.  The sequence (Y, )nez is strongly mizing, i.e., lim, o x(n) = 0, where
x(n) :=sup{P(ANB)—-P(A)P(B): Aec F",B € Fo},

and F" :=0(Y; i >=n), Fp:=0(Y; i <n).

Proof.  This is a variation of [40, Lemma 3.2]. For the sake of completeness, we give here a suitable
modification of the argument. For n € Z, let ), and Y™ denote, respectively, the sequences (Y;);<, and
(Y:)izn- On one hand, for any A € o(Y; : 7 > n) and B € o(Y; :< 0),

PY"eAYoyeB)=2P(Y" €AYy € B,y <n/2)
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E[Pq;.(yo € B 1 n/2) . Pq;.(yn € A)]
PO € B,vi <n/2)- P(Y" € A)

=
> POy € B)-P(Y" € A) — P, > n/2).

On the other hand,

PY"e A YyeB)S P(Y" € A )y € B,y <n/2)+ Py >n/2)
[Ps (Do € B,vy <n/2)- Pp(Y" € A)]+ P(v1 > n/2)
Yo € B,vy <nJ2)-P(Y" € A)+ P(v1 >n/2)

E
P
PQ)oeB)-PY" € A)+ P(vy >n/2).

NN

(
(
It thus remains to show that P(r; < oco) = 1. By Proposition 2.7, we have Py(r; < oo) = 1. Since,
clearly, P(¢1 0 Xo = 0) > 0, the strong Markov property implies P(r; < oo0) > 0. Since the Markov
chain (X, Z,) forms an ergodic process according to Corollary 2.4, it follows from the ergodic theorem
that the the two-component Markov chain spends asymptotically a positive proportion of time at the set

{X,, = Z,} (one can also appeal directly to the Poincaré recurrence theorem). This completes the proof
of the lemma.

In view of the previous lemma we are seeking to apply to Y, the following general limit theorem for
strongly mixing stationary sequences obtained in [45] (see also a similar [28, Corollary 5.7]).

Theorem 3.9 (See [45, Theorem 1.1 and Corollary 1.2]).  Let (Y, )nen be a stationary strongly mizing
sequence of non-negative random variables. Assume that for some a € (0,1), there exists h € R, such
that limy_, o0 h(t) - P(Y,, > t) = 1. For n € N, define a process U, on the Skorokhod space D(R,R) by
setting

[nt]

ZYk, t >0,

where by, are defined in (2.6). Then U, converges weakly in D(R,R), as n — oo, to a Lévy a-stable
process if and only if the following local dependence condition holds:

[n/k]
For any € > 0, we have: hm limsup n Z P(Y; > ¢eb,, Y1 > eb,) = 0. (3.15)
k=00 nosoco
j=2

We remark that the assumption P(Y,, € Z;) = 1 is actually not needed and is not included in the
original version of the above theorem, as it is stated in [45]. It is not hard to verify that in our setting the
random variable Y7 has regularly varying distribution tails under the law Pg. To transform this statement
into a corresponding claim under P we will need the following a-priori bound.

Lemma 3.10.  Let Assumption 2.1 hold. Then

limsup h(z) - P(Y1 > z) = C < o0, (3.16)

r—00

where C' € (0,00) is a positive constant whose value depends on the distribution of ¢o but not on the
distribution of Zy (as long as Assumption 2.1 holds and h(z) is defined as in (A2)).

Proof.  For any x > 0 and v € (0,1),

PY1>x) = (ZX1n>x (1—~ Z ) gZP(X1,n>x'y”*1(1—'y)).
n=1 n=1

Therefore,

limsup h(z) - P(Y7 > x) Z limsup h(x) - P(X1n > 27" (1 — 7))

Tr—00 r—00
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Z msup nhgfi ) Wy (1 =7)) - P(X10 > 27" (1= 7))

Z =1 —4)~* . limsup h(z) - P(X1, > ).

Tr—00

Applying Lemma 3.1 to the right-most expression in this inequality, we obtain by virtue of the bounded
convergence theorem that

NE

limsup h(z) - P(Y1 > z) <

T—00

Wfa(nfl)@ —y)7. E[xlgngo h(z) - Po(X1, > 33)}

G 21 11) K C e

n=1

3

Choose now v € (0,1) such that v > E[¢§] concludes the proof of the lemma. To justify the above
application of the bounded convergence theorem, observe that X; , < Z; and Z; is independent of ®.

In order to study the exact asymptotic of the distribution tails of Y7, it is convenient to approximate
Y1 by Yl(m), where

n+m

Vi =" Xuk, nez
k=n

We have the following lemma:

Lemma 3.11.  Let Assumption 2.1 hold. Then

lim h(a)- PY™ > x) [<1+ZH¢]) ] (3.17)

i=1j=1
for any m € N.
Proof.  Note that

ng>—2(1+23 )

k=1

where Bs)k is the number of progeny (either zero or one) of the k-th immigrant at generation n, who is
present (or not) at the system at generation n + i. Then an argument similar to the one which we have
employed in order to prove Lemma 3.1 (see also Remark 3.2) along with (3.1) ensure that

Jim h(x) - Po(Yg™ > ) = <1 + E;EP[B&)I]) = (1 +3° H1 ¢>j)
i= i=1 j=
Since Yo(m) < mZy and Zj is independent of ®, the bounded convergence theorem yields
, (m) : (m) _ S TR
Tim Ax) - P(Y{™ > ) = ngr;oh(x) P (Y™ > x)} - EKl n 2; H1¢3> }
i=1 j=
which completes the proof of the lemma.

Combining together the results of Lemmas 3.10 and 3.11, we can deduce the following:

Lemma 3.12.  Let Assumption 2.1 hold. Then

Tim h(z) - P(Yi > 2) = [<1+ZH¢3> }

i=1 j=1
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Proof.  First, observe that the lower bound

lim h(z)- P(Yi > ) > lim lim h(z)- P(Y," > ) = [(1+ZH¢J) ]

T—>00 M—00 L —00
i=1 j=1

holds by virtue of Lemma 3.11 and the monotone convergence theorem.

To prove the matching upper bound, notice that the difference Y; — Yl(m) is distributed under the law
P as Y; is distributed under the law @), where @ is defined in the same way as P with the only exception
that in the former case the distribution of Z,, is assumed to be that of II,,41 0 Zy under P. Furthermore,
since 11,411 0 Zp < Zp, Lemma 3.1 and the bounded convergence theorem imply that

lim h(z) - P(I,41 0 Zo > 2) = (E[pg])™ .

r—r00

It follows then from (3.16) with the probability measure P replaced by @, that

lim limsup h(z) - P(Y; — Yl(m) >z) =0.

m—00 g0
Thus, using again Lemma 3.11 and the monotone convergence theorem, we obtain that the following

holds for any € > 0 :

limsup h(x) - P(Y; > x)

Tr—r00

< lim { lim h(z) - P(Y,™ > 2(1 - €)) + limsup h(z) - P(Y; — Y{™ > xe)}

m—oo ( z—o0 L300
— T T pry ™ N e
= lim_lim h(z) - P(Y,"™ > (1 — <)) KHE}Hl@) } (1—e)~ .
i=1j

Taking ¢ — 0 yields the desired upper bound. To conclude the proof of the lemma, it remains to note
that by Jensen’s inequality,

EKHZH%) } < (E[HZH@D = (1= Blpo]) ™ < o0,
i=1j=1 i=1j=1
where we used the assumption a € (0,1).

We are now in