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Abstract Donoho et al. in 1996 have made almost perfect achievements in wavelet estimation for a density

function f in Besov spaces Bs
r,q(R). Motivated by their work, we define new linear and nonlinear wavelet

estimators f lin
n,m, fnon

n,m for density derivatives f(m). It turns out that the linear estimation E(‖f lin
n,m − f(m)‖p)

for f(m) ∈ Bs
r,q(R) attains the optimal when r � p, and the nonlinear one E(‖fnon

n,m − f(m)‖p) does the same

if r � p
2(s+m)+1

. In addition, our method is applied to Sobolev spaces with non-negative integer exponents as

well.
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1 Introduction

Wavelet analysis has many applications, one of which is to estimate an unknown density function based

on independent and identically distributed (i.i.d.) random samples. The classical kernel method gives

nice estimations.

Let (Ω,F , P ) be a probability measurable space and X1, . . . , Xn be i.i.d. random variables with

an unknown density function f . We use E(X) to denote the expectation of X, W k
2 (R) to stand for

L2(R) Sobolev space and W k
2 (R, L) =: {f ∈ W k

2 (R), ‖f‖Wk
2
� L}. If K is a compactly supported and

continuous function satisfying
∫
K(x)dx = 1,

∫
xK(x)dx = · · · = ∫

xk−1K(x)dx = 0, then

sup
f∈Wk

2 (R,L)

E(‖fn − f‖2) = O(n− k
2k+1 ), k � 2, (1.1)

where fn(x) =
1
nhn

∑n
i=1K(x−Xi

hn
) with hn ∼ n− 1

2k+1 [15,17]. Huang [11] applied a general kernel method

to Lipschicz spaces and obtained the same estimation as in (1.1).

In 1992, Kerkyacharian and Picard [13] defined a wavelet estimator

f lin
n (x) =:

∑
k

ŝjkϕjk(x), (1.2)

where ŝjk =: 1
n

∑n
i=1 ϕjk(Xi) and ϕjk(x) =: 2

j
2ϕ(2jx − k) with ϕ being some orthonormal scaling

function. Then for 1 � p <∞, 1 � q � ∞, s > 0 and 2j ∼ n
1

2s+1 , they showed essentially that
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sup
f∈Bs

p,q(R,L)

E(‖f lin
n − f‖p) = O(n− s

2s+1 ), (1.3)

where Bsp,q(R) is a Besov space and Bsp,q(R, L) =: {f ∈ Bsp,q(R), ‖f‖Bs
p,q

� L}. Here, “essentially” means

that some weak conditions on f is assumed when 1 < p < 2. More precisely, f is bounded (almost

everywhere) by another function g ∈ Lp/2(R), which is symmetric about a point x0 and non-decreasing

for x > x0. It should be pointed out that the estimator defined by (1.2) can be used to establish an

estimate for Lp(R) Sobolev space W k
p (R) [10]:

sup
f∈Wk

p (R,L)

E(‖f lin
n − f‖p) = O(n− k

2k+1 ), (1.4)

where W k
p (R, L) =: {f ∈W k

p (R), ‖f‖Wk
p
� L}.

Donoho et al. [9] extended (1.3) to unmatched cases: Assume that x+ = max{x, 0}, s′ = s− (1r − 1
p )+

and B̃sr,q(R, L) =: {f ∈ Bsr,q(R, L), f has compact support}, then

sup
f∈B̃s

r,q(R,L)

E(‖f lin
n − f‖p) = O(n− s′

2s′+1 ), (1.5)

and for arbitrary estimator fn of f ,

sup
f∈B̃s

r,q(R,L)

E(‖fn − f‖p) � n− s
2s+1 . (1.6)

That is, the estimate (1.5) attains the best convergence order (called optimal later on) for r � p, according

to (1.6). In case r < p, they proposed a nonlinear estimator fnon
n of f ,

fnon
n (x) =

∑
k

ŝj0kϕj0k(x) +

j−1∑
j=j0

∑
k

δ(d̂jk , λ)ψjk(x) (1.7)

with ŝjk =: 1
n

∑n
i=1 ϕjk(Xi), d̂jk =: 1

n

∑n
i=1 ψjk(Xi) and δ(x, λ) =: xχ{|x|>λ}(x) (hard thresholding).

Here, χS(x) denotes a characteristic function of set S ⊆ R, which means χS(x) is 1 if x ∈ S and 0

otherwise. It turns out that

sup
f∈B̃s

r,q(R,L)

E(‖fnon
n − f‖p) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(lnn)θn− s
2s+1 , r >

p

2s+ 1
,

(lnn)θ
′
(
lnn

n

) s′
2(s−1/r)+1

, r =
p

2s+ 1
,

(
lnn

n

) s′
2(s−1/r)+1

, r <
p

2s+ 1
.

(1.8)

Hereafter, θ and θ′ are positive constants depending on r, p, s, possibly different. Moreover, fnon
n is

optimal for r < p [9].

On the other hand, Müller and Gasser [14] discussed kernel estimations for density derivatives f (m).

In fact, they proved

sup
f(m)∈Wk

2 (R,L)

E(‖f (m)
n − f (m)‖2) = O(n− k

2(k+m)+1 ), k � m+ 2, (1.9)

with f
(m)
n (x) = 1

nhm+1
n

∑n
i=1K

(m)(x−Xi

hn
) under some conditions on the kernel function K. Wavelets can

be used to estimate density derivatives f (m) as well. In fact, Prakasa Rao [16] defined

f̂
(m)
n (x) =

∑
|k|�kn

ŝjn,kϕjn,k(x) with ŝjn,k =:
(−1)m

n

n∑
i=1

ϕ
(m)
jn,k

(Xi)
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and showed that

sup
f(m)∈Wk

2 (R,L)

E(‖f̂ (m)
n − f (m)‖2) = O(n− k−m

2k+1 ), (1.10)

when f possesses some technical conditions. Moreover, that estimation is extended to unmatched Besov

space Bsr,q(R, L) [5],

sup
f(m)∈Bs

r,q(R,L)

E(‖f̂ (m)
n − f (m)‖p) = O(n− s′−m

2s′+1 ). (1.11)

It should be pointed out that these estimations can be considered as a statistical linear inverse problem.

There are many related references in that area [1, 7, 8].

By using an operator introduced by Beylkin [3], we define a new linear estimator f lin
n,m for f (m) in this

paper, and prove (see Theorem 2.5)

sup
f(m)∈B̃s

r,q(R,L)

E(‖f lin
n,m − f (m)‖p) = O(n

− s′
2(s′+m)+1 ). (1.12)

Note that s′
2(s′+m)+1 > s′−m

2s′+1 . Then our estimation (1.12) improves (1.11). In other words, (1.11) is

not going directly into (1.12) when replaced s′ by s′ +m, because f (m) ∈ B̃s+mr,q (R, L) is much stronger

than f (m) ∈ B̃sr,q(R, L) in that case. Moreover, we show that (1.12) is optimal, when r � p (see

Theorem 3.3). In addition, similar arguments are applied to Sobolev spaces W k
r (R, L) with non-negative

integer exponents. The corresponding result improves (1.10) and reduces to (1.9) if r = p = 2 (see

Theorems 2.6 and 3.5).

When r < p, we introduce a nonlinear wavelet estimator fnon
n,m for f (m), based on the Beylkin’s operator

and the estimator fnon
n of f given in [9]. It turns out that

sup
f(m)∈B̃s

r,q(R,L)

E(‖fnon
n,m − f (m)‖p) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(lnn)θn− s+m
s′+m

· s′
2(s+m)+1 , r >

p

2(s+m) + 1
,

(lnn)θ
′
(
lnn

n

) s′
2(s+m−1/r)+1

, r =
p

2(s+m) + 1
,

(
lnn

n

) s′
2(s+m−1/r)+1

, r <
p

2(s+m) + 1
.

Clearly, this above estimation does better than the linear estimation (1.12) when r < p. Finally, we shall

prove the optimality of that estimation if r � p
2(s+m)+1 (see Theorem 4.3). The situation is unclear for

p
2(s+m)+1 < r < p.

2 Linear estimations

In this section, we shall give a linear wavelet estimation for density derivatives f (m) to be in Besov spaces,

as well as in Sobolev spaces with integer exponents.

As usual, Lp(R) (p � 1) denotes the classical Lebesgue space on the real line R. In particular, L2(R)

stands for the Hilbert space, which consists of all square integrable functions. A function ψ ∈ L2(R) is

called an orthonormal wavelet, if {ψjk(x) =: 2
j
2ψ(2jx − k)}j,k∈Z forms an orthonormal basis of L2(R)

(wavelet basis). Many useful wavelets are generated by scaling functions. More precisely, if ϕ is an

orthonormal scaling function with

ϕ(x) =
∑
k

hk
√
2ϕ(2x− k),

then ψ(x) =:
∑
k(−1)kh1−k

√
2ϕ(2x − k) defines an orthonormal wavelet [8]. Although wavelet bases

are constructed for L2(R), most of them constitute unconditional bases for Lp(R). We need the next

result [12] later on.
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Lemma 2.1. Let ϕ be a compactly supported, orthonormal scaling function and ψ be the corresponding

wavelet. Then the scaling expansion∑
k

s0kϕ0k(x) +
∑
j�0,k

djkψjk(x)

of f ∈ Lp(R) (1 � p � ∞) converges to f(x) for almost everywhere x ∈ R.

Clearly, when ϕ is compactly supported and continuous, the corresponding wavelet ψ has the same

property. As a subspace of Lp(R), the Sobolev space with an integer exponent k means

W k
p (R) =: {f, f (m) ∈ Lp(R), m = 0, 1, . . . , k}, p � 1.

The corresponding norm ‖f‖Wk
p

=: ‖f‖p + ‖f (k)‖p. Moreover, the Besov space Bsp,q(R) (1 � p, q �
∞, s = n+ α and α ∈ (0, 1]) [10] can be defined by

Bsp,q(R) = {f ∈ Wn
p (R), (2

jαω2
p(f

(n), 2−j))j∈Z ∈ lq}
with the associated norm ‖f‖Bs

p,q
=: ‖f‖Wn

p
+‖{2jαω2

p(f
(n), 2−j)}‖lq(Z), where ω2

p(f, t) =: sup|h|�t ‖f(x+
2h)− 2f(x+ h) + f(x)‖p. Then for f ∈ Lp(R), f ∈ Bs+mp,q (R) if and only if f (m) ∈ Bsp,q(R). In general,

it can be shown that compactly supported and n times differentiable functions belong to Bsp,q(R) when

0 < s < n and 1 � p, q � ∞.

To introduce the next lemma, we need a projection operator

Pjf =
∑
k

〈f, ϕjk〉ϕjk ,

where ϕ is an orthonormal scaling function and ϕjk(x) =: 2
j
2ϕ(2jx− k). A scaling function ϕ is called t-

regular, if ϕ has continuous derivatives of order t and its corresponding wavelet ψ has vanishing moments

of order t, i.e., ∫
xkψ(x)dx = 0, k = 0, 1, . . . , t− 1.

The following lemma [10] plays important roles in this paper.

Lemma 2.2. Let ϕ be a compactly supported, t-regular orthonormal scaling function with the corre-

sponding wavelet ψ and 0 < s < t. If f ∈ Lp(R), s0k =: 〈f, ϕ0k〉, djk =: 〈f, ψjk〉 and 1 � p, q � ∞, then

the following two conditions are equivalent :

(i) f ∈ Bsp,q(R); (ii) ‖s0·‖p + ‖{2j(s+ 1
2− 1

p )‖dj·‖p}j�0‖q < +∞.

Furthermore,

‖f‖Bs
p,q

∼ ‖s0·‖p + ‖{2j(s+ 1
2− 1

p )‖dj·‖p}j�0‖q.
When Bsp,q(R) is replaced by W k

p (R), (i) implies (ii), although the converse is not true.

Motivated by Beylkin’s work [3], we introduce our linear wavelet estimator f lin
n,m for f (m),

f lin
n,m(x) =: Pmj f lin

n (x) =: (PjT
mPj)f

lin
n (x)

with Tm = dm

dxm and f lin
n defined in (1.2). Then the following lemma holds:

Lemma 2.3. Let ϕ be a compactly supported, t-regular orthonormal scaling function with the cor-

responding wavelet ψ. If f ∈ Bs+mr,q (R) with 1 � r, p < ∞, 1 � q � ∞ and t − m > s > 1
r , then

PmJ f ∈ Bsr,q(R) and

sup
f(m)∈B̃s

r,q(R,L)

‖PmJ f − f (m)‖p � 2−Js
′
. (2.1)

Proof. When m = 1, Chen and Meng [6] showed limJ→+∞ ‖P1
Jf − f ′‖p = 0. In general, for J > 0 and

f ∈ Bsr,q(R), one has that

PJf =:
∑
k

sJkϕJk =
∑
k

s0kϕ0k +

J−1∑
j=0

∑
k

djkψjk.



Liu Y M et al. Sci China Math March 2013 Vol. 56 No. 3 487

Moreover, |sJ0k| =: |〈PJf, ϕ0k〉| = |s0k| and |dJjk| =: |〈PJf, ψjk〉| � |djk| for j � 0. Hence,

‖sJ0·‖r + ‖{2j(s+ 1
2− 1

r )‖dJj·‖r}j�0‖lq � ‖s0·‖r + ‖{2j(s+ 1
2− 1

r )‖dj·‖r}j�0‖lq .

Note that PJ is a bounded operator on Lr(R) with r � 1 [11, Proposition 8.3]. Then ‖PJf‖Bs
r,q

� ‖f‖Bs
r,q

follows from Lemma 2.2. This shows the boundedness of PJ on Bsr,q(R) as well. Since f ∈ Bs+mr,q (R), one

knows that PJf ∈ Bs+mr,q (R) and (PJf)
(m) ∈ Bsr,q(R). Finally, PmJ f =: PJ (PJf)

(m) ∈ Bsr,q(R).

To show (2.1), one assumes r = p firstly. It is easy to see that

f(x) = P0f(x) +

∞∑
j=0

∑
k

djkψjk(x)

for almost everywhere x ∈ R due to Lemma 2.1. By Lemma 2.2, f ∈ Bs+mp,q (R) implies

|djk| � ‖dj·‖p � 2−j(s+m+ 1
2− 1

p )‖f‖Bs+m
p,q

. (2.2)

Hence,
∑∞

j=0

∑
k djkψjk(x) converges uniformly. Note that f ∈ Bsr,q(R) and s >

1
r . Then f is continuous

[11, Corollary 9.2]. On the other hand, the continuity of ϕ implies that of ψ and P0f . Therefore,

f(x) = P0f(x) +

∞∑
j=0

∑
k

djkψjk(x)

pointwisely. Similar arguments show f (m)(x) = (P0f)
(m)(x) +

∑∞
j=0

∑
k djkψ

(m)
jk (x) (here, s > 1

p is

needed). This with

(PJf)
(m)(x) = (P0f)

(m)(x) +

J−1∑
j=0

∑
k

djkψ
(m)
jk (x)

leads to

‖(PJf)(m)(x)− f (m)‖p =
∥∥∥∥

∞∑
j=J

∑
k

djkψ
(m)
jk

∥∥∥∥
p

�
∞∑
j=J

∥∥∥∥∑
k

djkψ
(m)
jk

∥∥∥∥
p

. (2.3)

Since ϕ has compact support, one can assume suppψ ⊆ [N,M ] with N,M being integers. Then∥∥∥∥∑
k

djkψ
(m)
jk (x)

∥∥∥∥p
p

= 2j(m+ 1
2 )p2−j

∫ ∣∣∣∣∑
k

djkψ
(m)(x− k)

∣∣∣∣pdx
� 2j(m+ 1

2 )p2−j
∑
k′

∫ k′+1

k′

k′−N∑
k=k′−M+1

|djk|p|ψ(m)(x− k)|pdx

� 2−j2j(m+ 1
2 )p‖dj·‖pp. (2.4)

By (2.4) and (2.2), (2.3) reduces to

‖(PJf)(m) − f (m)‖p �
∞∑
j=J

2j(m+ 1
2− 1

p )‖dj·‖p �
∞∑
j=J

2−js‖f‖Bs+m
p,q

� 2−Js‖f‖Bs+m
p,q

. (2.5)

Because f (m) ∈ Bsp,q(R), the coefficients dmjk = 〈f (m), ψjk〉 satisfy ‖dmj· ‖p � 2−j(s+
1
2− 1

p )‖f (m)‖Bs
p,q
,

∀ j � 0, according to Lemma 2.2. Similar to (2.3) and (2.4), one obtains that

‖PJf (m) − f (m)‖p �
∞∑
j=J

∥∥∥∥∑
k

dmjkψjk(x)

∥∥∥∥
p

�
∞∑
j=J

2j(
1
2− 1

p )‖dmj· ‖p
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�
∞∑
j=J

2j(
1
2− 1

p )2−j(s+
1
2− 1

p )‖f (m)‖Bs
p,q

� 2−Js‖f‖Bs+m
p,q

. (2.6)

Recall that PmJ f =: PJ (PJf)
(m) and PJ is bounded on Lp(R). Then

‖PmJ f − f (m)‖p = ‖PJ(PJf)(m) − f (m)‖p
� ‖PJ(PJf)(m) − PJf

(m)‖p + ‖PJf (m) − f (m)‖p
� ‖(PJf)(m) − f (m)‖p + ‖PJf (m) − f (m)‖p.

Furthermore, it follows from (2.5) and (2.6) that ‖PmJ f − f (m)‖p � 2−Js‖f‖Bs+m
p,q

. Finally,

sup
f(m)∈Bs

p,q(R,L)

‖PmJ f − f (m)‖p � 2−Js, (2.7)

which is (2.1) for r = p. When r < p, s′ = s − 1
r + 1

p and Bsr,q ⊆ Bs
′
p,q [11, Corollary 9.2]. Then (2.7)

implies that

sup
f(m)∈Bs

r,q(R,L)

‖PmJ f − f (m)‖p � sup
f(m)∈Bs′

p,q(R,L)

‖PmJ f − f (m)‖p � 2−Js
′
.

It remains to show (2.1) for r > p: Note that both f and ϕ have compact supports. Then suppPJf

is uniformly bounded (independently of J � 0), and so is suppPmJ f . Since ( rp )
−1 + ( r

r−p )
−1 = 1, the

Hölder inequality tells us that

‖PmJ f − f (m)‖p �
(∫

|PmJ f − f (m)|p· rp dx
) 1

r
(∫

supp (Pm
J f−f(m))

1 · dx
) r−p

rp

� ‖PmJ f − f (m)‖r.

Finally, the desired (2.1) follows from the case r = p.

Remark 2.4. From the proof of Lemma 2.3, we find that the support compactness of f is not needed

for r � p.

Now, we are ready to give the following estimation:

Theorem 2.5. Let ϕ be a compactly supported, t-regular orthonormal scaling function with the corre-

sponding wavelet ψ. If f (m) ∈ Bsr,q(R) with
1
r < s < t−m, 1 � r, q � ∞, then for 2 � p <∞,

sup
f(m)∈B̃s

r,q(R,L)

E(‖f lin
n,m(x)− f (m)‖p) � n

− s′
2(s′+m)+1 .

Proof. Since f lin
n,m =: Pmj f lin

n , one knows that f lin
n,m−f (m) = Pmj f lin

n −f (m) = (Pmj f lin
n −Pmj f)+(Pmj f−

f (m)) and

‖f lin
n,m − f (m)‖p � ‖Pmj f lin

n − Pmj f‖p + ‖Pmj f − f (m)‖p. (2.8)

Clearly,

‖Pmj f lin
n − Pmj f‖p = ‖Pj(Pjf lin

n − Pjf)
(m)‖p � 2jm‖f lin

n − f‖p
due to ‖Pj‖p � C and the Bernstein inequality. On the other hand, (1.5) says that

E(‖f lin
n − f‖p) � n

− (s′+m)

2(s′+m)+1 ,

when 2j ∼ n
1

2(s′+m)+1 . This, with (2.8) and Lemma 2.3, shows that

E(‖Pmj f lin
n − f (m)‖p) � 2jmn

− (s′+m)

2(s′+m)+1 + 2−js
′ � n

− s′
2(s′+m)+1 ,

which completes the proof.
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Note that Bsr,r(R) = W s
r (R) for s /∈ N and Bkr,r(R) �= W k

r (R) for k ∈ N, r �= 2 [18]. Then it is

important to deal with Lp loss of the linear estimator on the Sobolev space W̃ k
r (R, L) with an integer

exponent k, where W̃ k
r (R, L) =: {f ∈ W k

r (R, L), f has compact support}. To compare Theorem 2.6 with

Theorem 2.5, we denote k′ = k − (1r − 1
p )+.

Theorem 2.6. Let ϕ be a compactly supported, (k+m+1)-regular orthonormal scaling function with

the corresponding wavelet ψ. If f (m) ∈ W k
r (R) with 1 � r <∞ and k ∈ N, then for 2 � p <∞,

sup
f(m)∈W̃k

r (R,L)

E(‖f lin
n,m − f (m)‖p) � n

− k′
2(k′+m)+1 .

Proof. By Lemma 2.2, f ∈ W k+m
r (R) implies (2(k+m+ 1

2− 1
r )j‖dj·‖r)j�0 ∈ lq (although the converse is

not true, which differs from the case Bs+mr,q (R)). Because the main ingredient for the proof of Lemma 2.3

is the fact that (2(s+m+ 1
2− 1

r )j‖dj·‖r)j�0 ∈ lq, one can show that

sup
f(m)∈Wk

p (R,L)

‖PmJ f − f (m)‖p � 2−Jk (2.9)

by the same arguments as in Lemma 2.3.

Similar to the proof of Theorem 2.5, it can be proved that

sup
f(m)∈Wk

p (R,L)

E(‖Pmj f lin
n − f (m)‖p) � 2jm sup

f(m)∈Wk
p (R,L)

E(‖f lin
n − f‖p) + 2−jk.

Using (1.4) with 2j ∼ n
1

2(k+m)+1 , one has that supf(m)∈Wk
p (R,L)E(‖f lin

n − f‖p) � n− k+m
2(k+m)+1 and finally,

sup
f(m)∈Wk

p (R,L)

E(‖Pmj f lin
n − f (m)‖p) � n− k

2(k+m)+1 .

This completes the proof for the case r = p. When r > p, k′ = k and W̃ k
r (R) ⊆ W̃ k

p (R) due to Hölder

inequality. Hence,

sup
f(m)∈W̃k

r (R,L)

E(‖f lin
n,m − f (m)‖p) � sup

f(m)∈W̃k
p (R,L)

E(‖f lin
n,m − f (m)‖p) � n− k

2(k+m)+1 .

When r < p, k′ = k− 1
r +

1
p and k′− 1

p = k− 1
r . Furthermore, W̃ k

r (R) ⊆ W̃ k′
p (R) thanks to the Sobolev

embedding theorem [4, Theorem 5.1]. Now, one has

sup
f(m)∈W̃k

r (R,L)

E(‖f lin
n,m − f (m)‖p) � sup

f(m)∈W̃k′
p (R,L)

E(‖f lin
n,m − f (m)‖p) � n

− k′
2(k′+m)+1 ,

which finishes the proof.

Remark 2.7. From the proofs of Theorems 2.5 and 2.6, we know that these two theorems still hold

for 1 < p < 2, when f satisfies some additional weak conditions (see p. 2). On the other hand, Theorems

2.5 and 2.6 can be considered as natural extensions of (1.5) and (1.4). Moreover, the next part shows the

optimality of our estimations for r � p.

3 Optimality

This section is devoted to showing that the linear estimations in Theorems 2.5 and 2.6 attain the optimal

for r � p. The idea of proof comes from the reference [2]. Before introducing our theorems, we need

Kullback distance [19] between two probability measures P and Q, when P is absolutely continuous with

respect to Q (denoted by P � Q),

K(P, Q) =:

∫
p·q>0

p(x) ln
p(x)

q(x)
dx,

where p and q are density functions of P, Q, respectively.
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Lemma 3.1 (see [3, Fano’s lemma]). Let (Ω,F , Pk) be probability measurable spaces and Ak ∈ F , k =

0, 1, . . . ,m. If Ak ∩ Av = ∅ for k �= v, then with Ac standing for the complement of A and Km =:

inf0�v�m 1
m

∑
k �=vK(Pk, Pv),

sup
0�k�m

Pk(A
c
k) � min

{
1

2
,
√
me−3e−1

e−Km

}
.

In addition to Lemma 3.1, we need another result [19, Lemma 2.9]:

Lemma 3.2. Let Θ =: {ε = (ε1, . . . , εm)}, εi ∈ {0, 1}. Then there exists a subset {ε0, . . . , εM} of Θ

with ε0 = (0, . . . , 0) such that M � 2
m
8 and

m∑
k=1

|εik − εjk| �
m

8
, 0 � i �= j �M.

Theorem 3.3. Let f (m) ∈ B̃sr,q(R, L) with 1 � r, q � ∞, 1 � p < ∞ and sr > 1. If fn,m is an

estimator of f (m) with n i.i.d. random samples, then

sup
f(m)∈B̃s

r,q(R,L)

E(‖fn,m − f (m)‖p) � n− s
2(s+m)+1 . (3.1)

Proof. To prove (3.1), it is sufficient to construct gεi (i = 0, 1, . . . ,M) such that g
(m)
εi ∈ B̃sr,q(R, L) and

sup
i
E(‖fn,m − g

(m)
εi ‖p) � n− s

2(s+m)+1 . (3.2)

Let ϕ be a compactly supported, t-regular (t > s + m) and orthonormal scaling function, ψ be the

corresponding wavelet with suppψ ⊆ [0, l), l ∈ N
+. Here and after, N

+ denotes the set of positive

integers. Then there exists a compactly supported density function g0 (i.e., g0(x) � 0 and
∫
g0(x)dx = 1)

satisfying

g0 ∈ Bs+mr,q (R) and g0|[0, l] = c0 > 0.

Motivated by reference [2], one defines Δj =: {0, l, 2l, . . . , (2j − 1)l} (the number of elements in Δj is 2
j,

denoted by #Δj = 2j), aj =: 2−j(s+m+ 1
2 ), and

gε(x) =: g0(x) + aj
∑
k∈Δj

εkψjk(x)

with ε = (εk)k∈Δj ∈ {0, 1}2j . Then suppψjk∩ suppψjk′ = ∅ for k �= k′ ∈ Δj and suppψjk ⊆ supp g0. By

the assumptions of ϕ, the wavelet ψ is compactly supported and t times differentiable. Therefore, ψ ∈
Bs+mr,q (R) (t > s+m) and gε ∈ B̃s+mr,q (R). Moreover, since εk ∈ {0, 1}, one knows that

∑
k∈Δj

|εk|r � 2j

and

2j(s+m+ 1
2− 1

r )aj

( ∑
k∈Δj

|εk|r
) 1

r

� 1.

By Lemma 2.2, ‖aj
∑
k∈Δj

εkψjk‖Bs+m
r,q

� C, so is ‖gε‖Bs+m
r,q

. Hence g
(m)
ε ∈ B̃sr,q(R, L).

Note that the supports of ψjk are mutually disjoint. Then gε(x) � c0−aj‖ψjk‖∞ � c0−2−j(s+m)‖ψ‖∞
� 0 for big j. This with

∫
gε(x)dx =

∫
g0(x)dx = 1 shows that gε is a density function for each ε ∈ {0, 1}2j .

According to Lemma 3.2, there exists {ε0, ε1, . . . , εM} such that M � 22
j−3

and∑
k∈Δj

|εlk − εik| � 2j−3. (3.3)

Because

g
(m)

εl
(x)− g

(m)
εi (x) =

∑
k∈Δj

aj(ε
l
k − εik)

dm

dxm
ψjk(x)
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and suppψjk∩ suppψjk′ = ∅ for k �= k′ ∈ Δj , one knows that

‖g(m)

εl
− g

(m)
εi ‖pp =

∑
k∈Δj

apj |εlk − εik|p‖ψ(m)
jk ‖pp = 2−(sp+1)j‖ψ(m)‖pp

∑
k∈Δj

|εlk − εik|p.

This, with (3.3) and εlk, ε
i
k ∈ {0, 1}, leads to ‖g(m)

εl
− g

(m)
εi ‖pp � 2−jsp

8 ‖ψ(m)‖pp and

‖g(m)

εl
− g

(m)
εi ‖p � 8−

1
p 2−js‖ψ(m)‖p =: δj . (3.4)

Clearly, the sets

Aεi =

{
‖fn,m − g

(m)
εi ‖p < δj

2

}
, i = 0, 1, . . . ,M.

satisfy Aεl ∩Aεi = ∅ for i �= l. By Lemma 3.1, sup0�i�M Pngεi (A
c
εi ) � min{ 1

2 ,
√
Me−3/ee−KM}. Here and

after, Pnf stands for the probability measure corresponding to the density function fn(x) =: f(x1) · f(x2)
· · · f(xn). It is easy to see that Pngεi � Pngε0 from the constructions of gεi . Note that fn,m is an estimator

of f (m) with n i.i.d. random samples. Then

E(‖fn,m − g
(m)
εi ‖p) � δj

2
Pngεi

(
‖fn,m − g

(m)
εi ‖p � δj

2

)
=
δj
2
Pngεi (A

c
εi ).

Furthermore,

sup
0�i�M

E(‖fn,m − g
(m)
εi ‖p) � sup

0�i�M

δj
2
Pngεi (A

c
εi ) �

δj
2
min

{
1

2
,
√
Me−3/ee−KM

}
. (3.5)

Next, one shows KM � 2jc−1
0 na2j : Recall that K(Pn1 , P

n
2 ) =:

∫
fn
1 ·fn

2 >0
fn1 (x) ln

fn
1 (x)
fn
2 (x)dx, f

n
1 (x) =∏n

j=1 f1(xj) and f
n
2 (x) =

∏n
j=1 f2(xj). Then

K(Pn1 , P
n
2 ) =

n∑
i=1

∫
f1(xi) ln

f1(xi)

f2(xi)
dxi = nK(P 1

1 , P
1
2 ).

Note that K(P 1
1 , P

1
2 ) =:

∫
f1(x) ln

f1(x)
f2(x)

dx and lnu � u− 1 for u > 0. Then

K(Pn1 , P
n
2 ) = n

∫
f1(x) ln

f1(x)

f2(x)
dx � n

∫
f1(x)

[
f1(x)

f2(x)
− 1

]
dx = n

∫
|f2(x)|−1|f1(x) − f2(x)|2dx.

Hence,

KM =: inf
0�v�M

∑
i�=v

M−1K(gnεi , g
n
εv) �M−1

M∑
i=1

K(gnεi , g
n
ε0).

Moreover,

KM �M−1n

M∑
i=1

∫
|gε0(x)|−1|gεi(x) − gε0(x)|2dx, (3.6)

where ε0 =: (0, . . . , 0) and gε0 = g0. According to the definition of gε, supp (gεi − g0) ⊆ [0, l] and

g0(x) = c0 on [0, l]. Furthermore,∫
|g0(x)|−1|gεi(x)− g0(x)|2dx = c−1

0

∫
|gεi(x) − g0(x)|2dx = c−1

0 a2j

∥∥∥∥ ∑
k∈Δj

εikψjk(x)

∥∥∥∥2

2

� 2jc−1
0 a2j

by the orthonormality of ψjk and
∑

k∈Δj
|εik|2 � 2j . Then (3.6) reduces to

KM � n2jc−1
0 a2j . (3.7)

By M � 22
j−3

and aj =: 2−j(s+m+ 1
2 ), one can take 2j ∼ n

1
2(s+m)+1 such that

√
Me−KM � 2

1
2 (2

j−3)e−n2
jc−1

0 a2j � C > 0. (3.8)

On the other hand, (3.4) tells δj ∼ n− s
2(s+m)+1 . This, with (3.8) and (3.5), leads to the desired (3.2). The

proof is completed.
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Note that s′ = s, when r � p. Then we have the following corollary:

Corollary 3.4. The linear estimator f lin
n,m for f (m) ∈ B̃sr,q(R, L) in Theorem 2.5 attains the optimal,

when r � p.

Similar to Theorem 3.3, we can prove the following result, which shows that the estimation in Theo-

rem 2.6 is optimal as well, when r � p.

Theorem 3.5. Let f (m) ∈ W̃ k
r (R, L) with 1 � r <∞, 1 � p <∞ and k ∈ N. If fn,m is an estimator

of f (m) with n i.i.d. random samples, then

sup
f(m)∈W̃k

r (R,L)

E(‖fn,m − f (m)‖p) � n− k
2(k+m)+1 .

Proof. As in the proof of Theorem 3.3, it is sufficient to find gεi (i = 1, 2, . . . ,M) such that g
(m)
εi ∈

W̃ k
r (R, L) and

sup
i
E(‖fn,m − g

(m)
εi ‖p) � n− k

2(k+m)+1 . (3.9)

Again, let ϕ be a compactly supported, t-regular (t > k+m) and othogonormal scaling function, ψ be the

corresponding wavelet with suppψ ⊆ [0, l), l ∈ N
+. Then there exists a compactly supported density

function g0 ∈ W̃m+k
r (R) and g0|[0, l] = c0 > 0. Define aj =: 2−j(k+m+ 1

2 ), Δj , εk as in Theorem 3.3 and

gε(x) =: g0(x) + aj
∑
k∈Δj

εkψjk(x).

By suppψjk∩ suppψjk′ = ∅, one has that

∥∥∥∥ ∑
k∈Δj

εkψjk

∥∥∥∥r
r

=

∫
∪k′∈Δj

suppψjk′

∣∣∣∣ ∑
k∈Δj

εkψjk(x)

∣∣∣∣rdx
=

∑
k′

∫
suppψjk′

∣∣∣∣ ∑
k∈Δj

εkψjk(x)

∣∣∣∣rdx
=

∑
k′∈Δj

∫
suppψjk′

|εk′ψjk′ (x)|rdx

=
∑
k∈Δj

|εk|r‖ψjk‖rr = 2j(
r
2−1)

∑
k∈Δj

|εk|r‖ψ‖rr.

Similarly, ∥∥∥∥ ∑
k∈Δj

εkψ
(k+m)
jk

∥∥∥∥r
r

=
∑
k∈Δj

|εk|r‖ψ(k+m)
jk ‖rr = 2j[(k+m+ 1

2 )r−1]
∑
k∈Δj

|εk|r‖ψ(k+m)‖rr.

Then for aj = 2−j(k+m+ 1
2 ),

‖gε‖Wk+m
r

� ‖g0‖Wk+m
r

+ aj

∥∥∥∥ ∑
k∈Δj

εkψjk

∥∥∥∥
r

+ aj

∥∥∥∥ ∑
k∈Δj

εkψ
(k+m)
jk

∥∥∥∥
r

� ‖g0‖Wk+m
r

+ aj2
j( 1

2− 1
r )

( ∑
k∈Δj

|εk|r
) 1

r

‖ψ‖r + aj2
j(k+m+ 1

2− 1
r )

( ∑
k∈Δj

|εk|r
) 1

r

‖ψ(k+m)‖r

� L.

Hence, gε ∈ W̃ k+m
r (R, L). Then repeating completely the proof of Theorem 3.3 except for replacing s by

k, one obtains the desired (3.9). This completes the proof of Theorem 3.5.
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4 Nonlinear estimations

In this part, we shall apply the operator Pmj (used in Section 2) to the nonlinear estimator fnon
n (see

(1.7)) introduced in [9]. It turns out that Pmj fnon
n outperforms than f lin

n,m for r < p. Moreover, it gives

the best convergence order when r � s
2(s+m)+1 . Denote

αm =:

⎧⎪⎪⎨
⎪⎪⎩

s+m

2(s+m) + 1
, r >

p

2(s+m) + 1
,

s′ +m

2(s− 1/r +m) + 1
, r � p

2(s+m) + 1
.

(4.1)

Then we have the following result:

Theorem 4.1. Let ϕ be a compactly supported, t-regular and orthonormal scaling function with the

corresponding wavelet ψ. If f (m) ∈ Bsr,q(R) with 1 � q � ∞, 1
r < s < t−m, then for 2j ∼ (n/ lnn)

αm

s′+m

and 1 � r � p <∞, fnon
n,m(x) =: Pmj fnon

n (x) satisfies

sup
f(m)∈B̃s

r,q(R,L)

E(‖fnon
n,m − f (m)‖p) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(lnn)θn− s′αm

s′+m , r >
p

2(s+m) + 1
,

(lnn)θ
′
(
lnn

n

) s′αm

s′+m

, r =
p

2(s+m) + 1
,

(
lnn

n

) s′αm

s′+m

, r <
p

2(s+m) + 1
.

Proof. By fnon
n,m =: Pmj fnon

n , one knows ‖fnon
n,m − f (m)‖p � ‖Pmj fnon

n − Pmj f‖p + ‖Pmj f − f (m)‖p. Note

that Pmj =: PjT
mPj . Then Pmj fnon

n − Pmj f = Pj [Pj(f
non
n − f)](m) and

‖Pmj fnon
n − Pmj f‖p � ‖[Pj(fnon

n − f)](m)‖p � 2jm‖fnon
n − f‖p

due to ‖Pj‖p � C and the Bernstein inequality. On the other hand, Lemma 2.3 says ‖Pmj f − f (m)‖p �
2−js

′
. Hence E(‖fnon

n,m − f (m)‖p) � 2jmE(‖fnon
n − f‖p) + 2−js

′
. Since f ∈ Bs+mr,q ,

E(‖fnon
n − f‖p) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(lnn)θn−αm

, r >
p

2(s+m) + 1
,

(lnn)θ
′
(
lnn

n

)αm

, r =
p

2(s+m) + 1
,

(
lnn

n

)αm

, r <
p

2(s+m) + 1
,

thanks to (1.8). Since 2j ∼ ( n
lnn )

αm

s′+m , one receives 2jm( lnnn )α
m ∼ ( lnnn )

s′αm

s′+m and 2−js
′ ∼ ( lnnn )

s′αm

s′+m .

Moreover,

E(‖fnon
n,m − f (m)‖p) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(lnn)θn− s′αm

s′+m , r >
p

2(s+m) + 1
,

(lnn)θ
′
(
lnn

n

) s′αm

s′+m

, r =
p

2(s+m) + 1
,

(
lnn

n

) s′αm

s′+m

, r <
p

2(s+m) + 1
.

This completes the proof of Theorem 4.1.

Remark 4.2. By the definition of αm in (4.1), we find easily s′αm

s′+m > s′
2(s′+m)+1 for r < p. Then,

Theorems 4.1 and 2.5 tell us that the nonlinear estimator does better than the linear one. In particular,

for r � p
2(s+m)+1 ,

s′αm

s′+m = s′
2(s−1/r+m)+1 =

s− 1
r+

1
p

2(s−1/r+m)+1 and Theorem 4.1 say

E(‖fnon
n,m − f (m)‖p) �

(
lnn

n

) s− 1
r
+1

p

2(s− 1
r
+m)+1

. (4.2)
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The following theorem indicates that (4.2) is optimal for r � p
2(s+m)+1 :

Theorem 4.3. Let f (m) ∈ B̃sr,q(R) with 1 � r, q � ∞, 1 � p <∞ and sr > 1. If fn,m is an estimator

of f (m) with n i.i.d. random samples, then

sup
f(m)∈B̃s

r,q(R,L)

E(‖fn,m − f (m)‖p) �
(
lnn

n

) s− 1
r
+ 1

p

2(s− 1
r
+m)+1

.

Proof. One needs only to construct gk such that g
(m)
k ∈ B̃sr,q(R, L) and

sup
k
E(‖fn,m − g

(m)
k ‖p) �

(
lnn

n

) s− 1
r
+1

p

2(s− 1
r
+m)+1

. (4.3)

As in Theorem 3.3, let ϕ be a compactly supported, t-regular (t > s + m) and orthonormal scaling

function, ψ be the corresponding wavelet with suppψ ⊆ [0, l), l ∈ N
+. Assumes g0 ∈ Bs+mr,q (R) and

g0|[0, l] = c0 > 0. Define aj =: 2−j(s+m+ 1
2− 1

r ), Δj as in Theorem 3.3 and

gk(x) =: g0(x) + ajψjk(x), k ∈ Δj .

(The function gk here is simpler than that in Theorem 3.3.) Then
∫
gk(x)dx = 1; gk(x) � c0 −

2−j(s+m− 1
r )‖ψ‖∞ � 0 for large j.

Clearly, gk(x) ∈ B̃s+mr,q (R, L) due to Lemma 2.2. Moreover, when k, k′ ∈ Δj and k �= k′, ‖g(m)
k −

g
(m)
k′ ‖p = ‖aj(ψ(m)

jk −ψ(m)
jk′ )‖p = aj2

1
p ‖ψ(m)

jk ‖p due to suppψjk ∩ suppψjk′ = ∅. Since aj =: 2−j(s+m+ 1
2− 1

r ),

one knows

‖g(m)
k − g

(m)
k′ ‖p = 2

1
p ‖ψ(m)‖p2−j(s+ 1

p− 1
r ) =: δj . (4.4)

Furthermore, Ak =: {‖fn,m − g
(m)
k ‖p < δj

2 } satisfies Ak ∩ Ak′ = ∅ for k �= k′. Recall that #Δj = 2j.

Then Fano’s lemma implies that

sup
k∈Δj

Pngk

(
‖fn,m − g

(m)
k ‖p � δj

2

)
� min

{
1

2
,
√
2je−3e−1

e−K2j

}
.

On the other hand, it follows that K2j � c−1
0 na2j from the similar arguments to the proof of Theo-

rem 3.1. Take 2j ∼ ( n
lnn )

1
2(s−1/r+m)+1 . Then na2j = n2−2j(s+m+ 1

2
− 1

r
) ∼ lnn. Now, one can choose C > 0

such that na2j � C lnn and [4(s− 1/r +m) + 2]C < c0. Therefore,

√
2je−K2j �

(
n

lnn

)[4(s−1/r+m)+2]−1

n−C·c−1
0 � 1

and supk∈Δj
Pngk (‖fn,m − g

(m)
k ‖p � δj

2 ) � C. Hence,

sup
k∈Δj

E(‖fn,m − g
(m)
k ‖p) � δj sup

k∈Δj

Pngk

(
‖fn,m − g

(m)
k ‖p � δj

2

)
� Cδj .

Note that δj = 2
1
p ‖ψ(m)‖p2−j(s+ 1

p− 1
r ) by (4.4) and 2j ∼ ( n

lnn )
1

2(s−1/r+m)+1 . Then the desired (4.3)

follows.

Remark 4.4. We have known that the linear estimator attains the optimal for r � p; the nonlinear

estimation performs better than that of the linear one (up to lnn factor) if r < p, and reaches the

optimality for r � p
2(s+m)+1 . However, we believe that our nonlinear estimation is not optimal for

p
2(s+m)+1 < r < p by the work of references [1] and [7]. This will be investigated later on.
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