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1 Introduction

In this paper we consider a first-order random coefficient integer-valued autoregressive (abbreviated as

RCINAR(1)) process that was introduced by Zheng et al. [53]. While [53] as well as a subsequent work

have been focused mostly on direct statistical applications of the model, the primary goal of this paper

is to contribute to the understanding of its probabilistic structure.

Let Φ := (φn)n∈Z be an i.i.d. sequence of reals, each one taking values in the closed interval [0, 1]. Fur-

ther, let Z := (Zn)n∈Z be a sequence of i.i.d. integer-valued non-negative random variables, independent

of Φ. The pair (Φ,Z) is referred to in [53] as a sequence of random coefficients associated with the model.

Let Z+ denote the set of non-negative integers {n ∈ Z : n � 0}. The RCINAR(1) process X :=

(Xn)n∈Z+ is then defined as follows. Let B := (Bn,k)n∈Z,k∈Z be a collection of Bernoulli random variables

independent of Z and such that, given a realization of Φ, the variables Bn,k are independent and

PΦ(Bn,k = 1) = φn and PΦ(Bn,k = 0) = 1− φn, ∀ k ∈ N,

where PΦ stands for the underlying probability measure conditional on Φ. Let X0 = 0 and consider the

following linear recursion:

Xn =

Xn−1∑
k=1

Bn,k + Zn, n ∈ N, (1.1)

where we make the usual convention that an empty sum is equal to zero. To emphasize the formal

dependence on the initial condition, we will denote the underlying probability measure (i.e., the joint law

of Φ,Z, B, and X ) conditional on {X0 = 0} by P0 and denote the corresponding expectation by E0. For
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the most of the paper we will consider a natural initial assumption X0 = 0 and hence consistently state

our results for the measure P0. We remark however that all our results (stated below in Section 2) are

robust with respect to the initial condition X0.

The RCINAR(1) process X defined by (1.1) is a generalization of the integer-valued autoregressive of

order one (abbreviated as INAR(1)) model, in which the parameters φn are deterministic and identical

for all n ∈ Z. The model introduced in [53] has been further extended in [18, 46, 49–53]. We refer the

reader to [25,33,35,47] for a general review of integer-valued (data counting) time series models and their

applications.

Formally, RCINAR(1) can be classified as a special kind of branching processes with immigration in

the random environment Φ (cf. [27]). In particular, the process can be rigorously constructed on the

state space of “genealogical trees” (see [22, Chapter VI]). The random variable Xn is then interpreted as

the total number of individuals present at generation n. At the beginning of the n-th period of time, Zn

immigrants enter the system. Simultaneously and independently of it, each particle from the previous

generation exits the system, producing in the next generation either one child (with probability φn) or

none (with the complementary probability 1 − φn)
1). The branching processes interpretation is a useful

point of view on RCINAR(1) which provides powerful tools for the asymptotic analysis of the model.

In this paper we focus on the case where production and immigration mechanisms are both defined by

an i.i.d. environment and, furthermore, are independent of each other. More general type of branching

process with immigration in random environment is considered, for instance, in [24, 27, 40]. Assuming

suitable moment conditions and ergodic/mixing properties of the environment, a law of large numbers

and a central limit theorem for such processes are obtained in [40]. It would be interesting to carry

over to a more general setting the results of this paper which rest on the regular variation property of

the coefficients when the moment conditions of [40] are not satisfied. It is plausible to assume and we

leave this as a topic for future research that such an extension can be obtained by an adaptation of the

techniques exploited in this paper for the case of Markovian coefficients with a possible correlation between

production and immigration mechanisms. We remark that a bottleneck for such a generalization of our

results appears to be a suitable extension to a more general setup of the identity (3.1) and Lemma 3.1

below.

Let N+ denote the set of non-negative integer-valued random variables in the underlying probability

space. The first term on the right-hand side of (1.1) can be thought of as the result of applying to Xn

a binomial thinning operator which is associated with φn. More precisely, using the following operator

notation introduced by Steutel and van Harn [44]:

φn ◦X :=
X∑

n=1

Bn,k, X ∈ N+,

(1.1) can be written as

Xn = φn ◦Xn−1 + Zn, n ∈ N. (1.2)

This form of the recursion indicates that an insight into the probabilistic structure of the RCINAR(1)

process can be gained by comparing it to the classical AR(1) (first-order autoregressive) model for real-

valued data. The latter is defined by means of i.i.d. pairs (φn, Zn)n∈Z of real-valued random coefficients,

through the following linear recursion:

Yn = φnYn−1 + Zn, n ∈ N. (1.3)

In this paper we explore one of the aspects of the similarity between the RCINAR(1) and AR(1) processes.

Namely, we show in Theorem 2.5 below that if Zn are in the domain of attraction of a stable law so is the

limiting distribution of Xn, and then consider some implications of this result for the asymptotic behavior

1) Alternatively, one can think that each particle either survives to the next generation (with probability φn) or dies out

(with probability 1− φn).
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of the sequence Xn. A prototype of Theorem 2.5 for AR(1) processes has been obtained in [19, 21]. Our

proof of Theorem 2.5 relies on an adaptation of the technique which has been developed in [19].

We conclude the introduction with the following remarks on the motivation for our study. Although

it appears that most of our results (stated in Section 2 below) could be extended to a more general

type of processes than is considered here, we prefer to focus on one important model. It is well known

that certain quenched characteristics of branching processes in random environment satisfy the linear

difference (1.3). In two different settings, both yielding stationary solutions to (1.3) with regularly varying

tails, this observation has been used to obtain the asymptotic behavior of the extinction probabilities

in a branching processes in random environment [19, 20] and the cumulative population for branching

processes in random environment with immigration [26,27]. These studies make it appealing to consider

a model like (1.2) which evidently combines features of both branching processes in random environment

(with immigration) and AR(1) time series.

In general, probabilistic analysis of the future behavior of average and extreme value characteristics

of the underlying system might be handy for typical real-world applications of a counting data model.

Our results thus constitute a natural complement to the statistical inference tools developed for the

RCINAR(1) processes in [53]. For the sake of example, consider

1) maximal number of unemployed per month in an economy, according to the model discussed in [53,

Section 1];

2) a variation of the model for city size distributions studied in [16, 17] where the underlying AR(1)

equation is replaced by its suitable integer-valued analogue. More precisely, while it is argued in [16, 17]

that the evolution of the normalized (to the total size of the population) size of a city Yn obeys (1.3), we

propose (1.2) as a possible alternative model for non-normalized size of the city population Xn, where

φn is an average proportion of the population which will continue to live in the city in the observation

epoch n+ 1 and Zn is the factor accumulating both the natural population growth and migration;

3) total number of arrivals in the random coefficient variation of the queueing system proposed in [1,

Subsection 3.2].

On the technical side, in contrary to [53], we do not restrict ourselves to a setup with E[Z2
0 ] < ∞.

This finite variance condition apparently does not pose a real limitation on the possibility of applications

of RCINAR(1) to, say, the unemployment rate and the cities growth models mentioned above. In both

the cases, it is reasonable to assume that the innovations Zn are typically relatively small comparing

to Xn and, furthermore, large fluctuations of their values are not very likely to occur. However, the

situation seems to be quite different if one wishes to apply the theory of RCINAR(1) processes to the

models of queueing theory (as it has been done in [1]) when the latter are assumed to operate under

a heavy traffic regime. See, for instance, [3, 5, 10, 13, 37, 54] and [6, 38, 41] for queueing network models

where it is assumed that the network input has sub-exponential or, more specifically, regularly varying

distribution tails (typically resulting from the distribution of the length of ON/OFF periods). We remark

that the extensive literature on queueing networks in a heavy traffic regime is partially motivated by the

research on the Internet network activity where it has been shown that in many instances a web traffic

is well-described by heavy-tailed random patterns; see, for instance, [11, 31, 39, 48].

2 Statement of results

This section contains the statement of our main results, and is structured as follows. We start with

a formulation of our specific assumptions on the coefficients (Φ,Z) of the model (see Assumptions 2.1

and 2.2 below). Proposition 2.3 then ensures the existence of the limiting distribution of Xn and also

states formally some related basic properties of this Markov chain. Theorem 2.5 is concerned with the

asymptotic of the tail of the limiting distribution in the case where the additive coefficients Zn belong to

the domain of attraction of a stable law. The theorem shows that in this case, the tails of the limiting

distribution inherit the structure of the tails of Z0. This observation leads us to Theorem 2.6, which is an

extreme value limit theorem for the sequence (Xn)n∈Z+ . Weak convergence of suitably normalized partial
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sums of Xn is the content of Theorems 2.11 and 2.12. The proof of these limit theorems exploit the

branching process representation of a regenerative structure which is described by Proposition 2.7. Two

curious implications of the existence of this regenerative structure are stated in Propositions 2.8 and 2.9.

The proofs of main theorems stated below in this section are given in Section 3 while the proofs of two

auxiliary propositions are deferred to the Appendix.

Specific assumptions on the random coefficients. Recall that a function f : R → R is called

regularly varying if f(t) = tαL(t) for some α ∈ R and a function L such that limt→∞ L(λt)/L(t) = 1 for

all λ > 0. The parameter α is called the index of the regular variation. If α = 0, then f is said to be

slowly varying. We will denote by Rα the class of all regularly varying real-valued functions with index

α. We will impose the following assumption on the coefficients of the model defined by (1.1).

Assumption 2.1. (A1) P (φ0 = 1) < 1.

(A2) For some α > 0, there exists h ∈ Rα such that limt→∞ h(t) · P (Zn > t) = 1.

Throughout the paper we will assume (actually, without loss of generality in view of (A2) and [4,

Theorem 1.5.4] which ensures the existence of a non-decreasing equivalent for h) that the following

condition is included in Assumption 2.1:

(A3) Let h : (0,∞) → R be as in (A2). Then supt>0 h(t) · P (Zn > t) < ∞.

The assumption of heavy-tailed innovations (noise terms) in autoregressive models is quite common

in the applied probability literature. It is a well-known paradigm that such an assumption yields a rich

probabilistic structure of the stationary solution and allows for a great flexibility in the modeling of its

asymptotic behavior. See for instance [19, 21], more recent articles [8, 9, 23, 29, 36, 42, 43], and references

therein.

In a few occasions (including a central limit theorem stated below in Theorem 2.14) we will use the

following weaker version of Assumption 2.1:

Assumption 2.2. Condition (A1) of Assumption 2.1 is satisfied and, in addition, the following holds:

(A4) E[Zβ
0 ] < ∞ for some β > 0.

Assumption 2.2 is stronger than the usual E(log+ |Z0|) < +∞, where x+ := max{x, 0} for x ∈ R,

which is essentially required for the existence and uniqueness of the stationary solution to (1.2). It can

be seen through the formula E[Zβ
0 ] =

∫∞
0 βxβ−1P (Z0 > x)dx (recall that Z0 � 0) that (A4) is basically

equivalent to the assumption that the distribution tails of Z0 are “not too thick”.

Limiting distribution of Xn. Let Yn ⇒ Y∞ stand for the convergence in distribution of a sequence

of random variables (Yn)n∈N to a random variable Y∞ (we will usually omit the indication “as n → ∞”).

We will use the notation X =D Y to indicate that the distributions of random variables X and Y coincide

under the law P0. For X ∈ N+ define Π0 ◦X := X and, recursively, Πk+1 ◦X := φk+1 ◦ (Πk ◦X). This

defines a sequence of random operators acting in N+ as follows:

Πk ◦X = φk ◦ φk−1 ◦ · · · ◦ φ1 ◦X, X ∈ N+. (2.1)

The existence of the stationary distribution for the sequence X = (Xn)n�0 introduced in (1.1) is the

content of the following proposition.

Proposition 2.3. Let Assumption 2.2 hold. Then,

(a) The following series converges to a finite limit with probability one:

X∞ :=

∞∑
k=0

X0,k, (2.2)

where the random variables (X0,k)k∈Z+ are independent, and X0,k =D Πk ◦ Z0 for any k ∈ N.

(b) Xn ⇒ X∞ for any X0 ∈ N+. Here (Xn)n∈Z+ is understood as the sequence produced by the

recursion rule (1.1) with an arbitrary initial value X0.

(c) The distribution of X∞ is the unique distribution of X0 which makes (Xn)n∈Z+ into a stationary

sequence.
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The proof of the proposition is deferred to the appendix. We remark that if E[Z2
0 ] < ∞ is assumed, the

above statement is essentially [53, Proposition 2.2]. For a counterpart of this result for AR(1) processes

see, for instance, [7, Theorem 1]. It is not hard to deduce from the above proposition the following

corollary, whose proof is omitted:

Corollary 2.4. Suppose that Assumption 2.2 holds, and let X = (Xn)n∈Z+ be a random sequence de-

fined by (1.1). Then X is an irreducible, aperiodic, and positive-recurrent Markov chain whose stationary

measure is supported on a set of integers {k ∈ Z+ : k � kmin}, where kmin := min{k ∈ Z+ : P (Z0 = k) >

0}. In particular, X is an ergodic sequence.

It follows from the above proposition that X∞ is the unique solution to the distributional fixed

point equation X =D φ0 ◦ X + Z0 which is independent of (φ0, B0, Z0), where B0 denotes the se-

quence (B0,k)k∈N. In fact, the explicit form (2.2) of the stationary distribution along with the iden-

tity (φn, Zn)n∈Z =D (φ−n, Z−n)n∈Z, implies that the unique stationary solution to (1.1) is given by the

following infinite series:

Xn =

n∑
k=−∞

Xk,n, (2.3)

where the random variables (Xk,n)k∈Z are independent, and

Xk,n =P φn−1 ◦ φn−2 ◦ · · · ◦ φk+1 ◦ Zk, k � n.

By means of the branching process interpretation,

Xk,n = #{progeny alive at time n of all the immigrants who arrived at time k}, (2.4)

with the convention thatXn,n = Zn andXk,n = 0 for k > n. Thus (2.3) states that the stationary solution

to (1.1) is formally obtained by letting the zero generation to be formed as a union of the following two

groups of individuals:

1. Z0 immigrants arriving at time zero, and

2. descendants, present in the population at time zero, of all “demo-immigrants” who has entered the

system at the negative times k = −1,−2, . . .

The random variables Xk,n can be defined rigorously on the natural state space of the branching process,

which is a space of family trees describing the “genealogy” of the individuals (see [22, Chapter VI]).

To distinguish between the branching process starting at time zero with X0 = 0 and its stationary

version “starting at time −∞”, we will denote by P the distribution of the latter, while continuing to

use P0 for the probability law of the former. We will denote by E the expectation operator associated

with the probability measure P. We will use the notation X =P Y to indicate that the distributions of

random variables X and Y coincide under the stationary law P. As it has been mentioned earlier, we will

consistently state our results for the underlying process under the law P0 and thus will consider measure

P as an auxiliary tool rather than a primary object of interest.

In the case when the additive term in the underlying random linear recursion belongs to the domain

of attraction of a stable law we have the following theorem:

Theorem 2.5. Let Assumption 2.1 hold. Then,

lim
t→∞h(t) · P (X∞ > t) = (1 − E[φα

0 ])
−1 ∈ (0,∞).

A prototype of this result for AR(1) processes has been obtained in [19,21]. The proof of Theorem 2.5

given in Subsection 3.1 relies on an adaptation to our setup of a technique which has been developed

in [19].

Extreme values of X . We next show that the running maximum of the sequence X exhibits the

same asymptotic behavior as that of Z = (Zn)n∈Z+ . Let

Mn = max{X1, . . . , Xn}, n ∈ N, (2.5)
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and

bn = inf{t > 0 : h(t) � n}, (2.6)

where h(t) is the function introduced in Assumption 2.1.

The proof of the following theorem is given in Subsection 3.2 below.

Theorem 2.6. Let Assumption 2.1 hold. Then, under the law P0, Mn/bn ⇒ M∞, where M∞ is a

proper random variable with the following distribution function:

P0(M∞ > x) = e−x−1/α

, x > 0,

where α > 0 is the constant introduced in Assumption 2.1.

The distribution of M∞ belongs to the class of the so-called Fréchet extreme value distributions and

in fact (see, for instance, [14, Subsection 3.3]),

P0(M∞ > x) = lim
n→∞P

(
max

1�k�n
Zk > xbn

)
, x > 0.

It is quite remarkable that the distribution of φ0 does not play any role in the result of Theorem 2.6. An

intuitive explanation for this phenomenon, which can be derived from the proof, is as follows. Due to the

basic property of regular variation, two independent terms φn ◦Xn−1 and Zn are unlikely to “help” each

other in creating a large value of the sum Xn+1 = φn ◦Xn−1 + Zn. Moreover, the law of large numbers

ensures that the ratio φn ◦ Xn−1/Xn−1 is bounded away from one with an overwhelming probability

whenever φn ◦Xn−1 is large. Therefore, the asymptotic of the extreme value of the sequence Xn follows

that of Zn.

Regenerative structure of X . Let

ν0 = 1 and νn = inf{i > νn−1 : φi ◦Xi−1 = 0}, (2.7)

with the usual convention that the infimum over an empty set is ∞. We will refer to νn as a regeneration

time and to the time elapsing from νn−1 until νn − 1 as the n-th renewal epoch. In the language of

branching processes, at the regeneration times the extinction occurs and and the process starts again

with the next wave of the immigration. For n ∈ N, let

σn = νn − νn−1 and Rn = (Xi : νn−1 � i < νn)

be, respectively, the length of the n-th renewal epoch and the list of the values of Xi recorded during the

n-th renewal epoch.

The proof of the following proposition is given in the Appendix.

Proposition 2.7. Let Assumption 2.2 hold. Then,

(a) P0(νn < ∞) = 1 for all n ∈ N. Moreover, the pairs (σn, Rn)n∈N form an i.i.d. sequence.

(b) There exist positive constants K1 > 0 and K2 > 0 such that

P0(σ1 > t) � K1e
−K2t, ∀ t > 0. (2.8)

While the first part of the proposition is a standard Markov chain exercise, the exponential bound in

(2.8) is a delicate result. A similar bound has been proved for a general type of branching processes with

immigration in [27]. An argument which is due to Kozlov and which has been adapted for the proof

of [27, Theorem 4.2] goes through almost verbatim for our setting. We provide a suitable variation of

this argument in the appendix.

The existence of the “life-cycles” (i.e., renewal epochs) for the branching process implies, for instance,

the following. Recall Xk,n from (2.4). Let

λn = n−max{k < n : Xk,n > 0} and ηn =

∑n
k=1 Xk,n · (n− k)∑n

k=1 Xk,n

be, respectively, the maximal and the average age of the individuals present at generation n (see the

above footnote remark on page 178).
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Proposition 2.8. Let Assumption 2.2 hold. Then both λn and ηn converge weakly, as n → ∞, to

proper distributions. More precisely, under the law P0,

λn ⇒ σ1 · U and ηn ⇒ −
∑0

k=−∞ Xk,0 · k∑0
k=−∞ Xk,0

,

where U is a random variable which is independent of σ1 and is distributed uniformly over the

interval [0, 1].

The first result in the above proposition is a direct implication of the renewal theorem whereas the

second one is a consequence of the explicit formula for ηn given above and the fact that Xk,0 = 0 for

k < ν−1 and P (ν−1 < ∞) = 1. Here ν−1 is time of the last renewal up to time zero for the process

starting at −∞. We leave details to the reader.

Another interesting implication of the existence of the regenerative structure is the convergence in

distribution of the coalescence time at generation n. Suppose that Xn > 2 and sample at random two

individuals present at generation n. Then the coalescence time Tn is defined as n − k if the immigrant

ancestors of both individuals have entered the system at the same time k ∈ Z+, and is set to be infinity

otherwise (cf., for instance, [30]). Since the probability of sampling of both individuals among the

descendants of the immigration wave k is
Xk,n(Xk,n−1)
Xn(Xn−1) ,

P0(Tn � t) = E

[ ∑n
k=n−t Xk,n(Xk,n − 1)∑n

k=1 Xk,n(
∑n

k=1 Xk,n − 1)

]
.

We have thus obtained the following proposition:

Proposition 2.9. Let Assumption 2.2 hold. Then Tn converges weakly under P0, as n → ∞, to a

proper random variable with the following distribution function on N ∪ {0,+∞}:

F (t) = E

[ ∑0
k=−t Xk,0(Xk,0 − 1)∑0

k=−∞ Xk,0(
∑0

k=−∞ Xk,0 − 1)

]
, t < ∞,

where 0
0 inside the expectation is interpreted as 0.

Growth rate and fluctuations of the partial sums of X . Let Sn =
∑n

k=1 Xk. The following law

of large numbers is a direct consequence of Corollary 2.4.

Proposition 2.10. Let Assumption 2.2 hold with β = 1. Then

lim
n→∞

Sn

n
= E[X0] =

E[Z0]

1− E[φ0]
, P0-a.s.

The next theorem is concerned with the rate of the growth of the partial sums when Z0 has infinite

mean. For α ∈ (0, 2] and b > 0 denote by Lα,b the strictly asymmetric stable law of index α with the

characteristic function

log L̂α,b(t) = −b|t|α
(
1 + i

t

|t|fα(t)
)
, (2.9)

where fα(t) = − tan π
2α if α 	= 1, f1(t) = 2/π log t. With a slight abuse of notation we use the same

symbol for the distribution function of this law. If α < 1, Lα,b is supported on the positive reals, and if

α ∈ (1, 2], it has zero mean [14, Section 2.2].

Recall bn from (2.6). The following result is proved in Subsection 3.3 below by using an approximation

of the partial sums of the process by those of a stationary strongly mixing sequence for which we are able

to verify the conditions of a general stable limit theorem.

Theorem 2.11. Let Assumption 2.1 hold with α ∈ (0, 1). Then b−1
n Sn ⇒ Lα,b.

We next study the fluctuations of the partial sums in the case where nontrivial centering of Xn is

required to obtain a proper weak limit for the partial sums.
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Theorem 2.12. Let Assumption 2.1 hold with α ∈ [1, 2]. For n ∈ N, define

an =

{
bn, where bn is defined in (2.6), if α < 2,

inf {t > 0 : nt−2 ·E[X2
0 ; X0 � t] � 1}, if α = 2.

Denote μ := E[X0]. Then the following holds for some b > 0:

(i) If α = 1, then a−1
n (Sn − cn) ⇒ L1,b with cn = nE[X0;X0 � an].

(ii) If α ∈ (1, 2), then a−1
n (Sn − nμ) ⇒ Lα,b.

(iii) If α = 2 and E[Z2
0 ] = ∞, then a−1

n (Sn − nμ) ⇒ L2,b.

Recall νn from (2.7) and define

Wn =

νn−1∑
i=νn−1

Xi, n ∈ N.

Theorem 2.12 can be derived from stable limit theorems for partial sums of i.i.d. variables, using the

regenerative structure and the following lemma.

Lemma 2.13. Let Assumption 2.1 hold. Then the following limit exists:

lim
t→∞h(t) · P0(W1 > t).

Moreover, the limit is finite and strictly positive.

The proof of the lemma given below in Subsection 3.4 is (although technical details are quite different)

along the line of the proof of a similar result given for a different branching process in [26]. We remark

that though a similar technique can be used to obtain Theorem 2.11, we prefer to employe a more

direct approach in the case α ∈ (0, 1). Theorem 2.12 follows from the above lemma by using a standard

argument, which is outlined in [26] for the case h(x) = x−1. Since only an obvious minor modification is

required to extend the argument to a general h (see, for instance, [32] for h(x) = x−2), we omit details

of this argument here.

If an appropriate second moment condition is assumed, one can establish the following functional limit

theorem for normalized partial sums of X . Let D(R+,R) denote the set of real-valued càdlàg functions

on R+ := [0,∞), endowed with the Skorokhod J1-topology. Let 
x� denote the integer part of x ∈ R. We

have the following theorem:

Theorem 2.14. Let Assumption 2.2 hold with a constant β > 2. Then, as n → ∞, the sequence of

processes

S
(n)
t = n−1/2(S�nt� − ntμ), t ∈ [0, 1],

in D(R+,R) converges weakly to a non-degenerate Brownian motion Wt, t ∈ [0, 1].

Theorem 2.14 is a particular case of [40, Theorem 1.5], and therefore its proof is omitted. Notice that

the conditions of the theorem are satisfied if Assumption 2.1 holds with α > 2.

3 Proof of the main results

This section is devoted to the proof of the theorems stated in Section 2 (namely, Theorems 2.5, 2.6, 2.11

and 2.12), and is divided into four subsections correspondingly.

3.1 Proof of Theorem 2.5

First, we observe the following lemma:
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Lemma 3.1. Let X ∈ N+ be a random variable in the underlying probability space such that

(i) X is independent of (φn, Zn, Bn)n∈Z+ , where Bn := (Bn,k)k∈N.

(ii) limt→∞ h(t) · PΦ(X > t) = 1 for some h ∈ Rα, α > 0.

Then limt→∞ h(t) · PΦ(φ0 ◦X > t) = φα
0 .

Proof. Fix a constant ε ∈ (0, 1). For t > 0 define the following three events:

At,ε = {X > t · (φ−1
0 + ε)},

Bt,ε = {t · (φ−1
0 − ε) < X � t · (φ−1

0 + ε)},
Ct,ε = {X � t · (φ−1

0 − ε)}.

We will use the following splitting formula:

PΦ(φ0 ◦X > t) = PΦ(φ0 ◦X > t; At,ε) + PΦ(φ0 ◦X > t; Bt,ε) + PΦ(φ0 ◦X > t; Ct,ε).

By the law of large numbers,

lim
n→∞

1

n

n∑
k=1

B1,k = φ0, P-a.s.

Since h(t) is regularly varying, Chernoff’s bound (Cramér’s large deviation theorem for coin flipping,

see [12]) applied to the partial sums
∑n

k=1 Bk implies that

0 � lim sup
t→∞

h(t) · PΦ(φ0 ◦X > t; Ct,ε) � lim sup
t→∞

h(t) · PΦ

(∑�t(φ−1
0 −ε)�

k=1
Bk > t

)
= 0.

Next, by the conditions of the lemma,

lim
t→∞h(t) · PΦ(φ0 ◦X > t; Bt,ε) � lim

t→∞h(t) · PΦ(Bt,ε)

= [(φ−1
0 − ε)−α − (φ−1

0 + ε)−α] →ε→0 0.

Finally, using again the large deviation principle for
∑n

k=1 Bk,

lim inf
t→∞ h(t) · PΦ(φ0 ◦X > t; At,ε) = lim inf

t→∞ h(t) · [PΦ(At,ε)− PΦ(φ0 ◦X � t; At,ε)]

� lim inf
t→∞ h(t) · PΦ(At,ε) = (φ−1

0 + ε)−α.

On the other hand, clearly,

lim inf
t→∞ h(t) · PΦ(φ0 ◦X > t; At,ε) � lim inf

t→∞ h(t) · PΦ(At,ε) = (φ−1
0 + ε)−α.

Since ε > 0 is arbitrary and (φ−1
0 +ε)−α → φα

0 as ε goes to zero, this completes the proof of the lemma.

Remark 3.2. The above proof of Lemma 3.1 can be adopted without modification for a more general

type of sums
∑X

k=1 Bk, where X ∈ N+ has regularly varying distribution tails and (Bk)k∈N are inde-

pendent of X. In fact, the only property of the sequence Bk required by the proof is the availability of

a non-trivial large deviations upper bound for its partial sums. Note that if f(λ) := EΦ[e
λB1 ] is finite

in a neighborhood of zero, such a bound in the form PΦ(| 1n
∑n

k=1 Bk − EΦ[B1]| > x) � c(x)e−nI(x) with

suitable constants c(x), I(x) > 0 holds for any x > 0 (see, for instance, the first inequality in the proof

of [12, Lemma 2.2.20]).

Recall (see, for instance, [14, Lemma 1.3.1]) that if X and Y are two independent random variables

such that limx→∞ h(x) · P (X > x) = c1 > 0 and limx→∞ h(x) · P (Y > x) = c2 > 0 for some h ∈ Rα,

α > 0, then

lim
x→∞h(x) · P (X + Y > x) = c1 + c2. (3.1)
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Using this property and iterating (1.1), one can deduce from Lemma 3.1 the following corollary. Consider

(in an enlarged probability space, if needed) a sequence X̃ = (X̃n)n∈Z+ which solves (1.1), that is a

sequence such that

X̃n =

˜Xn−1∑
k=1

Bn,k + Zn, n ∈ N, (3.2)

for some initial (not necessarily equal to zero) random value X̃0.

Corollary 3.3. Let Assumption 2.1 hold and suppose in addition that the following two conditions are

satisfied:

(i) X̃0 is independent of (φk, Bk, Zk)k>0, where Bk = (Bk,j)j∈N.

(ii) limt→∞ h(t) · PΦ(X̃0 > t) = c0 for some random variable c0 = c0(Φ).

Then limt→∞ h(t) · PΦ(X̃n > t) = cn for any n ∈ N, where the random variables cn = cn(Φ) are defined

recursively by

cn+1 = cnφ
α
n+1 + 1, n ∈ Z+. (3.3)

The recursive relation (3.3) implies that

cn = c̄n + c0

n∏
j=1

φα
j , where c̄n = 1 +

n∑
k=2

n∏
j=k

φα
j , (3.4)

and hence (see, for instance, [7, Theorem 1]) the random variables cn converge in distribution, as n → ∞,

to c∞ := 1 +
∑∞

k=0

∏k
i=0 φ

α
−i. Furthermore, we have the following:

Corollary 3.4. Suppose that the conditions of Corollary 3.3 are satisfied and, in addition, there exists

a positive constant C > 0 such that the following holds:

P
(
sup
t>0

{h(t) · PΦ(X̃0 > t)} < C
)
= 1.

Then the following limit exists and the identity holds:

lim
n→∞h(t) · P (X̃n > t) = E[cn], n ∈ N,

where cn are random variables defined in (3.4).

Proof. Corollary 3.3 and the bounded convergence theorem imply that

lim
t→∞h(t) · P (X̃n > t) = lim

t→∞ h(t) ·E[PΦ(X̃n > t)]

= E
[
lim
t→∞h(t) · PΦ(X̃n > t)

]
= E[cn]. (3.5)

To justify interchanging of the limit with the expectation, observe that X̃n � X̃0 +
∑n

k=1 Zk and hence,

by virtue of (A3) in Assumption 2.1, the following inequalities hold with probability one for some positive

constant C1 > 0:

h(t) · PΦ(X̃n > t) � h(t) · PΦ(X̃0 > t/2) + h(t) · PΦ

( n∑
k=1

Zk > t/2
)

� h(t) · PΦ(X̃0 > t/2) + nh(t) · P (Z0 > t/(2n))

� C
h(t)

h(t/2)
+ C1n

h(t)

h(t/(2n))
.

It follows (see, for instance, [19, Lemma 1]) that there exists a constant C2 > 0 such that

P
(
sup
t>t0

{h(t) · PΦ(X̃n > t)} < C2

)
= 1.

This enables one to apply the bounded convergence theorem in (3.5) and thus completes the proof of

the corollary.
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In what follows notations X �D Y and X �D Y for random variables X and Y are used to indicate

that P (X > t) � P (Y > t) or, respectively, P (X > t) � P (Y > t) holds for all t ∈ R. In order to exploit

Corollary 3.4 in the proof of Theorem 2.5, we need the following lemma:

Lemma 3.5. Suppose that the conditions of Corollary 3.4 are satisfied. Then

(a) If X̃0 �D X̃1, then X̃n �D X̃n+1 for all n ∈ N.

(b) If X̃0 �D X̃1, then X̃n �D X̃n+1 for all n ∈ N.

Proof. The proof is by induction. Suppose first that X̃n−1 �D X̃n for some n ∈ N, X̃n−1 is independent

of (φk, Bk, Zk)k>n−1, and X̃n is independent of (φk, Bk, Zk)k>n. We will now use the following standard

trick to construct an auxiliary random pair (Vn−1, Vn) such that

P (Vn−1 � Vn = 1), Vn−1 =P X̃n−1, and Vn =P X̃n. (3.6)

Let U be a uniform random variable on [0, 1], independent of the random coefficients sequence (Φ,Z).

Denote by Fn and Fn−1, respectively, the distribution functions of Xn and Xn−1. Set Vn = F−1
n (U) and

Vn−1 = F−1
n−1(U), where F−1(y) := inf{x ∈ R : F (x) � y}, y ∈ [0, 1], with the convention that inf ∅ = ∞.

Let X̃n+1 = φn+1 ◦ X̃n + Zn+1. Then X̃n+1 is independent of (φk, Bk, Zk)k>n+1. Furthermore, since

(Vn−1, Vn) is independent of (Φ,Z), we obtain for any t > 0,

P (X̃n+1 > t) = P (φn+1 ◦ X̃n + Zn+1 > t) = P (φn+1 ◦ Vn + Zn+1 > t)

� P (φn+1 ◦ Vn−1 + Zn+1 > t) = P (φn ◦ Vn−1 + Zn > t)

= P (φn ◦ X̃n−1 + Zn > t) = P (X̃n > t). (3.7)

This shows that part (a) of the lemma holds true. The same argument, but with � replaced by � and

vice versa in the base of induction, (3.6) and (3.7), yields part (b).

We are now in a position to complete the proof of Theorem 2.5. First, we have the following lemma:

Lemma 3.6. There exists a random variable X̃0 � 0 satisfying the conditions of Corollary 3.4, such

that X̃1 �D X̃0.

Proof. Set X̃0 = Z−1.

In view of Lemma 3.5, this implies that we can find a sequence X̃n that solves (1.1) and such that

X̃n �D X̃∞, while X̃0 satisfies the conditions of Corollary 3.4. Combining this result with the conclusion

of the corollary yields

lim inf
t→∞ h(t) · P (X∞ > t) � lim

t→∞h(t) · P (X̃n > t) = E[cn], n ∈ N.

Hence

lim inf
t→∞ h(t) · P (X∞ > t) � lim

n→∞E[cn] =
1

1− E[φα
0 ]
. (3.8)

On the other hand, we have the following lemma:

Lemma 3.7. Let Assumption 2.1 hold. There exists a random variable X̃0 � 0 satisfying the conditions

of Lemma 3.1 such that X̃1 �D X̃0.

Proof. Given a realization of the sequence Φ, choose a constant c0 in such a way that

c0 >
1

1− E[φα
0 ]
.

Let Y0 = c
1/α
0 Z−1. Then limt→∞ h(t) · P (Y0 > t) = c0. If we would choose X̃0 = Y0, we would have

c1 := limt→∞ h(t) · P (X̃1 > t) < c0 by virtue of (3.3) and Corollary 3.4. This would imply that

P (X̃1 > t) < P (X̃0 > t) for t > t0, where t0 > 0 is a positive constant which depends on c0. Consider
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now (in an enlarged probability space, if needed) a random variable X̃0 such that X̃0 is independent of

(φk, Bk, Zk)k∈Z and

P (X̃0 > t) = P (Y0 > t | Y0 > t0).

Note that such X̃0 satisfies the conditions of Corollary 3.4 because PΦ(X̃0 > t) = P (X̃0 > t) with

probability one, and for t > t0,

h(t) · P (X̃0 > t) � 1

P (cα0Z0 > t0)
· h(t)

h(tc−α
0 )

(h(tc−α
0 ) · P (Z0 > tc−α

0 )),

and supt>0 h(t)/h(tc
−α
0 ) < ∞ (see, for instance, [19, Lemma 1]). Then, for t > t0,

P (φ1 ◦ X̃0 + Z1 > t) = P (φ1 ◦ Y0 + Z1 > t | Y0 > t0)

=
P (φ1 ◦ Y0 + Z1 > t;Y0 > t0)

P (Y0 > t0)
� P (φ1 ◦ Y0 + Z1 > t)

P (Y0 > t0)

� P (Y0 > t)

P (Y0 > t0)
= P (Y0 > t | Y0 > t0) = P (X̃0 > t).

On the other hand, if t � t0 then

P (X̃0 > t) = P (X̃0 > t | X̃0 > t0) = 1.

Thus

P (φ1 ◦ X̃0 + Z1 > t) � P (X̃0 > t)

for all t > t0, and we can set X̃0 as the initial value for the recursion.

Combining this result with Corollary 3.4 yields

lim sup
t→∞

h(t) · P (X∞ > t) � lim
t→∞h(t) · P0(Xn > t) = E[cn], n ∈ N.

Hence,

lim sup
t→∞

h(t) · P (X∞ > t) � lim
n→∞E[cn] =

1

1− E[φα
0 ]
.

The proof of Theorem 2.5 is completed in view of (3.8).

3.2 Proof of Theorem 2.6

For n ∈ N, denote Kn = max1�k�n Zk. It follows from (1.1) that Mn �D Kn. To conclude the proof of

the theorem, it thus suffices to show that

lim sup
n→∞

P0(Mn > xbn) � lim
n→∞P0(Kn > xbn) = e−x−1/α

, x > 0.

Observe that, under the stationary law P, the branching process (without immigration) originated by the

initial X0 individuals will eventually die out. Therefore, the total number of progeny of the individuals

in the zero generation is P -a.s. finite. Furthermore, the branching process Xn −∑0
k=−∞ Xk,n, n ∈ N,

obtained by excluding the contribution of these individuals from the original one, is distributed under P

as Xn, n ∈ N, under P0. It thus suffices to show that

lim sup
n→∞

P (Mn > xbn) � lim
n→∞P (Kn > xbn) = e−x−1/α

, x > 0.

Toward this end, define the following events. For x > 0, δ > 0, and ε ∈ (0, 1/2), let

A
(n)
x,δ = {xbn < Mn � x(1 + δ)bn}, n ∈ N,
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B
(n)
x,δ,ε = A

(n)
x,δ ∩ {x(1− ε)bn < Kn � x(1 + δ)bn}, n ∈ N,

C
(n,k)
x,δ,ε = A

(n)
x,δ ∩ {Xk > xbn, εxbn < Zk � x(1− ε)bn}, n ∈ N, k = 1, 2, . . . , n,

D
(n,k)
x,δ,ε = A

(n)
x,δ ∩ {Xk > xbn, Zk � xεbn}, n ∈ N, k = 1, 2, . . . , n.

Then

P (A
(n)
x,δ ) � P (B

(n)
x,δ,ε) + P

( n⋃
k=1

C
(n,k)
x,δ,ε

)
+ P

( n⋃
k=1

D
(n,k)
x,δ,ε

)
� P (x(1 − ε)bn < Kn � x(1 + δ)bn) + nP (C

(n,1)
x,δ,ε ) + nP (D

(n,1)
x,δ,ε ). (3.9)

Taking into account the independence of the pair (φk, Xk−1) of Zk, it follows from (1.2), Assumption 2.1,

and Lemma 3.1 that for any positive constants δ, x, ε > 0

lim sup
n→∞

nP (C
(n,1)
x,δ,ε ) � lim

n→∞nP (φ1 ◦X0 > εxbn, Z1 > εxbn) = 0. (3.10)

Furthermore,

P (D
(n,1)
x,δ,ε ) � P (φ1 ◦X0 > (1− ε)xbn, X0 � x(1 + δ)bn)

� P (φ1 ◦X0 > (1− ε)xbn|X0 � x(1 + δ)bn)

� P

( �x(1+δ)bn�∑
i=1

B0,i > (1− ε)xbn

)

= E

[
PΦ

(
1

x(1 + δ)bn

�x(1+δ)bn�∑
i=1

B0,i >
1− ε

1 + δ

)]
. (3.11)

Assume now that the constants δ > 0 and ε > 0 are chosen so small that 1−ε
1+δ > E[φ0], and hence

1− ε

1 + δ
> ηE[φ0] for some η > 1. (3.12)

We next derive a simple large-deviations type upper bound for the right-most expression in (3.11). Denote

x0 = 1−ε
1+δ . It follows from Chebyshev’s inequality that for any λ > 0,

E

[
PΦ

(
1

n

n∑
i=1

B0,i >
1− ε

1 + δ

)]
� e−nλx0E[(1− φ0 + φ0e

λ)n].

Thus for all λ > 0 small enough, namely for all λ > 0 such that eλ < 1 + ηλ, we have

E

[
PΦ

(
1

n

n∑
i=1

B0,i >
1− ε

1 + δ

)]
� e−nλx0E[(1− φ0 + φ0(1 + ηλ))n]

= e−nλx0E[(1 + φ0ηλ)
n] � e−nλx0E[eφ0·nηλ].

Therefore, for all λ > 0 small enough we have

lim sup
n→∞

1

n
logE

[
PΦ

(
1

n

n∑
i=1

B0,i >
1− ε

1 + δ

)]
� −λx0 + logE[eηλφ0 ].

Given η, let f(λ) = logE[eηλφ0 ]. By the bounded convergence theorem, f ′(0) = ηE[φ0]. Hence, in view

of (3.12),

lim sup
n→∞

1

n
logP

(
1

n

n∑
i=1

B0,i >
1− ε

1 + δ

)
< 0.
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Since bn is a regularly varying sequence, it follows from (3.11) that

lim
n→∞ nP (D

(n,1)
x,δ,ε ) = 0. (3.13)

Therefore, since ε > 0 above can be made arbitrary small (in particular, the left-hand side of (3.12) is an

increasing function of ε), combining (3.13) together with (3.10) and (3.11) yields,

lim sup
n→∞

P (A
(n)
x,δ ) � P (xbn < Kn � x(1 + δ)bn),

and hence

lim sup
n→∞

P (Mn > xbn) = lim sup
n→∞

∞∑
k=0

P ((1 + kδ)xbn < Mn � (1 + kδ + δ)xbn)

�
∞∑
k=0

lim sup
n→∞

P ((1 + kδ)xbn < Mn � (1 + kδ + δ)xbn)

�
∞∑
k=0

P ((1 + kδ)xbn < Kn � (1 + kδ + δ)xbn) = P (Kn > xbn).

The proof of Theorem 2.6 is complete.

3.3 Proof of Theorem 2.11

For n ∈ Z, let

Yn =

∞∑
t=n

Xn,t (3.14)

be the total number of progeny at all generations of all the immigrants entered at time n, including the

immigrants themselves. Then

n∑
k=1

Xk =

n∑
k=1

k∑
t=0

Xt,k =

n∑
t=0

n∑
k=t

Xt,k =

n∑
t=0

( ∞∑
k=t

Xt,k −
∞∑

k=n+1

Xt,k

)
=

n∑
t=0

Yt −
n∑

t=0

∞∑
k=n+1

Xt,k.

Notice that

n∑
t=0

∞∑
k=n+1

Xt,k =D

0∑
t=−n

∞∑
k=1

Xt,k �
0∑

t=−∞

∞∑
k=1

Xt,k =

0∑
t=−ν−1

∞∑
k=1

Xt,k �
ν1∑

t=−ν−1

Yt < ∞.

Hence, in order to show that Sn/bn converges in distribution, it suffices to show that b−1
n

∑n
k=1 Yk

converges to the same limit. Note that the sequence (Yn)n∈Z has the same distribution under P0 as it

has under P.

The following series of technical lemmas will enable us to apply a general stable limit theorem (namely,

[45, Theorem 1.1]; see also [28, Corollary 5.7]) to the partial sums of the sequence Yn.

Lemma 3.8. The sequence (Yn)n∈Z is strongly mixing, i.e., limn→∞ χ(n) = 0, where

χ(n) := sup{P (A ∩B)− P (A)P (B) : A ∈ Fn, B ∈ F0},

and Fn := σ(Yi : i � n), Fn := σ(Yi : i < n).

Proof. This is a variation of [40, Lemma 3.2]. For the sake of completeness, we give here a suitable

modification of the argument. For n ∈ Z, let Yn and Yn denote, respectively, the sequences (Yi)i<n and

(Yi)i�n. On one hand, for any A ∈ σ(Yi : i > n) and B ∈ σ(Yi :� 0),

P (Yn ∈ A,Y0 ∈ B) � P (Yn ∈ A,Y0 ∈ B, ν1 � n/2)
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= E[PΦ(Y0 ∈ B, ν1 � n/2) · PΦ(Yn ∈ A)]

� P (Y0 ∈ B, ν1 � n/2) · P (Yn ∈ A)

� P (Y0 ∈ B) · P (Yn ∈ A)− P (ν1 > n/2).

On the other hand,

P (Yn ∈ A,Y0 ∈ B) � P (Yn ∈ A,Y0 ∈ B, ν1 � n/2) + P (ν1 > n/2)

= E[PΦ(Y0 ∈ B, ν1 � n/2) · PΦ(Yn ∈ A)] + P (ν1 > n/2)

� P (Y0 ∈ B, ν1 � n/2) · P (Yn ∈ A) + P (ν1 > n/2)

� P (Y0 ∈ B) · P (Yn ∈ A) + P (ν1 > n/2).

It thus remains to show that P (ν1 < ∞) = 1. By Proposition 2.7, we have P0(ν1 < ∞) = 1. Since,

clearly, P (φ1 ◦ X0 = 0) > 0, the strong Markov property implies P (ν1 < ∞) > 0. Since the Markov

chain (Xn, Zn) forms an ergodic process according to Corollary 2.4, it follows from the ergodic theorem

that the the two-component Markov chain spends asymptotically a positive proportion of time at the set

{Xn = Zn} (one can also appeal directly to the Poincaré recurrence theorem). This completes the proof

of the lemma.

In view of the previous lemma we are seeking to apply to Yn the following general limit theorem for

strongly mixing stationary sequences obtained in [45] (see also a similar [28, Corollary 5.7]).

Theorem 3.9 (See [45, Theorem 1.1 and Corollary 1.2]). Let (Yn)n∈N be a stationary strongly mixing

sequence of non-negative random variables. Assume that for some α ∈ (0, 1), there exists h ∈ Rα such

that limt→∞ h(t) · P (Yn > t) = 1. For n ∈ N, define a process Un on the Skorokhod space D(R+,R) by

setting

Un(t) =
1

bn

�nt�∑
k=1

Yk, t � 0,

where bn are defined in (2.6). Then Un converges weakly in D(R+,R), as n → ∞, to a Lévy α-stable

process if and only if the following local dependence condition holds:

For any ε > 0, we have: lim
k→∞

lim sup
n→∞

n

�n/k�∑
j=2

P (Yj > εbn, Y1 > εbn) = 0. (3.15)

We remark that the assumption P (Yn ∈ Z+) = 1 is actually not needed and is not included in the

original version of the above theorem, as it is stated in [45]. It is not hard to verify that in our setting the

random variable Y1 has regularly varying distribution tails under the law PΦ. To transform this statement

into a corresponding claim under P we will need the following a-priori bound.

Lemma 3.10. Let Assumption 2.1 hold. Then

lim sup
x→∞

h(x) · P (Y1 > x) = C < ∞, (3.16)

where C ∈ (0,∞) is a positive constant whose value depends on the distribution of φ0 but not on the

distribution of Z0 (as long as Assumption 2.1 holds and h(x) is defined as in (A2)).

Proof. For any x > 0 and γ ∈ (0, 1),

P (Y1 > x) = P

( ∞∑
n=1

X1,n > x(1− γ)

∞∑
n=1

γn−1

)
�

∞∑
n=1

P (X1,n > xγn−1(1 − γ)).

Therefore,

lim sup
x→∞

h(x) · P (Y1 > x) �
∞∑
n=1

lim sup
x→∞

h(x) · P (X1,n > xγn−1(1 − γ))
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=
∞∑
n=1

lim sup
x→∞

h(x)

h(xγn−1(1− γ))
· h(xγn−1(1− γ)) · P (X1,n > xγn−1(1− γ))

=

∞∑
n=1

γ−α(n−1)(1 − γ)−α · lim sup
x→∞

h(x) · P (X1,n > x).

Applying Lemma 3.1 to the right-most expression in this inequality, we obtain by virtue of the bounded

convergence theorem that

lim sup
x→∞

h(x) · P (Y1 > x) �
∞∑

n=1

γ−α(n−1)(1− γ)−α ·E
[
lim
x→∞h(x) · PΦ(X1,n > x)

]
=

∞∑
n=1

(γ−α ·E[φα
0 ])

n−1(1− γ)−α.

Choose now γ ∈ (0, 1) such that γ > E[φα
0 ] concludes the proof of the lemma. To justify the above

application of the bounded convergence theorem, observe that X1,n � Z1 and Z1 is independent of Φ.

In order to study the exact asymptotic of the distribution tails of Y1, it is convenient to approximate

Y1 by Y
(m)
1 , where

Y (m)
n :=

n+m∑
k=n

Xn,k, n ∈ Z.

We have the following lemma:

Lemma 3.11. Let Assumption 2.1 hold. Then

lim
x→∞h(x) · P (Y

(m)
1 > x) = E

[(
1 +

m∑
i=1

i∏
j=1

φj

)α]
, (3.17)

for any m ∈ N.

Proof. Note that

Y (m)
n =

Zn∑
k=1

(
1 +

m∑
i=1

B
(i)
n,k

)
,

where B
(i)
n,k is the number of progeny (either zero or one) of the k-th immigrant at generation n, who is

present (or not) at the system at generation n+ i. Then an argument similar to the one which we have

employed in order to prove Lemma 3.1 (see also Remark 3.2) along with (3.1) ensure that

lim
x→∞h(x) · PΦ(Y

(m)
0 > x) =

(
1 +

m∑
i=1

EΦ[B
(i)
0,1]

)α

=

(
1 +

m∑
i=1

i∏
j=1

φj

)α

.

Since Y
(m)
0 � mZ0 and Z0 is independent of Φ, the bounded convergence theorem yields

lim
x→∞h(x) · P (Y

(m)
0 > x) = E

[
lim
x→∞h(x) · PΦ(Y

(m)
0 > x)

]
= E

[(
1 +

m∑
i=1

i∏
j=1

φj

)α]
,

which completes the proof of the lemma.

Combining together the results of Lemmas 3.10 and 3.11, we can deduce the following:

Lemma 3.12. Let Assumption 2.1 hold. Then

lim
x→∞h(x) · P (Y1 > x) = E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)α]
< ∞.
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Proof. First, observe that the lower bound

lim
x→∞h(x) · P (Y1 > x) � lim

m→∞ lim
x→∞h(x) · P (Y

(m)
1 > x) = E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)α]
holds by virtue of Lemma 3.11 and the monotone convergence theorem.

To prove the matching upper bound, notice that the difference Y1 − Y
(m)
1 is distributed under the law

P as Y1 is distributed under the law Q, where Q is defined in the same way as P with the only exception

that in the former case the distribution of Zn is assumed to be that of Πm+1 ◦Z0 under P. Furthermore,

since Πm+1 ◦ Z0 � Z0, Lemma 3.1 and the bounded convergence theorem imply that

lim
x→∞h(x) · P (Πm+1 ◦ Z0 > x) = (E[φα

0 ])
m+1.

It follows then from (3.16) with the probability measure P replaced by Q, that

lim
m→∞ lim sup

x→∞
h(x) · P (Y1 − Y

(m)
1 > x) = 0.

Thus, using again Lemma 3.11 and the monotone convergence theorem, we obtain that the following

holds for any ε > 0 :

lim sup
x→∞

h(x) · P (Y1 > x)

� lim
m→∞

{
lim
x→∞h(x) · P (Y

(m)
1 > x(1− ε)) + lim sup

x→∞
h(x) · P (Y1 − Y

(m)
1 > xε)

}
= lim

m→∞ lim
x→∞h(x) · P (Y

(m)
1 > x(1 − ε)) = E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)α]
· (1 − ε)−α.

Taking ε → 0 yields the desired upper bound. To conclude the proof of the lemma, it remains to note

that by Jensen’s inequality,

E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)α]
�

(
E

[
1 +

∞∑
i=1

i∏
j=1

φj

])α

= (1 − E[φ0])
−α < ∞,

where we used the assumption α ∈ (0, 1).

We are now in a position to complete the proof of Theorem 2.11. It suffices to verify that the conditions

of Theorem 3.9 hold for the sequence (Yn)n�1. In view of Lemmas 3.8 and 3.12, we only need to check

the validity of the “local dependence” condition (3.15). To this end, observe that for any j � 2, Yj and

Y1 are independent under the law Pφ, and hence Cauchy-Schwarz inequality yields

P (Yj > εbn, Y1 > εbn) = E[PΦ(Yj > εbn) · PΦ(Y1 > εbn)] � E[P 2
Φ(Y1 > εbn)].

An argument similar to the one we employed to prove Lemma 3.12 shows then that the following limit

exists and the identity holds:

lim
x→∞h(x)2 · E[P 2

Φ(Y1 > x)] = E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)2α]
< ∞.

Thus

lim
n→∞n2 · E[P 2

Φ(Y1 > εbn)] = ε−2α · E
[(

1 +

∞∑
i=1

i∏
j=1

φj

)2α]
< ∞,

and

lim
k→∞

lim sup
n→∞

n

�n/k�∑
j=2

P (Yj > εbn, Y1 > εbn)
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� lim
k→∞

lim sup
n→∞

n2

k
· E[P 2

Φ(Y1 > εbn)]

= lim
k→∞

lim sup
n→∞

n2

k
· n−2ε−2α · E

[(
1 +

∞∑
i=1

i∏
j=1

φj

)2α]
= 0,

as desired. The proof of Theorem 2.11 is completed.

3.4 Proof of Lemma 2.13

Recall Yn from (3.14). Define

Qn = Xn + total progeny of the Xn particles present at generation n.

For all A > 0 define its stopping time ςA = inf{n : Xn > A}. The random variable W1 can be represented

on the event {ςA < ν1} in the following form:

W1 =

ςA−1∑
n=0

Xn +QςA +
∑

ςA<n<ν1

Yn. (3.18)

The three terms in the right-hand side of (3.18) are evaluated in the following series of lemmas. It will

turn out that for large A, the main contribution to W1 in (3.18) comes from the second term. Fix any

δ > 0. It follows from (2.8) that for any A > 0,

P0

(min{ςA,ν1}−1∑
n=0

Xn � δt

)
� P0(Aν1 � δt) � K1e

−K2δt/A,

and hence

P0(W1 � δt, ςA � ν1) � P (Aν1 � δt) � K1e
−K2δt/A, (3.19)

P0

( ςA−1∑
n=0

Xn � δt, ςA < ν1

)
� P0(Aν1 � δt) � K1e

−K2δt/A. (3.20)

Lemma 3.13. For all δ > 0 there exists an A0 = A0(δ) < ∞ such that

h(t) · P0

( ∑
ςA<n<ν1

Yn � δt

)
� δ, for all A � A0 and t > 0. (3.21)

Proof. Using the identity
∑∞

n=1 n
−2 = π2/6 < 2 and the fact that Yn is independent of 1{ςA<n<ν1}

under the law P0, we obtain that the following holds for all t > 0 :

h(t) · P0

( ∑
ςA<n<ν1

Yn � δt

)
= h(t) · P0

( ∞∑
n=1

Yn1{ςA<n<ν1} � 6δtπ−2
∞∑

n=1

n−2

)

�
∞∑

n=1

P0(ςA < n < ν1) · h(t) · P0(Yn � 1/2 · δtn−2)

�
∞∑

n=1

P0(ςA < n < ν1) · h(t)

h(1/2 · δtn−2)
· h(1/2 · δtn−2)

· P0(Yn � 1/2 · δtn−2). (3.22)

To bound the term h(t)
h(1/2·δtn−2) , we apply the following simplified version of [19, Lemma 1]:

There exists K > 1 such that
h(λt)

h(t)
� K(λ−α + λα) for all λ > 0, t > 0. (3.23)
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It follows that

h(t)

h(1/2 · δtn−2)
� K2αn2α(δ−α + δα), t > 0.

Using Lemma 3.12 and (3.23), we obtain from (3.22) and the above bound that the following holds for

all t > 0 with a suitable constant C > 0 independent of n, δ, A and t :

h(t) · P0

( ∑
ςA<n<ν1

Yn � δt

)
� C2αt−α(δ−α + δα)E0[ν

2α+1
1 ; ςA < ν1]

� C2αt−α(δ−α + δα)

√
E0(ν

4α+2
1 ) ·

√
P0(ςA < ν1).

The claim follows now from (2.8), the first square root being bounded and the second one going to zero

as A → ∞.

It follows from (3.18), taking estimates (3.19)–(3.21) into account, that for any A > A0(δ) (where A0

is given by (3.21)) there exists tA > 0 such that

h(t) · P0(ςA < ν1, QςA � t) � h(t) · P0(W1 � t)

� h(t) · P0(ςA < ν1, QςA � t(1− 2δ)) + 3δ, (3.24)

for all t > tA. Thus, W1 can be approximated by QςA . The following lemma deals with the distribution

tails of the latter.

Lemma 3.14. Let Assumption 2.1 hold. Then,

(a) We have

lim sup
A→∞

lim sup
t→∞

h(t) · P0(XςA � t, ςA < ν1) < ∞. (3.25)

(b) The following limit exists and is finite for any given A > 0:

lim
t→∞h(t) · P0(XςA � t, ςA < ν1).

(c) The following limit exists and is finite for any given A > 0:

lim
t→∞ h(t) · P0(QςA � t, ςA < ν1).

Proof. (a) Recall Mn from (2.5). For t > A we have

P0(XςA > t; ςA < ν1) =
∑
n�1

A−1∑
a=0

P0(XςA > t, ςA = n,Xn > A,Xn−1 = a, ν1 > n)

=
∑
n�1

A−1∑
a=0

P0(Xn > t,Mn−1 < A,Xn−1 = a, ν1 > n)

�
∑
n�1

P (Zn > t− A,Mn−1 < A, ν1 > n)

=
∑
n�1

P (Zn > t− A) · P (Mn−1 < A, ν1 > n) � P (Z0 > t−A) ·E0[ν1].

In view of Assumption 2.1 and (2.8), this completes the proof of part (a).

(b) The computation is quite similar to the one in part (a). Namely, for t > A we have

P0(XςA > t; ςA < ν1) =
∑
n�1

A−1∑
a=1

P0(Zn > t− a, φn ◦Xn−1 = a,Mn−1 < A, ν1 > n)
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=
∑
n�1

A−1∑
a=1

P (Z0 > t− a) · P0(φn ◦Xn−1 = a,Mn−1 < A, ν1 > n)

=

A−1∑
a=1

P (Z0 > t− a) ·
∑
n�1

P0(φn ◦Xn−1 = a,Mn−1 < A, ν1 > n).

As before, ∑
n�1

P0(φn ◦Xn−1 = a,Mn−1 < A, ν > n) �
∑
n�1

P0(ν1 > n) = E[ν1] < ∞,

from which the claim of part (b) follows in view of Assumption 2.1.

(c) This is merely Lemma 3.12 applied to XςA under the conditional law P ( · | ςA < ν1) rather than to

Z1 under the regular measure P.

We are now in a position to conclude the proof of Lemma 2.13. It follows from (3.24), (3.23), and

Lemma 3.14 that

lim
t→∞ h(t) · P0(W1 > t) = lim

A→∞
lim
t→∞ h(t) · P0(QςA > t; ςA < ν1) < ∞.

The second limit, taken as A → ∞, in the right-hand side exists since the limit in the left-hand side does

not depend on A. Furthermore, by Assumption 2.1,

lim
t→∞ h(t) · P0(W1 > t) � lim

t→∞h(t) · P (Z1 > t) > 0,

concluding the proof of Lemma 2.13.
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Appendix: Proof of two auxiliary propositions

Proof of Proposition 2.3. (a) By Jensen’s inequality, if E[Zβ
0 ] < ∞ for β > 0, then E[Z

β/m
0 ] < ∞ for any

m ∈ N. Therefore, without loss of generality we can assume that β ∈ (0, 1) in Assumption 2.2. Assuming

from now on and throughout the proof of part (a) of Proposition 2.3 that β ∈ (0, 1), we obtain by virtue

of Jensen’s inequality for conditional expectations that

E0[(Πk ◦ Zk)
β ] = E0[E0[(Πk ◦ Zk)

β |Φ,Z]] � E0[(E0[Πk ◦ Zk|Φ,Z])β]

= E

[( k∏
j=1

φj · Zk

)β]
= E[Zβ

0 ] · (E[φβ
0 ])

k. (A.1)

Hence

E[Xβ
∞] = E

[( ∞∑
k=0

X0,k

)β]
�

∞∑
k=0

E[Xβ
0,k] � E[Zβ

0 ] ·
∞∑
k=0

(E[φβ
0 ])

k < ∞.

In particular, X∞ is P -a.s. finite.

(b) For n ∈ N, we have

Xn =

n∑
k=1

Xk,n +X(0,n),

where X(0,n) =P Πn ◦X0. Since P (limn→∞ Πn ◦X0 = 0) = 1 for any X0 ∈ N+, the limiting distribution

of Xn, if exists, is independent of X0. Furthermore, if X0 = 0, the i.i.d. structure of (Φ,Z) yields,

Xn =P

0∑
k=−n+1

Xk,0 =P Z0 +

n−1∑
k=1

Πk ◦ Zk,

The claim of part (b) follows now from the almost sure convergence of the series on the right-hand side

of the above identity to X∞.

(c) To see that the stationary distribution is unique, consider two stationary solutions (X
(1)
n )n∈Z+ and

(X
(2)
n )n∈Z+ to (1.1) corresponding to different initial values, X

(1)
n and X

(2)
n , respectively. Then, since Πn

are “thinning” operators,

|X(1)
n −X(2)

n | � Πn+1 ◦ |X(1)
0 −X

(2)
0 |,

and hence

lim
n→∞(X(1)

n −X(2)
n ) = 0, P -a.s.
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The proof of the proposition is complete.

Proof of Proposition 2.7. (a) By Corollary 2.4, P0(Xn = kmin i.o.) = 1, and hence P0(νn < ∞) = 1 for

all n ∈ N. The argument showing that the pairs (σn,Wn)n∈N form an i.i.d. sequence is standard (cf. [2])

and is based on the following two observation along with the use of the strong Markov property:

(i) The random times νn are times of the successive visits to the set {(x, y) ∈ Z
2 : x = y} by the

two-component Markov chain (Xn, Zn)n∈N. Furthermore, Xνn = Zνn =P Z0.

(ii) Transition kernel of the Markov chain (Xn, Zn) depends only on the current value of the first

component, but not on the value of the second.

(b) In order to prove part (b) of the proposition, it suffices to show that the following power series has

a radius of convergence greater than 1:

V (z) =

∞∑
t=0

P0(σ1 > t)zt.

Let us introduce some notation. Let v(t) = P0(σ1 > t),

h(r, t) = P

(
Xr,t 	= 0,

t−1∑
j=r+1

Xj,t = 0

)
and g(r, t) = P

( t−1∑
j=r

Xj,t = 0

)
.

Then

v(t) = P0(σ1 > t,Xt 	= 0) = P0

(
σ1 > t,

t−1∑
k=0

Xk,t 	= 0

)

=

t−2∑
k=0

P0

(
σ1 > t,Xk,t 	= 0,

t−1∑
j=k+1

Xk,t = 0

)
+ P0(σ1 > t,Xt−1,t 	= 0). (A.2)

Using the i.i.d. structure of the sequence of random coefficients (Φ, Z), we obtain

P0

(
σ1 > t,Xk,t 	= 0,

t−1∑
j=k+1

Xk,t = 0

)
= P0

(
σ1 > k,Xk,t 	= 0,

t−1∑
j=k+1

Xk,t = 0

)

= P0(σ1 > k)P

(
Xk,t 	= 0,

t−1∑
j=k+1

Xk,t = 0

)
= v(k)h(k, t) (A.3)

and

g(k, t) = P (Xt−k = 0). (A.4)

Let g(t) = P0(Xt = 0). It follows from (A.4) that

g(k, t) = g(t− k). (A.5)

Next, let h(t) = g(t− 1)− g(t). Since h(k, t) + g(k, t) = g(k + 1, t), then (A.5) implies that

h(k, t) = h(t− k). (A.6)

Substituting (A.3) into (A.2) and then using (A.6) gives

v(t) =

t−1∑
k=0

v(k)h(t− k).

In addition, we have v(0) = 1, h(k) > 0 for all k > 0, and

∞∑
k=1

h(k) = 1− lim
t→∞ g(t) = 1− lim

t→∞P0(Xt = 0) < 1,
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where for the last inequality we used Theorem 3.3. Therefore, {v(k) : k = 0, 1, 2, . . .} is a renewal

sequence. Therefore (see [15, Section XIII.3]), V (z) = (1−H(z))−1, where

H(z) :=

∞∑
t=0

h(t)zt.

To conclude the proof of the proposition, observe that, using (A.1) and Chebyshev’s inequality,

h(t) = h(0, t) < P (X0,t 	= 0) � E[X0,t] = E[Zβ
0 ] · (E[φβ

0 ])
t,

and hence the radius of convergence of H(z) is greater than 1.


