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Abstract We determine all connected normal edge-transitive Cayley graphs on non-abelian groups with order

4p, where p is a prime number. As a consequence we prove if |G| = 2δp, δ = 0, 1, 2 and p prime, then Γ =

Cay(G,S) is a connected normal 1
2

arc-transitive Cayley graph only if G = F4p, where S is an inverse closed

generating subset of G which does not contain the identity element of G and F4p is a group with presentation

F4p = 〈a, b | ap = b4 = 1, b−1ab = aλ〉, where λ2 ≡ −1 (mod p).
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1 Introduction

Let Γ = (V,E) be a simple graph, where V is the set of vertices and E is the set of edges of Γ. An

edge joining the vertices u and v is denoted by {u, v}. The group of automorphisms of Γ is denoted by

Aut(Γ), which acts on vertices, edges and arcs of Γ. If Aut(Γ) acts transitively on vertices, edges or arcs

of Γ, then Γ is called vertx-transitive, edge-transitive or arc-transitive respectively. If Γ is vertex and

edge-transitive but not arc-transitive, then Γ is called 1
2 arc-transitive.

Let G be a finite group and S be an inverse closed subset of G, i.e., S = S−1, such that 1 /∈ S,

the Cayley graph Γ = Cay(G,S) on G with respect to S is a graph with vertex set G and edge set

{{g, sg} | g ∈ G, s ∈ S}. Γ is connected if and only if G = 〈S〉. For g ∈ G, define the mapping

ρg : G → G by ρg(x) = xg, x ∈ G. ρg ∈ Aut(Γ) for every g ∈ G, thus R(G) = {ρg | g ∈ G} is a regular

subgroup of Aut(Γ) isomorphic to G, forcing Γ to be a vertex-transitive graph.

Let Γ = Cay(G,S) be a Cayley graph of a finite groupG on S. Let Aut(G,S) = {α ∈ Aut(G) | Sα = S}
and A = Aut(Γ). Then the normalizer of R(G) in A is equal to

NA(R(G)) = R(G)�Aut(G,S),

where � denotes the semi-direct product of two groups. In [11] the graph Γ is called normal if R(G) is a

normal subgroup of Aut(Γ).
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Therefore, according to [3], Γ = Cay(G,S) is normal if and only if A := Aut(Γ) = R(G)�Aut(G,S),

and in this case A1 = Aut(G,S), where A1 is the stabilizer of the identity element of G under A. The

normality of Cayley graphs has been extensively studied from different points of views by many authors.

In [10] all disconnected normal Cayley graphs are obtained. Therefore, it suffices to study the connected

Cayley graphs when one investigates the normality of Cayley graphs, which we use in this paper.

Therefore, in this paper when we talk about a Cayley graph Γ, we mean Γ = Cay(G,S), where G is a

finite group and S is a non-empty generating subset of G such that 1 /∈ S and S = S−1. We also denote

Aut(Γ) by A.

Definition 1.1. A Cayley graph Γ is called normal edge-transitive or normal arc-transitive ifNA(R(G))

acts transitively on the set of edges or arcs of Γ, respectively. If Γ is normal edge-transitive, but not

normal arc-transitive, then it is called a normal 1
2 arc-transitive Cayley graph.

Edge-transitivity of Cayley graphs of small valency have received attention in the literature. A relation

between regular maps and edge-transitive Cayley graphs of valency 4 is studied in [7], and in [6] Li

et al. characterized edge-transitive Cayley graphs of valency four and odd order. In [5] Houlis classified

normal edge-transitive Cayley graphs of groups Zpq, where p and q are distinct primes. In [1] normal

edge-transitive Cayley graphs on some abelian groups of valency at most 5 are studied. And in [2]

edge-transitive Cayley graphs of valency 4 on non-abelian simple groups are studied.

Motivated by the above results, we consider the normal edge-transitive Cayley graphs of groups with

order 4p, where p is a prime number. Since in [9] Talebi has considered the dihedral group of order 4p,

we will deal with the rest of the non-abelian groups of order 4p. As a consequence, we will prove if Γ

is a normal 1
2 arc-transitive Cayley graph of order 2δp, where 0 � δ � 2 and p is a prime number, then

G ∼= F4p. Moreover, we investigate the normal edge-transitive Cayley graphs on certain groups of order

4p, namely, Q4p, F4p and A4, where the groups of Q4p and F4p will be defined in Section 3 and A4 is the

alternating group of order 12.

2 Preliminary results

Keeping fixed terminologies used in Section 1, we mention a few results whose proofs can be found in the

literature.

The following result is proved in [11] and [3].

Result 2.1. Let Γ = Cay(G,S), then the following hold:

1. NA(R(G)) = R(G)�Aut(G,S);

2. R(G)�A if and only if A = R(G)�Aut(G,S);

3. Γ is normal if and only if A1 = Aut(G,S).

The result that we will use in our investigation of normal edge-transitive Cayley graphs is the following

that makes it possible to characterize normal edge-transitivity in terms of the action of Aut(G,S) on S

(see [8]).

Result 2.2. Let Γ = Cay(G,S) be a connected Cayley graph (undirected) on S. Then Γ is normal

edge-transitive if and only if Aut(G,S) is either transitive on S, or has two orbits in S in the form of T

and T−1, where T is a non-empty subset of S such that S = T ∪ T−1.

Since in the action of Aut(G,S) on S, every element of s ∈ S has the same order as every element in

the orbit of s, we can deduce the following corollary from Result 2.2.

Corollary 2.3. Let Γ = Cay(G,S) and H be the subset of all involutions of the group G. If 〈H〉 �= G

and Γ is connected normal edge-transitive, then its valency is even.

For a general graph Γ = (V,E), if v is a vertex in Γ, then Γ(v) denotes the set of the so-called neighbors

of v, i.e., Γ(v) = {u ∈ V | {u, v} ∈ E}. The following result which can be deduced from a result in [4]

characterizes normal arc-transitive Cayley graphs in terms of the action of Aut(G,S) on S.
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Result 2.4. Let Γ = Cay(G,S) be a connected Cayley graph (undirected) on S. Then Γ is normal

arc-transitive if and only if Aut(G,S) acts transitively on S.

We can extract the following corollary from Results 2.2 and 2.4 and the observation that if G is an

abelian group, then σ : G → G defined by σ(x) = x−1, ∀x ∈ G, is an automorphism.

Corollary 2.5. If Γ is a Cayley graph of an abelian group, then Γ is not a normal 1
2 arc-transitive

Cayley graph.

The following result is obtained in [9].

Result 2.6. Let Γ = Cay(G,S) be a connected normal edge-transitive Cayley graph of the dihedral

group D2n. Then Aut(D2n, S) is transitive on S.

Corollary 2.7. If Γ is a Cayley graph of a dihedral group D2n, then Γ is not a normal 1
2 arc-transitive

Cayley graph.

The following result is mentioned in [8].

Result 2.8. Let Γ be a connected Cayley graph of a non-abelian simple group with valency 3. If Γ is

normal edge-transitive, then it is normal.

3 Classifications of Cayley graphs of order 4p

It is easy to prove that any non-abelian group of order 4p is isomorphic to one of the following groups

which are given by generators and relations:

F4p = 〈a, b | ap = b4 = 1, b−1ab = aλ〉, where λ2 ≡ −1 (mod p),

Q4p = 〈a, b | a2p = 1, ap = b2, b−1ab = a−1〉,
A4 = 〈a, b | a3 = b3 = (ab)2 = 1〉 (p = 3),

D4p = 〈a, b | a2p = b2 = 1, b−1ab = a−1〉.
If p = 2, then F8 is abelian and Q8 is the quaternion group of order 8, which are not of interest to us.

Also the dihedral group D4p is studied in [9], hence we study the groups Q4p and F4p, where p is an odd

prime, and the alternating group of order 12.

Elements of Q4p can be written uniquely in the form aibj , 0 � i < 2p, j = 0, 1. Element orders in Q4p

are as follows:

O(ai) =
2p

(i, 2p)
=

⎧⎪⎪⎨
⎪⎪⎩
2p, if (i, 2p) = 1,

p, if (i, 2p) = 2,

2, if i = p,

where 1 � i � 2p− 1. We have O(aib) = 4, 0 � i � 2p− 1. Using the above facts we can find Aut(Q4p).

Lemma 3.1. For odd prime p, Aut(Q4p) ∼= Z2p � Zp−1, and it has the following orbits on Q4p : {1},
{ai | 1 � i < 2p, (i, 2p) = 1}, {ap}, {a2i | 1 � i � p− 1} and {aib | 0 � i � 2p− 1}.
Proof. Any σ ∈ Aut(Q4p) is determined by its effect on a and b. Taking orders into account we have

σ(a) = ai, where 1 � i < 2p, (i, 2p) = 1 and σ(b) = ajb, 0 � j � 2p− 1. It can be verified that σ = fi,j
defined as above can be extended to an automorphism of Q4p. Therefore, Aut(Q4p) = {fi,j | 1 � i <

2p, (i, 2p) = 1, 0 � j � 2p− 1} is a group of order 2pϕ(2p) = 2p(p− 1).

We have fi,j ◦ fi′,j′ = fii′,ij′+j , hence if we define a group of 2× 2 matrices

G =

{[
i j

0 1

] ∣∣∣∣ 1 � i < 2p, (i, 2p) = 1, 0 � j � 2p− 1

}
,

then Aut(Q4p) ∼= G. But it is easy to prove that G ∼= Z2p � Zp−1 and the lemma is proved.

Lemma 3.2. If Cay(Q4p, S) is a connected normal edge-transitive Cayley graph on S, then S consists

of elements of order 4. Moreover, |S| > 2 is even.
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Proof. By Result 2.2 elements in S have the same order. Since 〈S〉 = Q4p, the set S cannot contain

elements of order p or 2p, and should contain elements of order 4 only. Being of even valency arises from

Corollary 2.3.

Lemma 3.3. Let i � j. S = {aib, ai+pb, ajb, aj+pb} generates Q4p if and only if i �= j and i �= j + p,

0 � i, j � 2p− 1. Moreover, in this case Aut(Q4p, S) ∼= Z2 × Z2.

Proof. Generating condition of S comes from the relations (akb)−1 = ak+pb for k = i, j, aibaj+pb = ai−j

and aibajb = ai−j+p.

Now let S = {x, x−1, y, y−1} and G = Aut(Q4p, S). Then G acts on S faithfully, and so is a subgroup

of S4. But G does not have elements of order 3 or 4, because if f ∈ G has order 3, then it should fix an

element on S such as s, thus f(s−1) = s−1, contradicting the order of f . Also if f is an element of order 4,

then its cycle structure on S have the form (x y x−1 y−1) or (x y−1 x−1 y), where x = aib, y = ajb

and f = fr,s (as mentioned in Lemma 3.1, (r, 2p) = 1, 0 � s � 2p− 1)) and we may assume i > j, thus

ri + s ≡ j (mod 2p) and rj + s ≡ i + p (mod 2p), or for the latter case ri + s ≡ j + p (mod 2p) and

rj+ s ≡ i (mod 2p). But in each case we obtain p | (r+1)(i− j). But p | (r+1) implies either r = p− 1,

i.e., r is even, or r = 2p− 1. If r is even, then it contradicts (r, 2p) = 1. If r = 2p− 1, then substituting

it into the congruences ri+ s ≡ j (mod 2p) and rj + s ≡ i+ p (mod 2p), we obtain the new congruences

−(i+ j)+ s ≡ 0 (mod 2p) and −(i+ j)+ s ≡ p (mod 2p) respectively which are absurd. p | (i− j) implies

i = j + p which is also a contradiction.

Therefore, G is a subgroup of S4 which does not have any element of order 3 or 4, but at least it has

two elements of order 2 such as f1,p and f−1,i+j , where x = aib and y = ajb, implying G ∼= Z2 × Z2.

Next, we can express the main condition under which the Cayley graph of groupQ4p becomes connected

normal edge-transitive.

Theorem 3.4. Γ = Cay(Q4p, S) is a connected normal edge-transitive Cayley graph if and only if its

valency is even, greater than two, S ⊆ {aib, ai+pb | 0 � i < p}, S = S−1 and Aut(Q4p, S) acts transitively

on S.

Proof. If Γ is a connected normal edge-transitive Cayley graph, then by Corollary 2.3 its valency should

be even. By Lemma 3.2, S ⊆ {aib, ai+pb | 0 � i < p}, since the graph is undirected, S = S−1, and by

Lemma 3.3, if |S| > 2, then 〈S〉 = Q4p. Hence S = {aib, ai+pb | for some 0 � i < p}. From Result 2.2,

either Aut(Q4p, S) acts on S transitively, or S = T ∪ T−1, where T and T−1 are orbits of the action of

Aut(Q4p, S) on S. But we observe f1,p ∈ Aut(Q4p, S), which implies both of aib and (aib)−1 = ai+pb

belong to the same orbit for 0 � i < p in which aib ∈ S, and that contradicts the assumption S = T∪T−1,

forcing Aut(Q4p, S) to act transitively on S.

Corollary 3.5. If Γ is a connected Cayley graph of the group Q4p, then Γ is not normal 1
2 arc-transitive.

Example 3.6. If S = {aib | 0 � i � 2p− 1}, then Cay(Q4p, S) is a connected normal edge-transitive

Cayley graph of valency 2p.

Recall that Result 2.8 expresses some conditions in which a connected normal edge-transitive Cayley

graph becomes a normal Cayley graph. Here we provide a counter example when the conditions are

omitted, this shows somehow the necessity of the conditions.

Example 3.7. Let Γ = Cay(Q4p, S) be a Cayley graph of valency 4. Γ is a connected normal edge-

transitive Cayley graph if and only if S = {aib, ai+pb, ajb, aj+pb}, where i �= j and i �= j+p. Moreover, in

this case Γ is not a normal Cayley graph, i.e., there is a connected normal edge-transitive Cayley graph

which is not normal Cayley graph.

Proof. By Theorem 3.4 it is enough to show Aut(Q4p, S) acts transitively on S. S is equivalent

to S′ = {b, b−1, ab, (ab)−1}, since (S′)fj−i,i = S. Therefore, it is sufficient to check it for S′. But

f1,p, f−1,1, f−1,p+1 are all in Aut(Q4p, S) and send b to b−1, ab, (ab)−1, respectively.

For the second part, it is enough to check the case S′ = {b, b−1, ab, (ab)−1} = {b, apb, ab, ap+1b}. We

have Γ(ab) = {ap−1, a−1, ap, 1} = Γ(ap+1b), thus σ = (ab (ab)−1) ∈ (AutΓ)1, but f1,p, f−1,1, f−1,p+1 ∈
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Aut(Q4p, S) and Lemma 3.3 show that σ /∈ Aut(Q4p, S), i.e., (AutΓ)1 �= Aut(Q4p, S) and by Result 2.1,

Γ is not a normal Cayley graph.

Theorem 3.8. Let Γ = Cay(Q4p, S) be a normal edge-transitive Cayley graph of valency 2d. Then

either d = p or d | (p − 1). Moreover, for each of the above numbers, there is, up to isomorphism, one

normal edge-transitive Cayley graph of valency 2d.

Proof. By Theorem 3.4, S ⊆ {aib, ai+pb | 0 � i < p} and by Example 3.6, Cay(Q4p, U) is a connected

normal edge-transitive graph of valency 2p, where U = {aib, ai+pb | 0 � i < p}. Now suppose S ⊆
{aib, ai+pb | 0 � i < p}, 〈S〉 = Q4p and Γ is a Cayley graph of valency 2d. Since Aut(Q4p, S) � Aut(Q4p)

and Aut(Q4p, S) is transitive on S (Theorem 3.4), we have |S| = 2d | |Aut(Q4p, S)| | |Aut(Q4p)| =

2p(p − 1), implying d | p(p − 1). On the other hand, we have d � p, hence either d = p or d | (p − 1)

proving the first assertion of the theorem.

To prove the existence and uniqueness part in the theorem, if d = p, then as mentioned above,

Cay(Q4p, U) is the unique normal maximal edge-transitive Cayey graph of valency 2p. Now suppose

d | (p− 1), d > 1. The stabilizer of b under A = Aut(Q4p) is the group Ab = {fi,0 | 1 � i < 2p, i odd, i �=
p} ∼= Zp−1, where Zp−1 is the cyclic group with multiplicative low of composition. Let t be a generator

of Zp−1, so that Ab = 〈ft,0〉. Since d | (p − 1), the group Zp−1 contains a unique subgroup of order

d, and if we set u = t
p−1
d , then 〈fu,0〉 is a subgroup of Ab with order d. Now consecutive effects of

fu,0 on ab yields the set T = {ab, aub, . . . , aud−1} whose size is d and is invariant under fu,0. Let us

set T−1 = {x−1 | x ∈ T } = {apb, au+pb, . . . , au
d−1+pb} and S = T ∪ T−1. We claim that Cay(Q4p, S)

is a connected normal edge-transitive Cayley graph. By the argument used in Lemma 3.3, we have

〈S〉 = Q4p. It is easy to see that fu,p interchanges elements of T and T−1, also the automorphism group

of Cay(Q4p, S) is 〈fu,0, fu,p〉, implying Cay(Q4p, S) is connected normal edge-transitive of valency 2d.

Next, we consider the group F4p, which is defined as follows and we will prove its Cayley graph on

some set can be connected 1
2 arc-transitive Cayley graph,

F4p = 〈a, b | ap = b4 = 1, b−1ab = aλ〉, where λ2 ≡ −1 (mod p).

Recall that we assume p is an odd prime. The existence of λ satisfying the condition λ2 ≡ −1 (mod p)

implies that 4 | (p− 1), hence p must be a prime of the form p = 1 + 4k.

The orders of non-identity elements of F4p are as follows:

O(ai) = p, 1 � i � p− 1;

O(aib) = O(aib3) = 4, 0 � i � p− 1;

O(aib2) = 2, 0 � i � p− 1.

Thus if σ ∈ Aut(F4p), then σ(a) = ai and either σ(b) = ajb or σ(b) = ajb3 for 1 � i � p−1, 0 � j � p−1,

but we also have σ(b−1ab) = σ(aλ), thus in the latter case we obtain a contradiction. Therefore, we have

Aut(F4p) = {gi,j | gi,j(a) = ai, gi,j(b) = ajb, 1 � i � p− 1, 0 � j � p− 1}
is a group of order p(p− 1).

Theorem 3.9. Γ = Cay(F4p, S) is a connected normal edge-transitive Cayley graph if and only if it

has even valency, S = T ∪ T−1, where T ⊆ {aib | 0 � i � p− 1} and Aut(F4p, S) acts transitively on T .

Moreover, if Γ = Cay(F4p, S) is a normal edge-transitive Cayley graph of valency 2d, then either d = p

or d | (p − 1). For each of the above numbers, there is, up to isomorphism, one normal edge-transitive

Cayley graph of valency 2d.

Proof. First assume Γ is a connected normal edge-transitive Cayley graph.

The fact that Γ has even valency follows from Corollary 2.3. By Result 2.2, in the action of Aut(F4p, S)

on S, we can deduce either S is an orbit or S = T ∪ T−1, where T is an orbit.

We have (aib2)−1 = aib2, thus if aib2 ∈ S for some 0 � i � p − 1, the case S = T ∪ T−1 cannot

occur, i.e., Aut(F4p, S) acts transitively on S, but Γ is connected, i.e., 〈S〉 = G, therefore S should

contain some element other than ajb2, 0 � j < p, say x, such that its order is not 2. Hence, there is no

gr,s ∈ Aut(F4p, S) ⊆ Aut(F4p) such that gr,s(x) = aib2, a contradiction.
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Suppose y = ai ∈ S for some 1 � i � p − 1. Since Γ is connected, i.e., 〈S〉 = G, S should contain

an element x, where x = ajb or x = ajb3 for some 0 � j � p − 1. But since (x)−1 �= y, without loss of

generality, we can assume x and y are contained in the same orbit. But there is no gr,s ∈ Aut(F4p, S) ⊆
Aut(F4p) such that gr,s(x) = y, a contradiction.

Therefore, S contains only elements of types aib and ajb3 for 0 � i, j � p − 1. But S = S−1 and for

each 0 � j � p− 1, there is some 0 � i � p− 1, where (ajb)−1 = aib3, hence S contains not only aib but

also ajb3 for 0 � i, j � p− 1. Therefore, Aut(F4p) and consequently Aut(F4p, S) is not transitive on S,

hence S = T ∪ T−1, where T ⊆ {aib | 0 � i � p− 1}, and Aut(F4p, S) acts transitively on T .

The converse is obvious.

The second part of the theorem is similar to the proof of Theorem 3.8 by replacing U = {aib, aib3 |
0 � i � p− 1} for the case d = p and the same argument in Theorem 3.8 for the case d | (p− 1) can be

repeated here and the assumption that T is the orbit of the action of Aut(F4p, S) on S.

Example 3.10. Let Γ = Cay(F4p, S) be a Cayley graph of valency 4. Γ is a connected normal

edge-transitive Cayley graph if and only if S = {aib, ajb, (aib)−1, (ajb)−1 | for some 0 � i < j � p− 1}.
Proof. By Theorem 3.9, it is sufficient to put T = {aib, ajb} and consider g−1,i+j ∈ Aut(F4p, S).

The above example ensures that we may have some connected normal edge-transitive Cayley graph of

the group F4p, and by Theorem 3.9, we see that there is some connected normal 1
2 arc-transitive Cayley

graph of order 4p. The next result shows that normal 1
2 arc-transitivity among Cayley graphs of order

2δp, 0 � δ � 2, p prime, appears only among group F4p.

In the next theorem we investigate the alternating group of order 12 which shows no 1
2 arc-transitive

Cayley graph arise from this group.

Theorem 3.11. Let Γ = Cay(A4, S) be a connected Cayley graph. The following are equivalent:

(1) Γ is normal edge-transitive.

(2) The valency of Γ is even, |S| > 2 and S consists of entirely 3-cycles.

(3) Γ is normal arc-transitive.

Proof. Let a = (1 2 3), b = (1 2 4), c = (1 3 4), d = (2 3 4) be all of 3-cycles in A4 so that none

of them are the inverse of the others.

(1) ⇒ (2) Assume Γ is normal edge-transitive. Hence by Corollary 2.3, its valency is even. 〈S〉 = A4

and A4 = 〈a, b〉 imply |S| > 2 and S contains at least one 3-cycle. Result 2.2 shows that all elements of

S should have the same order, hence S consists of entirely 3-cycles.

(2) ⇒ (3) Under the conditions which are mentioned in (2), |S| = 4, 6 or 8, S contains only 3-cycles

and S = S−1.

If |S| = 4, then S can be one of the following types: S1 = {a, b, a−1, b−1}, S2 = {a, c, a−1, c−1},
S3 = {a, d, a−1, d−1}, S4 = {b, c, b−1, c−1}, S5 = {b, d, b−1, d−1}, S6 = {c, d, c−1, d−1}. If we define

α := (1 2 3 4), β := (3 4 2), γ := (1 4), δ := (1 4 2), ζ := (1 3)(2 4) and Γi := Cay(A4, Si) for

i = 1, . . . , 6, then we can see σα, σβ , σγ , σδ and σζ send S1 to S2, S3, S4, S5 and S6 respectively, showing

that Γ1 is equivalent to Γ2,Γ3,Γ4,Γ5 and Γ6, respectively. Hence in this case it is enough to verify the

condition in Result 2.4 for Γ1. One can easily check ση, σθ and σι are all in Aut(A4, S1) and send a to

a−1, b and c respectively, where η = (1 2), θ = (3 4) and ι = (1 2)(3 4), proving that Aut(A4, S1) acts

transitively on S1, i.e., Γ1 and as a consequence Γi, 1 � i � 6 are all normal arc-transitive.

If |S| = 6, then S can be one of the following types: S7 = {a, b, c, a−1, b−1, c−1}, S8 = {a, b, d, a−1, b−1,

d−1}, S9 = {a, c, d, a−1, c−1, d−1} and S10 = {b, c, d, b−1, c−1, d−1}. Similarly if we define λ := (2 4),

μ := (1 3), ν := (1 4), ρ := (1 4 3) and Γi := Cay(A4, Si), i = 7, . . . , 10, we can easily check that

ση, σα and σλ force Γ7 to be equivalent to Γ8,Γ9 and Γ10. We also can see that σμ, σθ, σν , σρ and σρ−1

are all in Aut(A4, S7) which make Aut(A4, S7) to act transitively on S7, i.e., Γi is normal arc-transitive

for 7 � i � 10.

And finally if |S| = 8, the only possibility for S is S11 = {a, b, c, d, a−1, b−1, c−1, d−1}. But every

automorphism of A4 permutes the 3-cycles, thus Aut(A4) = Aut(A4, S11), which is transitive on S11,

proving that Γ11 = Cay(A4, S11) is also normal arc-transitive.
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(3) ⇒ (1) Follows from Results 2.2 and 2.4.

According to Result 2.6, if Γ = Cay(D2n, S) is a normal edge-transitive Cayley graph on the dihedral

group D2n, then Aut(D2n, S) acts transitively on S. Hence no 1
2 arc-transitive Cayley graph arise from

the group D4p and D2p where p is a prime number.

Therefore regarding the results of this paper obtained so far with the observation that any group of

order p is abelian and any group of order 2p is either abelian or dihedral, and classification of non-abelian

groups of order 4p which is mentioned at the first part of this section, we can state the following theorem.

Theorem 3.12. Let Γ be a connected Cayley graph of order 2δp, where p is a prime number and

0 � δ � 2. Γ is normal 1
2 arc-transitive if and only if Γ is a normal edge-transitive Cayley graph of a

group isomorphic to F4p.
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