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1 Introduction

In this paper, following [4, 6], we study the normality of families of meromorphic functions on plane

domains, whose zeros and poles are multiple and whose derivatives omit a given holomorphic function.

Recall that a family F of functions meromorphic on a plane domain D ⊂ C is said to be normal on

D, if for each sequence {fn} ⊂ F , there exists a subsequence {fni} which converges spherically locally

uniformly on D. Also, F is said to be normal at a point in D, if F is normal on some neighborhood of

this point. A known and useful fact is that F is normal on D if and only if F is normal at every point

in D. See [3, 7, 8].

The starting point of this paper is the following results.

Theorem 1.1 (See [6, Theorem 1]). Let h be a given holomorphic function on D without zeros, and

let F be a family of meromorphic functions on D, all of whose zeros and poles are multiple. If for every

f ∈ F , f ′(z) �= h(z) at every z ∈ D, then the family F is normal on D.

Theorem 1.2 (See [6, Theorem 2]). Let h be a given holomorphic function on D satisfying h �≡ 0, and

let F be a family of meromorphic functions on D, all of whose zeros are at least triple and whose poles

are multiple. If for every f ∈ F , f ′(z) �= h(z) at every z ∈ D, then the family F is normal on D.

Theorem 1.3 (See [4, Theorem]). Let h be a given holomorphic function on D satisfying h �≡ 0, and

let F be a family of holomorphic functions on D, all of whose zeros are multiple. If for every f ∈ F ,

f ′(z) �= h(z) at every z ∈ D, then the family F is normal on D.

Theorem 1.3 is not true in general for families of meromorphic function as shown by the following

examples.
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Example 1.4. Let p ∈ N be an integer, h(z) = zp and for each n ∈ N,

fn(z) =
(zp+1 − 1

n )
2

(p+ 1)zp+1
=

1

p+ 1
zp+1 − 2

(p+ 1)n
+

1

(p+ 1)n2zp+1
.

Then we have f ′
n(z) �= h(z) for z ∈ C. However, {fn} is not normal at 0.

Example 1.5. Let p ∈ N be an integer, h(z) = ez(ez − 1)p and for every n ∈ N,

fn(z) =
((ez − 1)p+1 − 1

n )
2

(p+ 1)(ez − 1)p+1
=

1

p+ 1
(ez − 1)p+1 − 2

(p+ 1)n
+

1

(p+ 1)n2(ez − 1)p+1
.

Then f ′(z) = ez(ez − 1)p − ez

n2(ez−1)p+2 �= h(z) for every z ∈ C. However, we see that each subsequence

of {fn} is not normal at each zero of ez − 1.

Here, we prove the following result, which characterizes the non-normal sequences of meromorphic

functions whose zeros and poles are multiple and whose derivatives omit a holomorphic function. Theo-

rems 1.1–1.3 are direct corollaries to this theorem.

Theorem 1.6. Let h (�≡ 0) be a given holomorphic function on D, and let F be a family of meromorphic

functions on D, all of whose zeros and poles are multiple, such that for every f ∈ F , f ′(z) �= h(z) at

every z ∈ D. If the family F is not normal at z0 ∈ D, then z0 is a zero of h with multiplicity p and there

exists a sequence {fn} ⊂ F such that on some neighborhood U(z0) of z0,

fn(z) =
P 2
n(z)

(z − z0 − wn)p+1
f∗
n(z) with f∗

n(z) →
1

(z − z0)p+1

∫ z

z0

h(z)dz,

where wn are constants satisfying wn/ρn → 0 and Pn are monic polynomials of degree p + 1 satisfying

Pn(z) → (z − z0)
p+1 and

ρ−p−1
n Pn(z0 + ρnz) → zp+1 − c

for some sequence of positive numbers ρn → 0 and some nonzero constant c.

The proof of Theorem 1.6 closely follows the proofs of Theorems 1.1–1.3. However, some new techniques

are adopted to cover some new and old difficulties. For example, our approach of dealing with the case

h(z) = z is different from that in [4]. The following example shows that the constants wn may be nonzero.

Example 1.7. Let p ∈ N be an integer, h(z) = zp and for each n ∈ N,

fn(z) =
(zp+1 − 1

n )
2

(p+ 1)(z − 1
n3 )p+1

.

Then we have

f ′
n(z)− h(z) =

− 1
n2 + 2zp

n4 − 2z2p+1

n3 + z2p+2 − zp(z − 1
n3 )

p+2

(z − 1
n3 )p+2

.

It follows that there exists an integer N such that for n > N , f ′
n(z) �= h(z) for |z| < 1. However, {fn}n>N

is not normal at 0.

We remark that we also have characterized the non-normal sequences of meromorphic functions whose

zeros and poles are multiple and whose derivatives minus a given meromorphic function have no zero.

This together with the presented Theorem 1.6 has been found some applications in the theory of value

distribution of functions meromorphic on the plane. These results will be appeared in our forthcoming

papers.

2 Auxiliary results

To prove our results, we require some preliminary results.
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Lemma 2.1 (See [5, Lemma 2]). Let F be a family of meromorphic functions in a domain D, all of

whose zeros have multiplicity at least k. Then if F is not normal at z0, there exist, for each −1 < α < k,

points zn ∈ D with zn → z0, functions fn ∈ F and positive numbers ρn → 0 such that gn(ζ) :=

ρ−α
n fn(zn + ρnζ) converges locally uniformly with respect to the spherical metric in C to a nonconstant

meromorphic function g of finite order.

Lemma 2.2 (See [1, Theorem 1.1]). Let f be a transcendental meromorphic function, all of whose

zeros and poles except finitely many are multiple, and R (�≡ 0) be a rational function. Then f ′ − R has

infinitely many zeros.

Lemma 2.3 (See [6, Lemma 5(i)]). Let f be a nonconstant rational function, all of whose zeros and

poles are multiple. Then f ′(z)− 1 has at least one zero on C.

Lemma 2.4 (See [2, Lemma 12]). Let f be a nonconstant rational function satisfying f ′ �= 0 on C.

Then f(z) = az + b or f(z) = a
(z+c)n + b, where n ∈ N and a (�= 0), b, c ∈ C.

Lemma 2.5. Let

f(z) =
a

(z + c)n
+ zp + b, (2.1)

where a (�= 0), b, c ∈ C and n, p ∈ N. Suppose that n � 2 when c �= 0. If all zeros of f are multiple, then

c = 0, p = n and

f(z) =
(zn + 1

2b)
2

zn
. (2.2)

Proof. Since

f(z) =
zp(z + c)n + b(z + c)n + a

(z + c)n
(2.3)

and all zeros of f are multiple, all zeros of the polynomial

P (z) = zp(z + c)n + b(z + c)n + a (2.4)

are multiple. Now let z0 be a zero of P . Then f(z0) = 0 and hence f ′(z0) = 0, i.e.,

a

(z0 + c)n
+ zp0 + b = 0 and − na

(z0 + c)n+1
+ pzp−1

0 = 0. (2.5)

It follows that Q1(z0) = Q2(z0) = 0, where

Q1(z) = (p+ n)zp + pczp−1 + nb, Q2(z) = pb(z + c)n+1 + a(p+ n)z + pac. (2.6)

Case 1. Suppose b = 0. Then c �= 0 and

z0 = − pc

p+ n
, (2.7)

so that P has a unique (multiple) zero. It is not difficult to see that the multiplicity of this zero is double.

Thus

P (z) = zp(z + c)n + a =

(
z +

pc

p+ n

)2

. (2.8)

It follows that p = n = 1 and a = c2/4. This contradicts that n � 2 when c �= 0.

Case 2. Suppose b �= 0. Next we consider two subcases.

Case 2.1. All zeros of P are double. Then by the above analysis, the two quotients R1 = Q2
1/P and

R2 = Q2
2/P are polynomials. Thus 2 deg(Q1) � deg(P ) and 2 deg(Q2) � deg(P ), so n � p � n+2. Note

that deg(R1) = p− n and deg(R2) = n+ 2− p.

If p = n, then R1 = Q2
1/P is a constant. Thus

(2nzn + nczn−1 + nb)2 = 4n2[zn(z + c)n + b(z + c)n + a]. (2.9)
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It follows that a = (b − c)2/4 and if n > 1 then c = 0. This together with the assumption that n � 2

when c �= 0 shows that c = 0 always holds. Thus f has the form stated in (2.2).

If p = n+ 1, then deg(R1) = deg(Q2
1/P ) = 1. Thus

[(2n+ 1)zn+1 + (n+ 1)czn + nb]2 = [(2n+ 1)2z + α][zn+1(z + c)n + b(z + c)n + a] (2.10)

for some constant α. It follows that n = 1, a = − 8
27c

3 and b = 1
3c

2. This contradicts that n � 2 when

c �= 0.

If p = n+ 2, then R2 = Q2
2/P is a constant. Thus

[(n+ 2)b(z + c)n+1 + (2n+ 2)az + (n+ 2)ac]2 = (n+ 2)2b2[zn+2(z + c)n + b(z + c)n + a]. (2.11)

It follows that n = 1, a = b = 64/729, c = −8/9. This contradicts that n � 2 when c �= 0.

Case 2.2. P has a zero z0 which is at least triple. Then we also have

f ′′(z0) =
n(n+ 1)a

(z0 + c)n+2
+ p(p− 1)zp−2

0 = 0. (2.12)

This together with (2.5) gives that p � 2,

z0 = − (p− 1)c

n+ p
(2.13)

and

a = (−1)p−1 p(p− 1)p−1(n+ 1)n+1

n(n+ p)n+p
cn+p, b = (−1)p

(p− 1)p−1

n(n+ p)p−1
cp. (2.14)

Thus c �= 0 and hence n � 2. This shows that all zeros of P are double with one possible exception which

is triple. Thus by the above analysis, the two quotients R1 = (z − z0)Q
2
1/P and R2 = (z − z0)Q

2
2/P are

polynomials, where z0 is given by (2.13). Thus 2 deg(Q1) + 1 � deg(P ) and 2 deg(Q2) + 1 � deg(P ), so

that n− 1 � p � n+ 3. Note that deg(R1) = p− n+ 1 and deg(R2) = n+ 3− p.

For p = n− 1, we have n � 3 and R1 is constant. Thus

(z − z0)[(2n− 1)zn−1 + (n− 1)czn−2 + nb]2 = (2n− 1)2[zn−1(z + c)n + b(z + c)n + a]. (2.15)

Comparing the coefficients of the term z2n−2 yields a contradiction.

For p = n, we have deg(R1) = 1. Thus

(z − z0)(2nz
n + nczn−1 + nb)2 = 4n2(z + α)[zn(z + c)n + b(z + c)n + a] (2.16)

for some constant α. If n > 2, then comparing the coefficients of the terms z2n and z2n−1 yields a

contradiction. If n = 2, then a = − 27
256c

4, b = 1
8c

2, therefore P (z) = zn(z + c)n + b(z + c)n + a =

(4z + c)3(4z + 5c)/256. This contradicts that all zeros of P are multiple.

For p = n+ 1, we have deg(R1) = 2. Thus

(z − z0)[(2n+ 1)zn+1 + (n+ 1)czn + nb]2

= (2n+ 1)2(z2 + αz + β)[zn+1(z + c)n + b(z + c)n + a]. (2.17)

Again, for n > 3, a contradiction follows from comparing the coefficients of the terms z2n+2, z2n+1

and z2n. For n = 3 and n = 2, we can compute a and b and directly yield that the polynomial

P (z) = zn+1(z + c)n + b(z + c)n + a must have simple zero. This contradicts that all zeros of P are

multiple.

For p = n+ 2, we have deg(R2) = 1. Thus

(z − z0)[(n+ 2)b(z + c)n+1 + (2n+ 2)az + (n+ 2)ac]2

= (n+ 2)2b2(z + α)[zn+2(z + c)n + b(z + c)n + a]. (2.18)
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Again, for n > 2, a contradiction follows from comparing the coefficients of the terms z2n+2 and z2n+1.

For n = 2, we can directly yield that the polynomial P must have simple zero to obtain a contradiction.

For p = n+ 3, R2 is a constant. Thus

(z − z0)[(n+ 3)b(z + c)n+1 + (2n+ 3)az + (n+ 3)ac]2

= (n+ 3)2b2[zn+3(z + c)n + b(z + c)n + a]. (2.19)

Again, by comparing the coefficients of the term z2n+2, a contradiction follows.

3 Proof of Theorem 1.6

By Theorem 1.1, z0 must be a zero of h. So by making normalization, we may assume that

h(z) = zpĥ(z) (3.1)

for some p ∈ N and zero-free holomorphic function ĥ on Δ(0, 1) such that ĥ(0) = 1. Here and in the

sequel, Δ(0, r) = {z : |z| < r} and Δ◦(0, r) = {z : 0 < |z| < r}. Thus by Theorem 1.1, F is normal on

Δ◦(0, 1). Now let

G = {gf(z) = z−pf(z) : f ∈ F}. (3.2)

Since f ′ �= h and the zeros of f are multiple, we see that f(0) �= 0, and hence 0 is a pole of gf (0) with

multiplicity at least p, and the other poles and all the zeros of gf are multiple. Furthermore, G is also

normal on Δ◦(0, 1).
We claim that G is not normal at 0. If this is not true, then G would be normal on the whole disk

Δ(0, 1), and hence, by the same argument in [4, p. 105] or [6, p. 8], F would be normal on the whole disk

Δ(0, 1). This is a contradiction.

Thus G is not normal at 0. Hence, by Lemma 2.1, there exist points zn → 0, functions {fn} and

positive numbers ρn → 0 such that

Gn(ζ) := ρ−1
n (zn + ρnζ)

−pfn(zn + ρnζ) → G(ζ) (3.3)

spherically locally uniformly on C, where G is a nonconstant meromorphic function on the plane, all of

whose zeros on C and poles on C∗ are multiple.

Now the case zn/ρn → ∞ can be ruled out as in [4, pp. 103–104]. So by taking subsequence, we can

assume that zn/ρn → α ∈ C. Thus, by (3.3),

Φn(ζ) := ρ−p−1
n ζ−pfn(ρnζ) = Gn(ζ − zn/ρn) → Φ(ζ) := G(ζ − α) (3.4)

on C, so all of the zeros on C and poles on C∗ of Φ are multiple, while 0 is a pole of Φ with multiplicity

at least p.

It follows from (3.4) that

Ψn(ζ) := ρ−p−1
n fn(ρnζ) = ζpΦn(ζ) → Ψ(ζ) := ζpΦ(ζ) (3.5)

locally uniformly on C \ Φ−1(∞). Since 0 is a pole of Φ with multiplicity at least p, we have Ψ(0) �= 0.

Furthermore, all zeros and poles on C
∗ of Ψ are multiple.

If Ψ′(ζ) − ζp ≡ 0, then Ψ = 1
p+1ζ

p+1 + c for some constant. As the zeros of Ψ on C∗ are multiple, we

get c = 0, and hence Φ(ζ) = ζ−pΨ(ζ) = ζ/(p+ 1), which contradicts that Φ(0) = ∞.

Thus Ψ′(ζ)− ζp �≡ 0. Since Ψ′
n(ζ)− ζpĥ(ρnζ) → Ψ′(ζ) − ζp on C \ Φ−1(∞) and

Ψ′
n(ζ) − ζpĥ(ρnζ) = ρ−p

n [f ′
n(ρnζ)− h(ρnζ)] �= 0, (3.6)

by maximum modulus principle, we see that Ψ′
n(ζ)− ζpĥ(ρnζ) → Ψ′(ζ)− ζp spherically locally uniformly

on C, and hence by Hurwitz’s theorem, Ψ′(ζ) − ζp �= 0. It then follows from Lemma 2.2 that Ψ is a

rational function.
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We prove first that Ψ is not a polynomial. Suppose now that Ψ is a polynomial. Then Ψ′(ζ) = ζp − c

for some constant c �= 0. Thus

Ψ(ζ) =
1

p+ 1
ζp+1 − cζ + c1 (3.7)

for some constant c1. Since Ψ(0) �= 0, c1 �= 0. Thus by all zeros of Ψ being multiple, we get p = 1 and

Ψ(ζ) = (ζ − c)2/2. Hence

Φ(ζ) =
(ζ − c)2

2ζ
. (3.8)

Thus by (3.4), fn(0) �= ∞ and fn has a double zero zn such that zn/ρn → c. The poles and the other

zeros z∗n of fn satisfy z∗n/ρn → ∞.

Now write

fn(z) = (z − zn)
2f∗

n(z). (3.9)

Then by (3.4), we get

F ∗
n(ζ) := f∗

n(ρnζ) →
1

2
(3.10)

on C∗, and hence on C as F ∗
n are uniformly locally holomorphic on C.1)

We claim that f∗
n(z) �= 0 on some disk Δ(0, δ). If this is not true, then f∗

n has zeros tending to 0. Let

z∗n → 0 be the zero with smallest modulus. Then by (3.10), z∗n/ρn → ∞. Let

f̂∗
n(z) = f∗

n(z
∗
nz). (3.11)

Then f̂∗
n are well defined on C with f̂∗

n(z) �= 0 for z ∈ Δ(0, 1) and f̂∗
n(1) = 0. Since f ′

n(z) �= h(z) = zĥ(z),

we have

Tn(z) :=

[(
z − zn

z∗n

)2

f̂∗
n(z)

]′
− zĥ(z∗nz) = (z∗n)

−1[f ′
n(z

∗
nz)− h(z∗nz)] �= 0. (3.12)

Note that zn/z
∗
n = zn/ρn · ρn/z∗n → 0. Now, by (3.12), using Lemma 2.1 with Lemmas 2.2 and 2.3, it

can be seen that {f̂∗
n} is normal on C∗. Thus, as f̂∗

n(1) = 0, by taking a subsequence, we can assume

that {f̂∗
n} converges spherically locally uniformly on C∗ to a function f̂∗ which is meromorphic on C∗

and satisfies f̂∗(1) = 0. Note that 1 is a multiple zero of f̂∗.
We claim that f̂∗ �≡ 0. If this is not true, then we have f̂∗

n → 0, f̂∗′
n → 0 and f̂∗′′

n → 0 on C∗. Hence

Tn → −z and T ′
n → −1 on C∗. It follows that

∣∣∣∣n(1, Tn)− n

(
1,

1

Tn

)∣∣∣∣ = 1

2π

∣∣∣∣
∫
|z|=1

T ′
n

Tn
dz

∣∣∣∣ → 1

2π

∣∣∣∣
∫
|z|=1

1

z
dz

∣∣∣∣ = 1, (3.13)

where the notation n(r, f) denotes the number of poles of f in Δ(0, r), counting multiplicity. Thus by

(3.12) and (3.13), we get n(1, Tn) = 1. It follows that [(z − zn
z∗
n
)2f̂∗

n(z)]
′ has one simple pole. This is

impossible.

Thus f̂∗ �≡ 0, and hence 1/f̂∗
n → 1/f̂∗ �≡ ∞ on C∗. Since 1/f̂∗

n are holomorphic on Δ(0, 1), by the

maximum modulus principle, we get 1/f̂∗
n → 1/f̂∗ and hence f̂∗

n → f̂∗ on Δ(0, 1). Thus f̂∗
n → f̂∗ on C.

Since f̂∗
n(0) = f∗

n(0) → 1/2, we have f̂∗(0) = 1/2 and hence f̂∗ is nonconstant as f̂∗(1) = 0. Further-

more, by (3.12), Tn(z) → T (z) := [z2f̂∗(z)]′ − z on C∗. Since T (1) = −1, T (z) �≡ 0. Thus by Tn �= 0 and

the maximum modulus principle, Tn → T on C. Now by Hurwitz’s theorem and Tn �= 0, we get T (z) �= 0

on C. This is impossible as T (0) = 0.

This contradiction shows that f∗
n �= 0 on some disk Δ(0, δ).

Since {fn} and hence {f∗
n} is normal on Δ◦(0, 1), we can assume that f∗

n → f∗ on Δ◦(0, 1), where f∗

may be ∞ identically. By (3.9), we also have fn(z) → z2f∗(z) on Δ◦(0, 1).

1) We say the functions fn (n ∈ N) are uniformly locally holomorphic on C, if for each R > 0 there exists an N ∈ N such

that for n > N , fn are holomorphic on Δ(0, R).
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We claim that f∗ �≡ 0 on Δ◦(0, 1). Suppose f∗ ≡ 0, then we have f ′
n → 0 and f ′′

n → 0 on Δ◦(0, 1), and
hence ∣∣∣∣n

(
1

2
, f ′

n − h

)
− n

(
1

2
,

1

f ′
n − h

)∣∣∣∣ = 1

2π

∣∣∣∣
∫
|z|= 1

2

f ′′
n − h′

f ′
n − h

dz

∣∣∣∣ → 1

2π

∣∣∣∣
∫
|z|= 1

2

h′

h
dz

∣∣∣∣ = p = 1. (3.14)

Thus by f ′
n − h �= 0,

n

(
1

2
, f ′

n

)
= n

(
1

2
, f ′

n − h

)
= 1. (3.15)

This is impossible.

Thus f∗ �≡ 0 on Δ◦(0, 1). Then 1/f∗ �≡ ∞. As 1/f∗
n are holomorphic on Δ(0, δ), and 1/f∗

n → 1/f∗ on

Δ◦(0, 1), it can be seen by maximum modulus principle that 1/f∗
n → 1/f∗ and hence f∗

n → f∗ on Δ(0, 1).

Since f∗
n(0) → 1/2, we get f∗(0) = 1/2 and hence f∗ is holomorphic at 0. By (3.9), we see that fn is

normal at 0, which is a contradiction.

Thus Ψ is not a polynomial. Hence by [Ψ(ζ)− 1
p+1ζ

p+1]′ = Ψ′(ζ)− ζp �= 0 and Lemma 2.4, we get

Ψ(ζ) =
1

p+ 1
ζp+1 + c1 +

c2
(ζ − ζ0)m

(3.16)

for some constants c1, c2, ζ0 with c2 �= 0 and m ∈ N. Thus by Lemma 2.5,

Ψ(ζ) =
(ζp+1 − c)2

(p+ 1)ζp+1
(3.17)

for some constant c �= 0. Hence

Φ(ζ) =
(ζp+1 − c)2

(p+ 1)ζ2p+1
. (3.18)

Thus by (3.4), fn has p+1 double zeros zn,i such that ζn,i = zn,i/ρn → ζi with ζp+1
i = c and the sum of

the multiplicities of the poles wn of fn that satisfy wn/ρn → 0 is equal to p+ 1.

We claim that fn has exactly one pole wn satisfying wn/ρn → 0 (and hence it has exact multiplicity

p+ 1). If this is not true, then by (3.4), we see that fn has 2 � s � p+ 1 poles wn,i with multiplicity si
such that ξn,i = wn,i/ρn → 0 and

∑s
i=1 si = p + 1. By choosing subsequence, we may assume that the

number s and the multiplicities si of distinct poles of fn are independent of fn.

Let

fn(z) =
P 2
n

Qn
f∗
n(z), (3.19)

where

Pn(z) =

p+1∏
i=1

(z − zn,i), Qn(z) =

s∏
i=1

(z − wn,i)
si ,

s∑
i=1

si = p+ 1. (3.20)

Then by (3.4),

F ∗
n (ζ) := f∗

n(ρnζ) →
1

p+ 1
(3.21)

on C∗, and hence on C by maximum modulus principle, as F ∗
n are uniformly locally holomorphic on C.

By (3.19), we have

Ψn(ζ) = ρ−p−1
n fn(ρnζ) =

P̂ 2
n(ζ)

Q̂n(ζ)
F ∗
n(ζ), (3.22)

where

P̂n(ζ) =

p+1∏
i=1

(ζ − ζn,i) → ζp+1 − c, Q̂n(ζ) =

s∏
i=1

(ζ − ξn,i)
si → ζp+1. (3.23)

Thus

Ψ′
n =

(P̂ 2
nF

∗
n)

′

Q̂n

−
∑s

i=1 si
∏

j �=i(ζ − ξn,j)∏s
i=1(ζ − ξn,i)si+1

P̂ 2
nF

∗
n =

Ln(ζ)∏s
i=1(ζ − ξn,i)si+1

, (3.24)
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where

Ln(ζ) := (P̂ 2
nF

∗
n)

′
s∏

i=1

(ζ − ξn,i)− P̂ 2
nF

∗
n

s∑
i=1

si
∏
j �=i

(ζ − ξn,j) → ζs−1(ζ2p+2 − c2). (3.25)

Since Ψ′
n(ζ)− ζpĥ(ρnζ) �= 0, we get

Mn(ζ) := Ln(ζ)− ζpĥ(ρnζ)
s∏

i=1

(ζ − ξn,i)
si+1 �= 0. (3.26)

We have

Mn(ζ) → M(ζ) := ζs−1(ζ2p+2 − c2)− ζp · ζp+1+s = −c2ζs−1. (3.27)

Hence, by Mn �= 0 and Hurwitz’s theorem, we have either M ≡ 0 or M �= 0. This is impossible, since

s � 2.

Thus fn has exactly one pole wn satisfying wn/ρn → 0 and with exact multiplicity p + 1. Hence by

letting

fn(z) = Rn(z)f
∗
n(z), (3.28)

where

Rn(z) =
[
∏p+1

i=1 (z − zn,i)]
2

(z − wn)p+1
, (3.29)

we get by (3.4)

F ∗
n (ζ) := f∗

n(ρnζ) →
1

p+ 1
(3.30)

on C as showed above.

Next, by a similar argument to that showed above, we can see that f∗
n has a subsequence which

converges to a meromorphic function f∗ on Δ(0, 1) such that f∗(0) = 1/(p+ 1).

By (3.28) and (3.29), we see that fn → zp+1f∗ on Δ◦(0, 1). Thus f ′
n − h → [zp+1f∗]′ − h on Δ◦(0, 1) \

(f∗)−1(∞). If [zp+1f∗]′ − h �≡ 0, then since f ′
n − h �= 0, by the maximum modulus principle, we obtain

f ′
n − h → [zp+1f∗]′ − h on the whole disk Δ(0, 1), and by Hurwitz’s theorem, we get [zp+1f∗]′ − h �= 0.

Letting z = 0, we see that this case cannot occur. Thus [zp+1f∗]′ ≡ h, and hence

f∗(z) =
1

zp+1

∫ z

0

h(z)dz. (3.31)

The proof of Theorem 1.6 is completed.
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