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Abstract The preconditioned iterative solvers for solving Sylvester tensor equations are considered in this

paper. By fully exploiting the structure of the tensor equation, we propose a projection method based on the

tensor format, which needs less flops and storage than the standard projection method. The structure of the

coefficient matrices of the tensor equation is used to design the nearest Kronecker product (NKP) preconditioner,

which is easy to construct and is able to accelerate the convergence of the iterative solver. Numerical experiments

are presented to show good performance of the approaches.
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1 Introduction

In this paper, we consider the solution of Sylvester tensor equation of form

X ×1 A
(1) + X ×2 A

(2) + · · ·+ X ×N A(N) = D, (1)

where the known matrices A(n) ∈ R
In×In(n = 1, 2, . . . , N), tensor D ∈ R

I1×I2×···×IN , and the unknown

tensor X ∈ R
I1×I2×···×IN , which is called N -mode tensor. The properties of the operators ×1, ×2, . . .,

×N will be described in detail in Section 2. Throughout the paper, we refer to Equation (1) as a Sylvester

tensor equation, since when X is a simple 2-mode tensor, i.e., a matrix, (1) can be reduced to the Sylvester

matrix equation

AX +XBT = D, (2)

which arises frequently from the areas of systems and control theory [6–8] and has received much attention

(see [12, 21, 26]). In the case that X is a 3-mode tensor, (1) becomes

X ×1 A+ X ×2 B + X ×3 C = D, (3)
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which usually comes from the finite element [10], finite difference [3] or spectral method [19, 20] dis-

cretization of a linear partial differential equation in high dimension. For example, by the discretization

of three-dimensional radiative transfer equation using the Chebyshev collocation spectral method, the

resultant algebraic system is of form (3) (see [20]).

Recently, Li et al. [20] reformulated (3) as a sequence of Sylvester matrix equations (2) by applying

Schur decomposition and then solved the resulting linear system by a back-substitution process. This

approach is efficient for small sized coefficient matrices and can compute the exact solution after a finite

number of steps in the absence of roundoff error. However, we note that it is difficult to generalize the

approach to the case of N > 3 (see an illustration in Section 3). For large and sparse coefficient matrices,

such kinds of direct methods are often too expensive to implement, and iterative methods should be more

practical choices. In [5], Beylkin and Mohlenkamp reformulated (1) as a linear squares problem. For a

given X , they solved the associated normal equations by fixing all but one direction. This procedure

is known as an alternating least squares (ALS) approach which converges rather slowly in most cases.

Kressner and Tobler [15] proposed a so-called tensor Krylov subspace method for solving (1). They

constructed a tensorised Krylov space which is the Kronecker product of the usual Krylov subspaces,

then transformed the original linear system to a system of smaller size. Ballani and Grasedyck [4]

presented an iterative scheme similar to Krylov subspace method relying on truncation operator, whereas

the operator is implemented by hierarchical Tucker format [9]. These methods are constructive, however,

the approaches are only applicable for certain special coefficient matrices and the right-hand side.

In contrast with its equivalent linear system, Sylvester tensor equation (1) has more compact structure

which should be made fully use of. In this paper, we propose a projection method based on tensor format

(PM BTF) for solving (1). The proposed method needs not to form the coefficient matrix explicitly and

only relies on tensor-matrix multiplication, which is more effective than the matrix-vector multiplication

in solving process. Hence less flops and storage than the standard projection method (SPM) are needed.

Furthermore, we develop the nearest Kronecker product (NKP) preconditioner to accelerate convergence

of the algorithms. The NKP preconditioner can be constructed easily and work effectively. It is based

on the result that the summation of several Kronecter products can be approximated by one Kronecker

product [16]. Similar preconditioners can be found in [17, 22, 28].

The rest of this paper is organized as follows. Section 2 contains some tensor notations and basic

operations used throughout the paper. In Section 3, we recall the Schur decomposition method for

solving (3). A projection method based on tensor format for solving (1) is proposed in Section 4. In

Section 5, we design appropriate NKP preconditioner for (1). The numerical experiments in Section 6

demonstrate the performance of the algorithms. Finally, conclusions are given in Section 7.

Throughout the paper, we use the following notations. Matrices are denoted by capital letters, e.g., A,

B, C. Tensors are denoted by Euler script letters, e.g., X , Y, Z. The n × n identity matrix is denoted

by I(n). The order of a tensor is the number of dimensions, also known as ways or modes. As a special

case, vector is 1-mode tensor and matrix is 2-mode tensor. The operator vec(·) stacks the columns of a

matrix (or a tensor) to form a vector, tr(·) denotes the trace of matrix. ⊗ denotes the Kronecker product

and ‖ · ‖ denotes the Frobenius norm.

2 Tensor notations and basic operations

In this section we briefly review some tensor arithmetic concepts and notations that are needed in the

rest of the paper. For more details on properties of tensor, see recent reviews [14, 18, 24].

2.1 Unfolding and n-mode product

The unfolding of a tensor X along mode n is an In × (In+1 · · · IN I1 · · · In−1) matrix denoted by X(n),

whose column is a column of X along the n-th mode. A tensor slice is the two-dimensional section of

a tensor, obtained by fixing all but two indices [14]. Figure 1 shows the horizontal, lateral, and frontal
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slices of a 3-mode tensor X , denoted by Xi::, X:j:, and X::k, respectively. The k-th frontal slice of a

3-mode tensor X::k can also be denoted by Xk compactly.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Figure 1 Slices of a 3-mode tensor X

An important kind of operation for a tensor is the tensor-matrix multiplication, also known as n-mode

(matrix) product. The n-mode product of a tensor X ∈ R
I1×I2×···×IN with a matrix A ∈ R

J×In is

denoted by X ×n A. The result is of size I1 × · · · × In−1 × J × In+1 × · · · × IN and

(X ×n A)i1···in−1jin+1···iN =

In∑

in=1

xi1i2···iN ajin .

The n-mode (vector) product of a tensor X ∈ R
I1×I2×···×IN with a vector v ∈ R

In is denoted by X×̄nv.

The result is an (N − 1)-mode tensor and

(X×̄nv)i1···in−1in+1···iN =

In∑

in=1

xi1i2···iN vin .

In terms of the definition of unfolding, we obtain

Y = X ×1 A
(1) ×2 A

(2) · · · ×N A(N)

⇔ Y(n) = A(n)X(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1))T.

It follows immediately from the definition that n-mode and m-mode multiplication commute if m �= n:

X ×m A×n B = X ×n B ×m A.

If the modes are the same, we have

X ×n A×n B = X ×n (BA).

2.2 Inner product and tensor norm

The inner product of the two tensors X , Y ∈ R
I1×I2×···×IN is defined by

〈X ,Y〉 = vec(X )Tvec(Y) =
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN ,

and the norm induced by this inner product is

‖X‖ =
√

〈X ,X〉.
For the two tensors X and Y, the computation of ‖X − Y‖ can be simplified as follows:

‖X − Y‖2 = ‖X‖2 − 2〈X ,Y〉 + ‖Y‖2.
Moreover, n-mode multiplication commutes with respect to the inner product, i.e.,

〈X ,Y ×n A〉 = 〈X ×n AT,Y〉.
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3 Schur decomposition for solving (3)

In this section, we briefly review the direct method based on Schur decomposition [20] for solving (3).

Note that here we make full use of tensor arithmetic concepts and notations which are different from [20].

Let X ∈ R
m×n×l. The matrices A,B and C can be reduced to lower (quasi-lower) triangular forms by

using real Schur decomposition

A′ = UTAU, B′ = V TBV, C ′ = WTCW,

where U, V and W are orthogonal matrices. Multiplying Equation (3) along 1, 2 and 3-mode by UT, V T

and WT yields

X ′ ×1 A
′ + X ′ ×2 B

′ + X ′ ×3 C
′ = D′, (4)

where X ′ = X ×1 UT ×2 V T ×3 WT and D′ = D ×1 UT ×2 V T ×3 WT. For simplicity, we omit the

superscript of (4) in the rest of this section.

Unfolding Equation (4) along the mode 1, we obtain

AX(1) + I(m)X(1)(I
(l) ⊗B)T + I(m)X(1)(C ⊗ I(n))T = D(1). (5)

In the blocked form, the above equation can be transformed into a sequence of l matrix equations as

follows

AXk +XkB
T +

l∑

t=1

cktXt = Dk, k = 1, 2, . . . , l, (6)

where Xk is the k-th frontal slice of tensor X .

In order to solve (6), having in mind that C is quasi-lower triangular matrix, the following two cases

are considered.

Case 1. The k-th eigenvalue of C is real. This implies that ck,k+1 = 0. Set Fk = Dk −∑k−1
t=1 cktXt,

then (6) can be reduced to the compact form

AXk +Xk(B
T + ckkI

(n)) = Fk, (7)

which amounts to a Sylvester equation and can be solved by standard techniques [8].

Case 2. The k-th eigenvalue of C is complex. This implies that ck,k+1 �= 0. In this case, (6) can be

reduced to the following form

{
AXk +Xk(B

T + ckkI
(n)) + ck,k+1Xk+1 = Fk,

ck+1,kXk +AXk+1 +Xk+1(B
T + ck+1,k+1I

(n)) = Fk+1,
(8)

which also amounts to solving a Sylvester equation on the two unknown matrices Xk and Xk+1 (more

algorithm details can be found in [20]).

The above process is summarized in Algorithm 3.1.

Algorithm 3.1 The direct method based on Schur decomposition (DM BSD)

Input: Coefficients A, B, C, and D of Equation (3)

Output: The solution X of (3)

Compute real Schur decomposition of A, B, and C.

Set A := UTAU , B := V TBV , C := WTCW , D := D ×1 UT ×2 V T ×3 WT.

For k = 1 : l do

If ck,k+1 = 0 then
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Apply (7) to compute Xk.

Else if ck,k+1 �= 0 then

Apply (8) to compute Xk, Xk+1.

k ← k + 2

End if

End for

Construct X(1) := [X1, X2, . . . ,Xl], X := folding(X(1)).

X := X ×1 U ×2 V ×3 W .

However, Algorithm 3.1 is difficult to generalize to the case of N > 3. To show this, let us assume that

N = 4 and In = 2, in this case, (1) has the form

AX(1) + IX(1)(I ⊗ I ⊗B)T + IX(1)(I ⊗ C ⊗ I)T + IX(1)(D ⊗ I ⊗ I)T = E(1),

where I is the 2× 2 identity matrix. By applying the definition of unfolding and MATLAB notation, the

above summands have the following form

AX(1) = [AX::11, AX::21, AX::12, AX::22] ,

IX(1)(I ⊗ I ⊗B)T =
[
X::11B

T, X::21B
T, X::12B

T, X::22B
T
]
,

IX(1)(I ⊗ C ⊗ I)T = [X::11, X::21, X::12, X::22]

[
CT 0

0 CT

]
⊗ I,

IX(1)(D ⊗ I ⊗ I)T = [X::11, X::21, X::12, X::22]

[
d11I d21I

d12I d22I

]
⊗ I.

It is obvious that the above equations have not Sylvester’s structure similar to (6) or (8). Therefore, it

is difficult to extend the Schur decomposition method to the case of N > 3.

4 A projection method in tensor format

In this section, we will develop an iterative algorithm for approximating the solution X to the Sylvester

tensor equation (1). Firstly, we consider the existence and uniqueness of the solution of (1). By using

the Kronecker product [4, 15], (1) can be reformulated as follows:

Ax = b, (9)

with

A = I(IN ) ⊗ · · · ⊗ I(I2) ⊗A(1) + · · ·+A(N) ⊗ I(IN−1) ⊗ · · · ⊗ I(I1), (10)

and x = vec(X ), b = vec(D). The following lemma is a well-known property of the Kronecker product [9].

Lemma 4.1. Consider the matrix A defined in (10), then the set of all the eigenvalues of A, denoted

by σ(A), is given by all possible sums of eigenvalues of A(1), A(2), . . . , A(N) :

σ(A) = {λ1 + λ2 + · · ·+ λN |λn ∈ σ(A(n))}.

By Lemma 4.1, it immediately leads to the following result.

Lemma 4.2. Equation (1) has a unique solution if and only if

λ1 + λ2 + · · ·+ λN �= 0, ∀λn ∈ σ(A(n)).
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For the Sylvester matrix equation (2), the result is corresponding to the well-known condition σ(A) ∩
σ(−B) = ∅.

Now, apply the well-known generalized minimal residuals (GMRES) method to solving (9), we have

the following algorithm.

Algorithm 4.1 GMRES (see [25])

Input: Coefficients A, and b of the linear system (9)

Output: Approximate solution xm of (9)

1. Compute r0 = b− Ax0, β := ‖r0‖2, and v1 := r0/β.

2. Define the (m+ 1)×m matrix Hm = (hij). Set Hm = 0.

3. For j = 1, 2, . . . , m do

4. Compute wj := Avj

5. For i = 1, 2, . . . , j do

6. hij := 〈wj , vi〉
7. wj := wj − hijvi

8. End for

9. hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 12.

10. vj+1 = wj/hj+1,j

11. End for

12. Compute ym the minimizer of ‖βe1 −Hmy‖2 and xm = x0 + Vmym.

In Algorithm 4.1, we assume that the dimension of the space V is a fixed number m. In the practical

GMRES method, this parameter is usually chosen dynamically [25]. In addition, it is important to note

that A ∈ R
IN×IN

, x ∈ R
IN

and the computational cost of each step of matrix-vector product in line 4 is

O(I2N ), which is quite large. If we compute the tensor-matrix multiplication Vj×1A
(1)+ · · ·+Vj×NA(N)

instead of matrix-vector product Avj , where Vj is an N -mode tensor reshaped by vj , then the complexity

O(I2N ) can be reduced to O(NIN+1), which is much smaller, especially for large N . Furthermore,

Algorithm 4.1 needs to form the coefficient matrix (10) explicitly, which is impracticable. These facts

drive us to derive the tensor format GMRES by applying tensor format.

Algorithm 4.2 GMRES based on tensor format (GMRES BTF)

Input: Coefficients A(1), A(2), . . . , A(N), and D of Equation (1)

Output: Approximate solution Xm of (1)

1. Compute R0 = D − (X0 ×1 A(1) + · · ·+ X0 ×N A(N)), β := ‖R0‖, and V1 := R0/β.

2. Define the (m+ 1)×m matrix Hm = (hij). Set Hm = 0.

3. For j = 1, 2, . . . , m do

4. Compute Wj := Vj ×1 A(1) + · · ·+ Vj ×N A(N)

5. For i = 1, 2, . . . , j do

6. hij := 〈Wj ,Vi〉
7. Wj :=Wj − hijVi
8. End for

9. hj+1,j = ‖Wj‖. If hj+1,j = 0 set m := j and go to 12.

10. Vj+1 =Wj/hj+1,j

11. End for
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12. Compute ym the minimizer of ‖βe1 − Hmy‖2 and Xm = X0 + ˜V×̄N+1ym, where ˜V is an (N + 1)-mode tensor with

column tensors V1,V2, . . . ,Vm.

The algorithm based on the tensor format for solving (1) is not only suitable for GMRES method, but

also applicable to almost all projection methods such as biconjugate gradients (BiCG), stabilized BiCG

(BiCGSTAB), conjugate gradients squared (CGS), quasi-minimal residuals (QMR), transpose-free QMR

(TFQMR). The advantage of application of tensor format is confirmed by the numerical experiments in

Section 6.

5 Preconditioning

It is well known that an iterative algorithm for the linear system can perform better when a good

preconditioner is used. Specifically, suppose we wish to solve the nonsingular system (9). For any

nonsingular matrix M , the system

MAx = Mb (11)

has the same solution with (9). The convergence of the iteration method for solving (11) will depend on

the properties of MA instead of those of A. In particular, if M is a good approximation of A−1, (11) can

be solved more effectively and efficiently than (9).

In (10), A is given as the sum of N Kronecker products of matrices. The Kronecker product has some

important properties [9]. For example, tr(F ⊗G) = tr(F )⊗tr(G), (F ⊗G)−1 = F−1⊗G−1. When N = 2,

Pitsianis and Van Loan [23] presented a method for finding the nearest Kronecker production (NKP),

Q⊗P , for A. Since Q⊗P ≈ A, one would hope that (Q⊗P )−1 ≈ A−1 and thus define M = Q−1 ⊗P−1

as the preconditioner. Recall that the NKP problem for N > 2 can be written as follows: find Q1, Q2,

. . ., QN such that

‖A−Q1 ⊗Q2 ⊗ · · · ⊗QN‖2 =

∥∥∥∥
N∑

j=1

N⊗

i=1

A
(i)
j −Q1 ⊗Q2 ⊗ · · · ⊗QN

∥∥∥∥
2

is minimized. In [16], Langville and Stewart proved that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q1 ≈ α11A
(1)
1 + α12A

(1)
2 + · · ·+ α1NA

(1)
N ,

Q2 ≈ α21A
(2)
1 + α22A

(2)
2 + · · ·+ α2NA

(2)
N ,

...

QN ≈ αN1A
(N)
1 + αN2A

(N)
2 + · · ·+ αNNA

(N)
N .

This statement allows us to take M = Q−1
1 ⊗ Q−1

2 ⊗ · · · ⊗ Q−1
N as the preconditioner for solving (9)

because finding the small Q−1
1 , Q−1

2 , . . ., Q−1
N is not difficult and M does not need to form explicitly. The

preconditioning effect of the NKP preconditioner is completely determined by the spectral distribution

of the matrix MA. It is confirmed by the numerical experiments in Section 6. In comparison with

other preconditioners such as ILU, Neumann, diagonal, the NKP preconditioner enjoys considerable

efficiency [17].

Now, the remaining question is how to compute the unknown parameters αij (i, j = 1, 2, . . . , N). From

trace definition of the Frobenius norm, i.e., ‖A‖ =
√
tr(ATA), and the above statement, we can transform

the minimal problem into [16],

∥∥∥∥
N∑

j=1

N⊗

i=1

A
(i)
j −Q1 ⊗Q2 ⊗ · · · ⊗QN

∥∥∥∥
2
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≈
∥∥∥∥

N∑

j=1

N⊗

i=1

A
(i)
j −

( N∑

j=1

α1jA
(1)
j

)
⊗
( N∑

j=1

α2jA
(2)
j

)
⊗ · · · ⊗

( N∑

j=1

αNjA
(N)
j

)∥∥∥∥
2

=

[ N∑

i,j=1

N∏

k=1

tr(A
(k)T
i A

(k)
j )

]
− 2

[ N∑

i=1

( N∏

k=1

( N∑

j=1

αkjtr(A
(k)T
i A

(k)
j )

))]

+

N∏

k=1

[ N∑

i,j=1

αkiαkjtr(A
(k)T
i A

(k)
j )

]
. (12)

(12) means that finding the NKP matrices approximately is equivalent to finding αij (i, j = 1, 2, . . . , N)

such that the above nonlinear function is minimized. Clearly, as N increases, this minimization problem

which includes N2 variables becomes impractical. Fortunately, combining the above statements with the

structure of the coefficient matrix A in (10), we have the following proposition.

Proposition 5.1. Let A be of the form (10). Then the approximate NKP matrices Q1, Q2, . . . , QN

such that A ≈ Q1 ⊗Q2 ⊗ · · · ⊗QN are as follows :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q1 ≈ α11A
(N) + α12I

(IN ),

Q2 ≈ α21A
(N−1) + α22I

(IN−1),
...

QN ≈ αN1A
(1) + αN2I

(I1).

Proposition 5.1 shows that the number of unknown parameters reduces from N2 to 2N , and thereby,

the complexity of the nonlinear optimization problem (12) is reduced. Using the nonlinear optimization

software such as fminsearch in MATLAB, nlp in SAS, multilevel coordinate search (MCS) in [13], the

optimal parameters αij can be found quickly. Therefore, the application of GMRES method to (11)

yields the following preconditioned version of GMRES [25].

Algorithm 5.1 GMRES BTF with the NKP preconditioner (GMRES BTF+NKP)

Input: Coefficients A(1), A(2), . . . , A(N), and D of Equation (1).

Output: Approximate solution Xm of (1).

1. Calculate the NKP matrices Q1, Q2, . . . , QN according to Proposition 5.1.

2. Compute ˜D = X ×1 Q−1
1 ×2 · · · ×N Q−1

N , ˜Bn = X0 ×1 Q−1
1 ×2 · · · ×n Q−1

n A(n) ×n+1 · · · ×N Q−1
N .

3. Compute R0 = ˜D − ( ˜B1 + · · ·+ ˜BN ), β := ‖R0‖, and V1 := R0/β.

4. Define the (m+ 1)×m matrix Hm = (hij). Set Hm = 0.

5. For j = 1, 2, . . . ,m do

6. Compute Wj := Vj ×1 Q−1
1 A(1) ×2 · · · ×N Q−1

N + · · ·+ Vj ×1 Q−1
1 ×2 · · · ×N Q−1

N A(N).

7. For i = 1, . . . , j do

8. hij := 〈Wj ,Vi〉
9. Wj :=Wj − hijVi
10. End for

11. hj+1,j = ‖Wj‖
12. Vj+1 =Wj/hj+1,j

13. End for

14. Compute ym = argminy‖βe1 −Hmy‖2 and Xm = X0 + ˜V×̄N+1ym, where ˜V is an (N + 1)-mode tensor with column

tensors V1,V2, . . . ,Vm.

15. If satisfied, stop, otherwise, set X0 := Xm and go to 1.
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6 Numerical experiments

In this section, we perform some numerical experiments to illustrate the effectiveness of our approach. All

computations are implemented in MATLAB 2010a running on an Inter(R) Dual T3500 2.0 GHz notebook

with 2 GB RAM, and all the implementations are based on the codes from the MATLAB Tensor Toolbox

developed by Bader and Kolda [1, 2]. We use the zero vector (or zero tensor) as the starting point, and
‖rk‖
‖r0‖ < ε (or ‖Rk‖

‖R0‖ < ε) as the stopping condition for all of the iterative algorithms compared, where rk
(or Rk) is the residual of the k-th iteration.

Example 6.1. In this example we compare the standard projection methods (SPM) with the pro-

jection methods based on the tensor format (PM BTF) for solving (1). Let In ≡ 20, ε = 10−10. We vary

the dimension N from 3 to 5. When N = 3, the coefficient matrices A(n) and the tensor D are generated

(see [27], eg. 35.1) by the following MATLAB codes:

rand(’state’,0);

A1=eye(20)+0.5*randn(20)/sqrt(20);

A2=eye(20)+0.5*randn(20)/sqrt(20);

A3=eye(20)+0.5*randn(20)/sqrt(20);

D=tenrand([20,20,20]);

When N = 4 and 5, the coefficient matrices are analogous. The results are reported in Table 1, where

“−” and Ratio stand for out of memory and ratio of the CPU times for SPM to the CPU times for

PM BTF, respectively.

From Table 1 we note that the effectiveness of PM BTF are better than that of the SPM. Moreover,

as N increases, the advantage of PM BTF is more obvious.

Example 6.2. In this example, we compare DM BSD with PM BTF for solving (3). Since the

DM BSD is only suitable for N = 3, we fix N = 3, ε = 10−14 and vary the size In from 40 to 160. The

coefficient matrices are generated as in Example 6.1. The results are given in Table 2.

From Table 2 we observe that DM BSD is efficient for small sized matrices. However, as In increases,

it becomes time-consuming, the BTF type methods are more efficient.

Table 1 Comparison of CPU times (in seconds) for SPM and PM BTF

Methods N = 3 N = 4 N = 5

GMRES(10) 0.390 9.422 −
GMRES(10) BTF 0.312 6.349 100.5

Ratio 1.25 1.48

BiCGSTAB 0.250 7.738 −
BiCGSTAB BTF 0.203 3.260 57.48

Ratio 1.23 2.37

CGS 0.265 6.646 −
CGS BTF 0.234 2.902 56.91

Ratio 1.13 2.29

TFQMR 0.358 8.065 −
TFQMR BTF 0.249 3.791 63.49

Ratio 1.44 2.13

Table 2 Comparison of CPU times (in seconds) for DM BSD and PM BTF when N = 3

Methods In = 40 In = 80 In = 120 In = 160

DM BSD 3.476 44.12 236.9 1169

GMRES(10) BTF 3.588 28.43 80.57 195.5

BiCGSTAB BTF 1.997 11.54 40.78 97.61

CGS BTF 2.090 12.60 38.95 102.2

TFQMR BTF 2.465 16.88 47.52 122.2
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Example 6.3. This example is concerned with the effectiveness of the NKP preconditioner. Consider

the convection-diffusion equation [4, 28],

−νΔu+ cT∇u = f in Ω = [0, 1]N ,

u = 0 on ∂Ω.

A standard finite difference discretization on equidistant nodes, combined with a second order convergent

scheme [10, 15] for the convection term leads to the linear system (9) with

A(n) =
ν

h2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
cn
4h

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −5 1

1 3 −5
. . .

. . .
. . .

. . . 1

1 3 −5

1 3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, n = 1, 2, . . . , N.

Let ν = 0.0001, cn = 10 (see [28]). Firstly, we consider the spectral distribution of the original coefficient

matrix and the preconditioned matrix. The results are shown in Figure 2.

From Figure 2 we observe that the spectrum of the preconditioned matrix clusters around 1. So we can

expect the preconditioned equations to have better convergence behaviors. Now, let N = 4, In = 20 and

the right hand side be uniformly distributed random numbers. We solve Equation (1) by GMRES(10)

and BiCGSTAB. The results are presented in Figure 3 and Table 3.

In Figure 3 we see that with the NKP preconditioner the residuals of the projection methods are

decreasing faster than those of the projection methods without the preconditioner. It can be seen from

Table 3 that CPU times of the projection methods with the NKP preconditioner is less than that of

the projection methods without the preconditioner. Note that the CPU times of the projection meth-

ods with the NKP preconditioner in Table 3 include the times for finding the NKP matrices, which usually
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Figure 2 The spectral distributions of the original matrix (left) and the preconditioned matrix (right) for In = 10, N = 3

Table 3 CPU times (in seconds) for two iterative algorithms with none and the NKP preconditioner

Methods 10−6 10−10 10−14

GMRES(10) BTF 27.61 39.48 51.19

GMRES(10) BTF+NKP 19.42 28.31 37.25

BiCGSTAB BTF 26.75 30.81 34.30

BiCGSTAB BTF+NKP 13.48 16.92 21.60
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Figure 3 The convergence curves for two iterative algorithms with none and the NKP preconditioner

cost less than 1 second. Although the computational cost per iteration in the projection methods with

the NKP preconditioner is larger than that of the projection methods without the preconditioner, the

projection methods with the preconditioner are more efficient than those without the preconditioner.

7 Conclusions

In this paper, we propose the projection method based on the tensor format for solving (1). In contrast

with the standard projection methods, our approach needs less flops and storage. Furthermore, we design

a kind of NKP preconditioner to accelerate the convergence of the tensor format projection methods.

The NKP preconditioner is easy to construct, since we only need to determine 2N parameters by using

nonlinear optimization software. The NKP preconditioner is also storage-efficient, since we only need to

store the NKP matrices instead of the preconditioner due to the use of Kronecker products.
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