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Abstract Semi-supervised learning is an emerging computational paradigm for machine learning, that aims

to make better use of large amounts of inexpensive unlabeled data to improve the learning performance. While

various methods have been proposed based on different intuitions, the crucial issue of generalization performance

is still poorly understood. In this paper, we investigate the convergence property of the Laplacian regularized

least squares regression, a semi-supervised learning algorithm based on manifold regularization. Moreover, the

improvement of error bounds in terms of the number of labeled and unlabeled data is presented for the first

time as far as we know. The convergence rate depends on the approximation property and the capacity of the

reproducing kernel Hilbert space measured by covering numbers. Some new techniques are exploited for the

analysis since an extra regularizer is introduced.
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1 Introduction

Semi-supervised learning is an approach for learning from limited supervision by utilizing large amounts of

inexpensive, unlabeled observations. Not only does this approach make an appeal as a model for natural

learning, but it is also of potentially great practical significance in most applications of machine learning.

From an engineering standpoint, data without label would be available cheaply and automatically in

large quantity, but manual labeling for the purposes of training learning algorithms is often very time

consuming, expensive, and error-prone. As a result, semi-supervised learning has been of growing interest

over the past few years.

Since the early 1990’s, a considerable amount of work has been done in the problem of learning from

labeled and unlabeled data, including semi-supervised and transductive learning [2,5,6,20,21,23,26]. In

particular, some regularization based algorithms have been proposed as well [4]. Recently, researchers have

tried to develop some theoretical understanding of generalization performance of these methods. However,

the existent studies are almost about the transductive learning, for example, the margin method [21] and

the graph-based methods [2, 10, 11]. Such transductive learning approaches do not naturally extend to

the semi-supervised case where novel test examples need to be classified (predicted). We note that the

generalization errors of a semi-supervised classification method are estimated in [13] under a so-called
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strong cluster assumption. It is based on density level sets estimation, and the convergence rate is

achieved when one has consistent estimators of the clusters.

The purpose of this paper is to derive the generalization error bounds of the Laplacian regularized least

squares algorithm (hereafter, LapRLS). It is a semi-supervised algorithm for regression problem, which

arises out of the framework proposed in [4]. Over the last two decades, graph Laplacian has been applied to

a wide range of clustering and semi-supervised learning. The LapRLS algorithm uses the graph Laplacian

to present an additional regularization term, and exploits the geometry of the probability distribution that

generates the data. In contrast to the variety of purely graph-based approaches in a transductive setting,

LapRLS results in a natural out-of-sample extension from the data set (labeled and unlabeled) to novel

examples. While plentiful experiments were performed with LapRLS and comparisons were made with the

standard regularized least squares (hereafter, RLS) in [4], the crucial issue of generalization performance is

still poorly understood. In this paper, we present generalization error bounds depending on the number

of labeled and unlabeled examples and illustrate how unlabeled data improve the error bounds. Our

work brings together three distinct concepts that have received some independent attention recently in

machine learning: data-dependent regularization in reproducing kernel Hilbert spaces (RKHS) [14–16],

the convergence of graph Laplacian [3, 7, 12, 19], and error analysis in RKHS [9, 22].

Our approach is mainly an elaborate analysis of the excess generalization error, which is often decom-

posed into the sum of a sample error and an approximation error. The main difficulty of analysis is the

extra regularization term formulated by labeled and unlabeled samples via a graph Laplacian. Hence, a

new error decomposition technique is introduced by means of an additional manifold error. Due to the

Laplacian-based regularizer, the target function fz is pushed towards a small region of hypothesis space,

where functions are smooth with respect to both the ambient space and the intrinsic geometry of the

probability distribution. That is to say, the extra regularizer is expected to limit the domain of the target

optimization and thus to decrease sample error. Sindhwani et al. [15,16] and Rosenberg [14] utilized this

regularizer to present a modified data-dependant reproducing kernel and proved that it could improve

the sample error estimation in multi-view learning measured by Rademacher complexity. However, the

approximation error was not considered there and the convergence rate depending on the sample size was

not proposed. In this paper, we derive a refined bound of fz to reduce the sample error, and moreover

bound the approximation and manifold errors, by using the properties of graph Laplacian and its limit

version. Finally, the learning rate is established and the improvement of error bounds in terms of the

number of samples is presented.

2 Laplacian regularized least squares algorithm

In this paper, we assume that the input space X is a compact metric space and the output space Y = R.

Let ρ = ρX,Y be a probability distribution on Z := X×Y according to which examples are generated for

function learning. The sample set z can be divided into two subsets z1 and z2, where z1 = {(xi, yi)}li=1

is a collection of labeled data drawn independently from ρ and z2 = {xj}l+u
j=l+1 is a typically much larger

collection of unlabeled data generated according to the marginal distribution ρX of ρ.

In regression problem, we will learn a predictive function over a set of functions and the set is generally

an appropriately chosen reproducing kernel Hilbert space (RKHS). Recall that there is a one-to-one

correspondence between RKHSs and Mercer kernels. Let K : X × X → R be continuous, symmetric,

and positive semidefinite, i.e., given an arbitrary finite set {x1, . . . , xn} ⊂ X of points, the matrix

K = (K(xi, xj))
n
i,j=1 is positive semi-definite. Such a function is called a Mercer kernel. The RKHS

HK associated with the kernel K is the completion of span
{
Kx = K(x, ·) : x ∈ X

}
, with respect to

the inner product given by 〈Kx,Ky〉K = K(x, y). See [1] and [9, Chapter 4] for details. Let κ =

supx∈X

√
K(x, x) = supx,y∈X

√|K(x, y)|. Then by f(x) = 〈f,Kx〉K , f ∈ HK , we have

|f(x)| � κ‖f‖HK , ∀f ∈ HK , x ∈ X. (2.1)
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Hereinafter, ‖ · ‖K = ‖ · ‖HK .

The framework for semi-supervised learning in [4] is based on the assumption that the high-dimensional

input data truly resides on a low-dimensional manifold. The idea is reasonable in many real-world

problems. For example, in vision, the images we get when viewing an object from different positions form

a three-dimensional manifold in the image space. Therefore, the predictive function is supposed to be

smooth with respect to the manifold, the intrinsic geometry of ρX . In other words, we assume that, if

points close together on the manifold, then their predictions are similar. Hence, the graph Laplacian is

introduced to give the intrinsic regularizer.

Given the sample set z, we construct a weighted undirected graph G = (V,E) with vertex set V = z.

Let Wij be the edge weights in the data adjacency graph. In this paper, the weights Wij is given by a

similarity function W (x, x′) = exp{−‖x− x′‖2/2σ2}. The unnormalized graph Laplacian of G is defined

as L = D −W , where D is a diagonal matrix with diagonal entries Dii =
∑l+u

j=1 Wij .

The LapRLS algorithm [4] solves the optimization problem

fz = arg min
f∈HK

1

l

l∑

i=1

(f(xi)− yi)
2 +

λ1

(l + u)2
f̂TLf̂ + λ2‖f‖2K, (2.2)

where f̂ = (f(x1), . . . , f(xl+u))
T is the sample of f on z. The regularizer λ‖f‖2K is added to avoid

overfitting. The second term is a smoothness penalty intuitively. Note that

f̂TLf̂ =
1

2

l+u∑

i,j=1

(f(xi)− f(xj))
2Wij . (2.3)

Therefore, the regularizer ensures fz satisfies the manifold smoothness assumption. The regularization

parameters λ1 and λ2 are constants that control the complexity of function in both the ambient space and

the intrinsic geometry of ρX . Note that if λ1 = 0 the LapRLS algorithm turns into the RLS algorithm,

a fully supervised method.

As discussed in [4], the target function fz admits the representation of the form

fz =
l+u∑

i=1

αz
iK(xi, ·).

The coefficient vector αz = (αz
1, . . . , α

z
l+u)

T ∈ R
l+u is determined by the optimization problem

αz = arg min
α∈Rl+u

1

l
(Y − JKα)T(Y − JKα) +

λ1

(l + u)2
αTKLKα+ λ2α

TKα,

where K is the (l+u)×(l+u) Gram matrix; Y = (y1, . . . , yl, 0, . . . , 0)
T ∈ R

l+u and J is an (l+u)×(l+u)

diagonal matrix with the first l diagonal entries as 1 and the rest 0.

Figures 1 and 2 show the experimental results in [4] for LapRLS and RLS algorithms applied to binary

classification of handwritten digits. The training set is formed by the first 400 images for each digit

in the USPS training set. The remaining images formed the test set. In Figure 1, the error rates of

these two algorithms are compared at the break-even points in the precision-recall curves for 45 binary

classification problems. The labeled examples are 2 images randomly chosen from each class (l = 2) and

the unlabeled examples are the rest (u = 398). The error rate for each classification problem is averaged

over 10 random choices of labeled examples. Figure 2 presents the performance in terms of precision-recall

break-even points of RLS and LapRLS as a function of the number of labeled examples, on the test set

and the unlabeled set. These experiments demonstrate that LapRLS results in significant improvements

over inductive classification, i.e., RLS.
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Figure 1 Error rates at precision-recall break-even points for 45 binary classification problems
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Figure 2 Mean error rate as a function of number of the labeled points

3 Problem setting

Recall that in the least square regression problem, the error for a function f : X → Y is defined as

ε(f) =

∫

Z

(f(x) − y)2dρ. (3.1)
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The function that minimizes the error is called the regression function. It is given by

fρ(x) =

∫

Y

ydρ(y|x), x ∈ X. (3.2)

Here ρ(y|x) is the conditional probability measure at x induced by ρ. Throughout this paper, we assume

that for some M � 0, |y| � M almost surely (with respect to ρ). It follows from the definition (3.2) that

|fρ(x)| � M .

The target of the regression problem is to find good approximations of the regression function from

random samples. The goodness of the approximation of fρ by fz is usually measured by ‖fz − fρ‖L2
ρX

.

It is clear that, for any measurable function f : X → R (see, e.g., [8]),

‖f − fρ‖2L2
ρX

= ε(f)− ε(fρ). (3.3)

Therefore, we will be concerned with the estimate of the excess generalization error ε(fz)− ε(fρ). Here-

inafter, ‖ · ‖2 is used instead of ‖ · ‖L2
ρX

.

With the empirical error defined as

ε̂(f) =
1

l

l∑

i=1

(f(xi)− yi)
2,

the scheme (2.2) can be written as

fz = arg min
f∈HK

ε̂(f) +
λ1

(l + u)2
f̂TLf̂ + λ2‖f‖2K . (3.4)

A usual approach for getting the learning rates for regularization schemes is error decomposition. Here,

a new error decomposition technique is introduced by means of a modified regularized error and an extra

manifold error.

Define an operators Lw on L2
ρx
(X) as

Lwf(x) = f(x)p(x) −
∫

X

f(x′)W (x, x′)dρx(x′), (3.5)

with p(x) =
∫
W (x, x′)dρx(x′). This is the limit version of graph Laplacian L (see [7]). Applying [9,

Proposition 4.5], it is clear that ‖Lw‖ � 2ω2 with ω = supx,x′∈X W (x, x′). Moreover, (3.5) tells us that

〈fρ, Lwfρ〉2 =
1

2

∫∫

X

(fρ(x) − fρ(x
′))2W (x, x′)dρX(x)dρX(x′) � 0. (3.6)

Now we introduce a regularizing function denoted by fλ,

fλ = fλ1,λ2 := arg min
f∈HK

‖f − fρ‖2L2
ρX

+ λ1〈f, Lwf〉2 + λ2‖f‖2K . (3.7)

It is easy to see ε(fz)− ε(fρ) � ε(fz)− ε(fρ) +
λ1

(l+u)2 f̂z
T
Lf̂z + λ2‖fz‖2K , which can be bounded by

D(λ) + S(z, λ) +M(z, λ),

where

D(λ) = ε(fλ)− ε(fρ) + λ1〈f, Lwf〉2 + λ2‖f‖2K,

S(z, λ) = ε(fz)− ε̂(fz) + ε̂(fλ)− ε(fλ),

M(z, λ) = λ1

(
1

(l + u)2
f̂λ

T
Lf̂λ − 〈f, Lwf〉2

)
.



1864 Cao Y et al. Sci China Math September 2012 Vol. 55 No. 9

The regularization error, denoted by D(λ), is supposed to tend to 0 as λ1 and λ2 become small. It

is expected that the decay of D(λ) is not slower than that of the regularized error in the RLS setting.

The quantity S(z, λ) is called sample error. Since ε̂(f) is a district quantity, estimating the sample error

involves the size of the hypothesis space. In the supervised regularization scheme, as λ2 increases, fz is

pulled towards a region Ω of HK with small ‖f‖K . Now, due to an extra regularizer, fz is restricted

to a subset of Ω. Hence, this reduces the sample error and also, of course, produces the manifold error,

denoted by M(z, λ). However, if our manifold smoothness assumption is true, this quantity will have

little effect on the generalization error bounds.

In this paper, our task is to establish the generalization error bounds of LapRLS by an elaborate analysis

of the excess generalization error ε(fz) − ε(fρ). The regularized and manifold errors are estimated in

Section 4. In Section 5, the improvement of error bounds in terms of the number of labeled and unlabeled

data is presented.

4 Estimate of the regularized and manifold errors

As mentioned above, the extra regularization term λ1

(l+u)2 f̂z
T
Lf̂z is expected to reduce the sample error.

Meanwhile, the decay of the regularized error should not be slow, and the effect of M(z, λ) on the

generalization error bounds is negligible. In this section, we will estimate the regularized and manifold

errors to illustrate the ideas.

The rate of the regularization error is not only important for measuring the ability of approximating

fρ by functions from HK , but also crucial for bounding the sample error. The regularized error of

least-square supervised learning has been well understood [17, 18].

Now, we introduce some notations. For a kernel K(x, y), the integral operator SK : L2
ρ → HK is

defined by

SKf(x) =

∫

X

K(x, y)f(y)dρ(y), x ∈ X. (4.1)

Clearly, as K is a Mercer kernel, SK is a self-adjoint, positive semi-definite and compact operator.

Therefore, Sα
K is well defined for any α > 0. It is well known that HK = S

1/2
K (L2

ρ). See [9, Chapter 4] for

details.

It is easy to see from (3.6) that, for any f ∈ HK ,

λ1〈f, Lwf〉2 + λ2‖f‖2K � (2ω2κ2λ1 + λ2)‖f‖2K . (4.2)

Then we present the estimation of D(λ).

Proposition 4.1. Suppose that K is a Mercer kernel such that S
−α/2
K fρ ∈ L2

ρ for some 0 < α � 1.

Then we have

D(λ) � (2ω2κ2λ1 + λ2)
α‖S−α/2

K fρ‖22.
Proof. It follows from (3.3) and (3.7) that

D(λ) = inf
f∈HK

{‖f − fρ‖2L2
ρX

+ λ1〈f, Lwf〉2 + λ2‖f‖2K}.

Due to (4.2), we find

D(λ) � D̃(2ω2κ2λ1 + λ2) := inf
f∈HK

‖f − fρ‖2L2
ρX

+ (λ2 + 2ω2κ2λ1)‖f‖2K . (4.3)

Under the above assumptions, applying [9, Propositon 8.5] yields

D̃(2ω2κ2λ1 + λ2) � (2ω2κ2λ1 + λ2)
α‖S−α/2

K fρ‖22. (4.4)

Obviously, our statement follows from (4.3) and (4.4).
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The above result tells us that the regularized error D(λ) decays at the same rate as that of RLS, as

long as the parameters λ1 and λ2 are chosen appropriately.

Next, the bounds of manifold error will be derived taking advantage of the results about the graph

Laplacian L and its limit version Lw.

Recall that in this paper W (x, x′) is chosen as the Gaussian kernel. The bound of the manifold error

M(z, λ) follows from the analysis of the approximation of Lw by L in [7].

Proposition 4.2. For all 0 < δ < 1, with confidence at least 1− 3δ, there holds

M(z, λ) � 16ω2λ1D(λ) log(2/δ1)

λ2

√
u+ l

.

Proof. Recall that

M(z, λ) = λ1

(
1

(l + u)2
f̂λ

T
Lf̂λ −

∫

X

fλLwfλdρX

)
.

Applying [7, Proposition 4.7] yields, with confidence at least 1− 3δ1,

M(z, λ) � 16ω2λ1‖fλ‖2∞ log(2/δ1)√
u+ l

.

Besides, it is straightforward that

‖fλ‖K �
√D(λ)√

λ2

.

Then the proof is completed.

In practice, the size u of the unlabeled samples can be much larger than l, even u/l → ∞. Therefore,

the extra error M(z, λ) can be diminished to an arbitrarily small degree by sufficiently large u.

Note that the selection of the parameters λ1 and λ2 is crucial to the rates of regularized and manifold

errors. We defer this discussion to later as the decay of these parameters also determines the sample

error estimate.

5 Sample error and the bound of fz

In this section, the sample error is estimated and then the generalization error bounds of LapRLS follows.

Moreover, we would show the improvement of the error bounds by adding an extra regularizer with

unlabeled samples.

5.1 Sample error

We are now in a position to estimate sample error S(z, λ). Write it as

S(z, λ) =
{
E(ξ1)− 1

l

l∑

i=1

ξ1(zi)

}
+

{
E(ξ2)− 1

l

l∑

i=1

ξ2(zi)

}
, (5.1)

where

ξ1 = (fz(x)− y)2 − (fρ(x) − y)2, ξ2 = (fλ(x)− y)2 − (fρ(x) − y)2.

Obviously, ξ2 is a fixed random variable with mean E(ξ2) = ε(fλ) − ε(fρ). Hence, the last term of

(5.1) is a typical quantity that can be estimated by probability inequalities. However, ξ1 should not be

considered as a fixed random variable, since fz changes with the sample z runs over a set of functions.

Here, we just abuse the notion E(ξ2) = ε(fλ) − ε(fρ). The bound of the first term of (5.1) involves the

capacity of the function space HK , which is measured by the covering number of the balls

BR :=
{
f ∈ HK ; ‖f‖K � R

}
.
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Definition 5.1. For a subset S of a metric space and η > 0, the covering number N (S, η) is defined
to be the minimal l ∈ N such that there exist l disks with radius η covering S.

When S is compact, this number is finite. For simplicity, we denote the covering number of B1 in

C(X) with the metric ‖ · ‖∞ by N (η).

Definition 5.2. The RKHS associated with the Mercer kernel K has polynomial complexity exponent

s, if we have

logN (η) � C0(1/η)
s, ∀ η > 0, (5.2)

for some s > 0.

It was known that (5.2) holds if K ∈ C2d/s(X) with X ⊂ R
d. In particular, if K ∈ C∞(X), (5.2) is

valid for any s > 0. The Gaussian kernel is such an example. Refer to [24,25] for more details about the

covering number.

For supervised learning, there are some studies on the sample error, see, e.g., [9, 22]. By similar

methods, it is easy to derive a preliminary sample error bound.

Lemma 5.3. If the kernel K satisfies (5.2), for some R > 0 and 0 < δ < 1, with confidence at least

1− δ − Probz{fz /∈ BR}, the sample error S(z, λ) is bounded by

1

2
(ε(fz)− ε(fρ)) +

4

3
(κ+ 3)2R2μ(l, δ) +D(λ)

(
1 +

4κ2 log(2/δ)

lλ2

)
+

36M2 log(2/δ)

l
,

where

μ(l, δ) = max

{
80 log(2/δ)

l
,
(
80C0/l

)1/(s+1)
}
.

What is left is to give a suitable R > 0 such that Probz{fz /∈ BR} is small enough. Analysis similar

to that of RLS [9, 22] shows that

λ2‖fz‖2K � ε̂(0) � M2.

Clearly, taking R = M/
√
λ2 � M when 0 < λ2 � 1 yields Probz{fz /∈ BR} = 0. With this rough bound,

a weak error estimation follows from Propositions 4.1, 4.2 and Lemma 5.3.

Corollary 5.4. Suppose that the kernel K satisfies (5.2) and S
−α/2
K fρ ∈ L2

ρ for some 0 < α � 1. For

any 0 < δ < 1, with confidence at least 1− 4δ,

‖fz − fρ‖22 � ζl,u,λ,δ,

where

ζl,u,λ,δ = c1(λ2 + 2ω2κ2λ1)
α

(
4 +

8κ2 log(2/δ)

lλ2
+

32ω2λ1 log(2/δ1)

λ2

√
u+ l

)

+
3(κ+ 3)2M2μ(l, δ)

λ2
+

72M2 log(2/δ)

l
, (5.3)

with c1 = ‖S−α/2
K fρ‖22.

The result is rough because we use the bound ‖fz‖K � M/
√
λ2, which is obtained by the same method

as in the supervised case. However, in semi-supervised learning, unlabeled data is expected to reduce the

size of the function class in which fz lies, due to an additional regularizer.

5.2 The modified error bounds

Our next concern is to show how unlabeled data contributes to the choice of R. It easily follows from

(3.4) that
λ1

(u+ l)2
f̂z

T
Lf̂z + λ2‖fz‖2K � ε̂(0) � M2. (5.4)
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That is to say, fz belongs to a set Ω given by

Ω :=

{
f ∈ HK ;λ2‖f‖2K � M2 − λ1

(u+ l)2
f̂TLf̂

}
.

By (2.3), one finds f̂TLf̂ � 0. Hence, the bound of ‖fz‖K would be improved by estimating the term
λ1

(u+l)2 f̂z
T
Lf̂z.

In what follows, we make the assumption: fρ is not a constant function.

This assumption is reasonable because the constant function is not of much practical interest for

regression. It is clear from (3.6) that 〈fρ, Lwfρ〉2 = 0 holds if and only if fρ is a constant almost

everywhere, since W (x, x′) > 0. Consequently, the above assumption verifies 〈fρ, Lwfρ〉2 � b0, for some

b0 > 0.

Under the above assumption, a modified bound of ‖fz‖K is proposed.

Proposition 5.5. If fρ is not a constant function, for 0 < δ < 1, l � lδ,λ and u � uδ,λ, there holds

with confidence at least 1− 8δ,

‖fz‖K �

√
M2 − b0ω2λ1/2

λ2
.

Here, lδ,λ and uδ,λ are minimal positive integers such that 1024‖fρ‖22ζl,u,λ,δ � b20 and

uδ,λ � max{4ω2
(
log(2/δ)

)2+2/s
, 4C2

0ω
4+s(192M2)2+s/λ2+s

2 }, (5.5)

where ζl,u,λ,δ is given as (5.3).

Proof. On the one hand, the analysis in the proof of [7, Theorem 4.11] shows

1

(l + u)2
f̂z

T
Lf̂z �

∫
fz(x)Lwfz(x)dρx − 48ω3M2

λ2

(
2ωC0√
u+ l

)1/(s+1)

,

with confidence 1− 5δ, when u � 4ω2(log(2/δ))2+2/s.

On the other hand,
∫

fz(x)Lwfz(x)dρx �
∫

fρ(x)Lwfρ(x)dρx − 2ω2‖fρ − fz‖2
(
2‖fρ‖2 + ‖fρ − fz‖2

)
.

Consequently, one finds by Corollary 5.4,

1

(l + u)2
f̂z

T
Lf̂z � b0ω

2

2
,

provided that l � lδ,λ and � uδ,λ. Then our statement follows from (5.4).

Now, with the modified bound R =
√
(M2 − b0ω2λ1/2)/λ2, we will establish the learning rate incor-

porating the regularized error estimation and the effect of the extra error M(z, λ).

Theorem 5.6. Suppose that fρ is not a constant function, the kernel K satisfies (5.2) and S
−α/2
K fρ ∈

L2
ρ for some 0 < α � 1. Take λ1 = uθ, λ2 = lθ, with θ = 1/[(1 + α)(1 + s)], For any 0 < δ < 1, l � lδ,

and u � uδ,l with confidence at least 1− 8δ, there holds

‖fz − fρ‖2 � C̃1 log(2/δ)l
−αθ − C̃2(u/l)

−θl−
1

1+s , (5.6)

where

uδ,l = max{uδ,λ2, l, C̃
2
1 (log(2/δ)

)2
l2θ/C̃2

2},
lδ = max{80C−1/s

0

(
log(2/δ))(1+1/s), C

(1+1/α)(1+s)
3 },

C̃1 = 4cα(1 + 2ω2κ2)α(1 + 2κ2) + 3M2(24 + (κ+ 3)2(80C0)
1/(1+s)),

C̃2 = 3/4b0ω
2(κ+ 3)2(80C0)

1/(1+s).
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Although the learning rate is not improved, the error is reduced by C̃2(u/l)
−θl−

1
1+s .

In this paper, we present a result that shows how the unlabeled data reduces the error bounds. A

refined bound R of the target function is proposed, and yet there is still a lot of room for improvement.

For instance, the iteration technique [22] to enhance the learning rate and a more elaborate measure of

the complexity of Ω. These will be the issues in our future work.
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