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Abstract The scattering length formula was formulated and proved in special cases by Kac in 1974 and 1975.

It was discussed by a series of authors, including Taylor 1976, Tamura 1992 and Takahashi 1990. The formula

was proved by Takeda 2010 in symmetric case and by He 2011 assuming weak duality. In this article, we shall

use the powerful tool of Kutznetsov measures to prove this formula in the general framework of right Markov

processes without further assumptions.
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1 Introduction

The scattering length of a potential V : R3 → R+ is the quantity

Γ(V ) :=

∫
R3

ϕ∞(x)V (x) dx,

where

ϕ∞(x) := Px

[
exp

(
−
∫ ∞

0

V (Bs) ds

)]
, x ∈ R3,

and Px is the law of 3-dimensional Brownain motion (Bs)s�0 started at B0 = x. Kac [11, 12] wrote

several papers on Γ in the early 1970s, and proved that

Γ(V ) = lim
t→∞ t−1

∫
R3

Px

[
1− exp

(
−
∫ t

0

V (Bs)ds

)]
dx. (1.1)

In addition, Kac showed that if V = 1K with K compact and “regular” (in the sense that the Lebesgue

penetration time of K by the Brownian motion is the same as the hitting time of K), then

lim
λ↑∞

Γ(λ1K) = Cap(K), (1.2)
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where Cap(K) is the Newtonian capacity of K. Kac further conjectured that

lim
λ↑∞

Γ(λV ) = Cap(supp(V )), (1.3)

for integrable V with {V > 0} regular as above. This conjecture was confirmed by Taylor [19] by a prob-

abilistic method and later by Tamura [18] by an analytic argument. Taylor’s work contains interesting

applications to the spectral theory of the Neumann Laplacian, including a necessary and sufficient con-

dition for discreteness of the spectrum expressed in terms of Γ. The works cited so far concern Brownian

motion in Rd for d � 3; recent work by Siudeja [15] extended Taylor’s study to isotropic stable processes

in Euclidean space. Takahashi [16] showed that for general symmetric Markov processes the limit in (1.3)

depends on V only through {V > 0}, provided V is continuous and of compact support. Takahashi’s

paper is notable for an integral formula for Γ(V ) (see (3.4) below) which makes (1.3) quite transparent.

A decisive step was taken by Takeda [17], again in the context of symmetric Markov processes, who

proved the analog of (1.3) for general positive continuous additive functionals (PCAFs) of a symmetric

Markov process. Takeda seems to be the first author to have recognized the relevance of the fine support

of the PCAF associated with V . Takeda’s time-change method was shown by He [9] to apply to general

PCAFs of a non-symmetric Markov process in possession of a dual process. In this paper we shall prove

the analog of (1.3) in the most general framework of right Markov processes. For details on notions

of probabilistic potential theory that are used in the sequel (such as energy functional, capacity, Revuz

measure, Kuznetsov process) we refer the reader to [7].

We end this introduction by noting that (1.1) and (1.3) (and their generalizations) are true only

for transient processes. For example, if X is Brownian motion on R and if At =
∫ t

0 V (Xs) ds with

0 � V ∈ L1(R), then

lim
λ→∞

lim
t→∞ t−1/2

∫
R

Px[1− e
− λ√

t
At ]dx =

4√
2π

(
=

∫
R

Px[T0 � 1]dx

)
,

by a scaling argument. Here T0 is the hitting time of 0.

2 Scattering length

Let

X = (Ω,F , (Ft), (Xt)t�0,P
x)

be a right Markov process on a state space (E, E ), with transition semigroup (Pt) and resolvent (Uα).

Let m be an excessive measure for X . For the sake of simplicity we assume that X is Borel , meaning

that E is homeomorphic to a Borel subset of a compact metric space, E is the Borel σ-field on E, Pt

maps Borel functions to Borel functions, and X is a strong Markov process. For the matters we study

here this entails without loss of generality; see [4,6]. For general theory of Markov processes please refer

to [3, 8, 14].

We fix once and for all a positive continuous additive functional A = (At) of X with Revuz measure

ν = νmA determined by

νmA (f) :=↑ lim
t↓0

t−1Pm

∫ t

0

f(Xs) dAs, f ∈ pE ,

where Pm =
∫
E
Pxm(dx). Note that we use Px both for the law of X started at x and for the associated

expectation. The first-increase time R := inf{t > 0 : At > 0} is a stopping time and

F := {x ∈ E : Px[R = 0] = 1}

is the fine support of A. The set F is finely perfect and carries all the mass of νA. For the details of

additive functionals please refer to [2, 3].

Define

ϕt(x) = ϕA
t (x) := Ex[e−At ], 0 � t < +∞, x ∈ E.
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Since t �→ ϕt(x) is decreasing, we can write

ϕ∞(x) :=↓ lim
t↑+∞

ϕt(x) = Ex[e−A∞ ], x ∈ E. (2.1)

With this notation in hand, and following Kac, we define the scattering length of A as

Γ(A) = Γm(A) :=

∫
E

ϕ∞(x) νmA (dx). (2.2)

The excessive measurem can be uniquely decomposed asm = md+mc, into dissipative and conservative

components (corresponding to the transient and recurrent parts of X respectively), and the objects under

study are additive in m,

νmA = νmd

A + νmc

A and Γm = Γmd
(A) + Γmc(A).

In view of the lemma to follow, there is no loss of generality in restricting our attention to the

dissipative case.

Lemma 2.1. If m is conservative, then

Γm(A) = 0.

Proof. It is easy to check that 1− ϕ∞ is a bounded excessive function and in fact

e−Atϕ∞(Xt) = Ex[e−A∞ |Ft], t > 0,

provide we define ϕ∞(Δ) := 1, where Δ is the cemetery state for X . Hence {e−Atϕ∞(Xt)} is a bounded

martingale. When m is conservative, we have by a result of Blumenthal [1],

Pm{ϕ∞(Xt) = ϕ∞(X0), ∀ t > 0} = 1,

and then the martingale {e−Atϕ∞(Xt)} is continuous and decreasing, Px-a.s. for m-a.e. x ∈ E. Hence

it is independent of t and we have

e−A∞ϕ∞(X0) = e−Atϕ∞(Xt) = ϕ∞(X0), Pm-a.s.

Consequently there is an m-exceptional set N such that for x 
∈ N either ϕ∞(x) = 0 (in which case

Px(A∞ = ∞) = 1) or ϕ∞(x) > 0 and Px[A∞ = 0] = 1 (in which case ϕ∞(x) = 1). Therefore,

Γm(A) = νmA (ϕ∞) = νmA (ϕ∞ = 1) = 0.

The final equality above follows because m is invariant (being conservative), so that

νmA (ϕ∞ = 1) = Pm

∫ 1

0

1{ϕ∞(Xt)=1}dAt

= Pm

∫ 1

0

PXt(A∞ = 0)dAt

= Pm

∫ 1

0

1{A∞=At}dAt = 0.

For the remainder of the paper, with the exception of the very last result (Theorem 3.6), we assume

that the excessive measure m is dissipative.

We end this section with the statement and proof of (1.1) in our context, under the additional condition

that m is invariant. The general case must wait until the next section and the introduction of the

Kuznetsov measure associated with X and m.

Theorem 2.2. If m is invariant and νmA (E) < ∞, then

Γ(A) = lim
t↑∞

t−1Em[1− e−At ]. (2.3)
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Proof. Recall that θt is the shift operator for X . We have

1− exp(−At) = exp(−At)

∫ t

0

exp(As)dAs

=

∫ t

0

exp(−At−s ◦ θs)dAs,

from which it follows that

Px [1− exp(−At)] = Px

∫ t

0

exp(−At−s ◦ θs)dAs

= Px

∫ t

0

PXs [exp(−At−s)]dAs

= Px

∫ t

0

ϕt−s(Xs)dAs.

Hence, because m is invariant,

Pm [1− exp(−At)] = Pm

∫ t

0

ϕt−s(Xs)dAs

=

∫ t

0

ds

∫
E

ϕt−s(x)ν
m
A (dx)

=

∫ t

0

du

∫
E

ϕu(x)ν
m
A (dx).

Consequently,

1

t
Pm [1− exp(−At)]−

∫
E

ϕ∞(x)νmA (dx) =
1

t

∫ t

0

du

∫
E

[ϕu(x)− ϕ∞(x)]νmA (dx).

Because νmA (E) < ∞, the monotonicity in u of ϕu(x) − ϕ∞(x) (for each x) implies that

∫
E

[ϕu(x) − ϕ∞(x)]νmA (dx)

decreases to zero as u ↑ +∞, and the conclusion follows.

3 Scattering length and capacity

We will prove in this section that Kac’s conjecture holds in complete generality. Recall that F is the fine

support of the PCAF A. We shall write Cap(F ) for the Getoor-Steffens capacity of F relative to m, as

discussed in [7]; see [7, (10.12)]. We are still assuming that m is dissipative.

Theorem 3.1. If A is a PCAF of X with fine support F , then

↑ lim
α↑∞

Γ(αA) = Cap(F ). (3.1)

Our proof of this result relies on an expression for Γ(A) in terms of the Kuznetsov process

Y = (W,Gt, Yt, σt,Qm)

associated withX andm. Here (Yt)t∈R is the coordinate process on the spaceW of paths w : R → E∪{Δ}
with birth time α(w) and death time β(w) (w(t) = Δ for t /∈ [α(w), β(w)]). Qm is a σ-finite measure on

(W,G) (where G := σ{Yt; t ∈ R}) such that

Qm[Yt ∈ B;α < t < β] = m(B), ∀B ∈ E ,
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and

(Ys)s>t is (Ps)-Markov on {α < t < β}, ∀ t ∈ R.

In particular, Y is a stationary process; that is, Qm is invariant with respect to the shift operators σt,

t ∈ R, defined by

[σtw](s) := w(s + t), s, t ∈ R.

Because m is dissipative, there is a random time S : W → [−∞,∞] such that Qm[S /∈ R] = 0 and

S(σtw) = S(w) − t for all w ∈ W and t ∈ R. Writing Å for the class of (σt)-invariant elements of G,

the formula

Pm[F ] := Qm[F ; 0 < S < 1], F ∈ Å,

then defines a σ-finite measure on Å. (This measure corresponds to the quasi-process of Hunt [10] and

Weil [20]; see [5].) Because of the stationarity of Qm, the measure Pm does not depend on the specific

choice of S subject to the two conditions imposed above.

The relevance of Pm lies in the following formula developed in [5]. Let H : Ω → [0,∞] be “excessive”

in the sense that t �→ H(θtω) is decreasing and right-continuous on [0,∞[ for each ω ∈ Ω. The function

h(x) := Px[H ], x ∈ E, is then an excessive function of X , and the formula

H∗(w) :=↑ lim
t↓α(w)

H(θtw), w ∈ W,

defines a (σt)-invariant function on W for which

Pm[H∗] = L(m,h),

where L is the energy functional associated with X . Recall from [7] that

L(m,h) := sup{μ(h) : μU � m}.

For example, if B is a nearly Borel subset of E and TB := inf{t > 0 : Xt ∈ B}, then H := 1{TB<∞} is

excessive in the above sense,

h(x) = PB1(x) = Px[TB < ∞]

is the hitting probability of B, and H∗ = 1{τB<∞}, where τB := inf{t > α : Yt ∈ B}. In this case,

Pm[τB < ∞] = Pm[Y hits B] = L(m,PB1) = Cap(B). (3.2)

The choice H = 1 − exp(−A∞) yields H∗ = 1 − exp(−κ(R)), where κ is the diffuse homogeneous

random measure (HRM) over Y that extends A; see [7, pp. 89–90]. This choice leads to the key result of

this section.

Proposition 3.2. If κ is the HRM associated with A, then

Γ(A) = Pm[1− exp(−κ(R))]. (3.3)

Proof. In view of the preceding discussion, we need only show that L(m,h) = Γ(A) when h = 1−ϕ∞.

But arguing as in the proof of Theorem 2.2 we find that

h(x) = 1− ϕ∞(x) = Px

∫ ∞

0

ϕ∞(Xt) dAt = UAϕ∞(x),

where UA is the potential kernel associated with A. Consequently,

L(m, 1− ϕ∞) = L(m,UAϕ∞) = νmA (ϕ∞) = Γ(A),

where is called the Meyer’s formula for which the interested readers may refer to [7, (8.13)] and [13] the

second equality.
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Proposition 3.2 was motivated by a result of Takahashi, which was proved in [16] for symmetric Markov

processes and A of the form

At =

∫ t

0

V (Xs)ds.

The corollary to follow is essentially Takahashi’s formula expressed in full generality using the Kuznetsov

process.

Corollary 3.3. If κ is the HRM associated with A, then

Γ(A) = Qm

[
1− exp(−κ(R))

κ(R)
κ[0, 1];κ(R) > 0

]
. (3.4)

Proof. The (σt)-invariance of Qm leads easily to the identity

Qm[F ·G · A] = Qm[F ·G ·A], (3.5)

in which F and G are positive and G-measurable, A is positive and Å-measurable, and F (w) :=∫
R
F (σtw)dt, etc. Taking

A = 1{κ(R)>0}(1− exp(−κ(R)))/κ(R), F = κ[0, 1],

and G = 1{0<S<1} (so that F = κ(R) and G = 1{S∈R}), we see that (3.4) follows from (3.5) and

Proposition 3.2.

The interpretation (3.3) of Γ(A) yields Kac’s conjecture immediately.

Theorem 3.4. Let A be a PCAF of X with fine support F . Then

↑ lim
λ↑∞

Γ(λA) = Cap(F ).

Proof. By Proposition 3.2, with A replaced by λA, we have

Γ(λA) = Pm [1− exp(−λκ(R))] .

As λ increases to +∞, the integrand 1− exp(−λκ(R)) increases to 1{κ(R)>0}. But κ has positive mass if

and only if Y hits F . The result now follows from the discussion of hitting times before the statement of

Proposition 3.2.

A second corollary of Proposition 3.2 follows from the monotone convergence theorem.

Corollary 3.5. Let A be a PCAF of X with Revuz measure νmA . Then

↑ lim
λ↓0

Γ(λA)

λ
= νmA (E).

The fine support F of A is an equilibrium set if the balayage RFm of m on F , defined by

RFm(g) = L(m,PF g), g ∈ pE ,

is a potential, say RFm = πFU . (Here PF g(x) := Px[g(XTF );TF < ∞] is the hitting kernel associated

with F ). The measure πF is the capacitory measure of F , and the total mass of πF is equal to Cap(F ).

The switching identity

L(RFm,h) = L(m,PFh),

valid for excessive h, then implies

Γ(A) = νmA (ϕ∞) = L(m,UAϕ∞)

= L(m,PFUAϕ∞) = L(RFm,UAϕ∞)

= L(πFU,UAϕ∞) = πFUAϕ∞
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= πF (1− ϕ∞).

That is,

Γ(A) = PπF [1− e−A∞ ],

when F is an equilibrium set with capacitory measure πF . In particular, Γ(A) � Cap(F ).

Finally, the Kuznetsov process allows us to extend Kac’s asymptotic formula (2.3) to general m.

Theorem 3.6. Let A be a PCAF with associated HRM κ and scattering length Γ(A). If νmA (E)<∞,

then

Γ(A) = lim
t→∞ t−1Qm[1− exp(−κ]0, t])]. (3.6)

Proof. As in the proof of Theorem 2.2 we may write

1− exp(−κ]0, t]) =

∫ t

0

exp(−At−s◦θs)κ(ds), t > 0.

Integrating with respect to Qm and using the Revuz formula (see [7, (8.25)]) we obtain

Qm[1− exp(−κ]0, t])] = Qm

∫ t

0

ϕt−s(Ys)κ(ds)

=

∫ t

0

ds

∫
E

ϕt−s(x)ν
m
A (dx)

= tΓ(A) +

∫ t

0

νmA (ϕu − ϕ∞)du.

The assertion follows as before because
∫ t

0 ν
m
A (ϕu − ϕ∞) du is o(t) as t → ∞ when νmA (E) is finite.

It is known from [7] that the measure m is invariant if and only if Qm[α > −∞] = 0. Therefore, for

invariant m,

Qm[1− exp(−κ]0, t])] = Qm[1− exp(−κ]0, t]);α < 0 < β]

= Pm[1− exp(−At)],

because κ]0, t] = 0 on {β � 0}. This means that (2.3) is a special case of (3.6).
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Boston: Birkhäuser, 1988, 123–133

6 Fitzsimmons P J, Getoor R K. A fine domination principle for excessive measures. Math Z, 1991, 207: 137–151

7 Getoor R K. Excessive Measures. Boston: Birkhäuser, 1990
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