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1 Introduction

The boundary theory of Markov chains plays a central role in the theory of random walks, and the

associated discrete potential theory provides a common ground for probability and analysis. Classically,

the state space of a random walk under consideration is usually equipped with a group structure and the

walk is reversible. More recent developments involve broader types of graphs and models, such as those

arising from the study of fractals that have a self-similar structure (see [4, 5, 10, 11, 15, 18, 20]).

In [4,5], Denker and Sato introduced a (non-irreducible) Markov chain on the tree of symbolic space of

the Sierpinski gasket (SG), which moves from a state to its descendants and its neighbors’ descendants.

They showed that the Martin boundary and the minimal Martin boundary (also called the exit space)

of the chain are homeomorphic to the SG. Based on this setup, they made an attempt [6] to relate this

to the canonical harmonic structure and the Dirichlet form (see Kigami [12–14]). The idea of identifying

the Martin boundary with the self-similar set has been carried out on the pentagasket [8] and extended

to simple post-critically finite self-similar sets [10], and more general cases [18].

In another direction, Kaimanovich [11] observed that there is a natural hyperbolic graph structure on

the symbolic space of the SG, and the SG can be identified with the hyperbolic boundary. This has also

been extended by Wang and the first author to the class of self-similar sets that satisfy the open set

condition [17], and results of Denker-Sato type Markov chains can also be proved on these hyperbolic

graphs [18].
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In this paper we consider a new Markov chain on the space of finite words representing the SG. Our

aim is twofold. First we want to have an example different from the previous ones in that the Martin

boundary is homeomorphic to the SG and contains the minimal Martin boundary as a proper subset.

Secondly we want the induced harmonic structure to coincide with the canonical one on the SG [14]. As

is well known, there are two approaches to establishing the existence of a harmonic structure on a self-

similar set: the analytic approach (see [13,14,23]), and the probabilistic approach (see [2,16]). However,

both approaches can only deal with limited classes of fractals. Ultimately, our goal is to use this Martin

boundary consideration to study the harmonic structure on a wider class of fractals.

Our specific Markov chain {Xk}∞k=0 is defined on the space of finite words Σ∗ of the SG with a transition

probability P (see Section 2) and initial state ϑ. Basically, on each level Σn, Xk moves on the non-vertex

words according to the nearest neighborhood random walk. When it hits one of the three vertices, it

moves to the three descendants on the next level, and continues the walk in the same way (see Figure 1).

Our main conclusions are as follows.

Theorem 1.1. limk→∞Xk = X∞ Pϑ-almost surely, where X∞ is a {1̇, 2̇, 3̇}-valued random variable.

Moreover, the Martin boundary of {Xk}∞k=0 is homeomorphic to the SG, and the the minimal Martin

boundary is {1̇, 2̇, 3̇}.
Theorem 1.2. The class of P -harmonic functions is 3-dimensional, and there is a natural identifica-

tion with the canonical harmonic functions on the SG.

In Theorem 1.1, the limit of {Xk}k and the statement concerning the minimal boundary follow easily

from the general convergence theorem of Markov chains. The main effort is to establish the homeomor-

phism between the Martin boundary and the SG. We first find the hitting probabilities ρi(x) from a

state x ∈ Σn to the three vertices in in terms of the product of some transition matrices (Theorem 2.5).

We then prove the convergence of ρi(x|n) for x ∈ Σ∞ (Theorem 3.3, Corollary 3.6); this makes use of

the concepts of scrambling matrices and the maximum range of a matrix, both introduced by Hajnal [9].

The convergence is used to study the limit of the Green function (Proposition 4.1) and the Martin kernel

K(x, y) (Proposition 5.2), which in turn enable us to establish the homeomorphism between the Martin

boundary and the SG (Section 6).

It follows that the P -harmonic functions are generated by ψi(x) = K(x, i∞), i = 1, 2, 3. Each ψi has

a continuous extension to the Martin boundary, i.e., to the SG, denoted by K. It is shown that these

ψi =: h satisfy the graph harmonic property on K, i.e.,

h(x) =
1

4

∑

x∼κy

h(y), (1.1)

for x being a non-boundary vertex of the level-n cells of K. (Here ∼κ stands for the nearest neighborhood

relation.) This yields Theorem 1.2.

Figure 1 The random walk of the Markov chain
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For a continuous function h on K, we define the average value of h on the cell Kw, w ∈ Σ∗, of the
SG by

h̃(w) = 3−|w|
∫

Kw

h(x) dμ(x),

where μ is the standard self-similar measure on K (see Section 2 for other unexplained notation). In

considering the problem of existence of the Laplacian, Strichartz [22] showed that if h is a harmonic

function on K as in (1.1), then h̃ is P -harmonic on Σ∗. Moreover, he used the average values to consider

the corresponding Dirichlet form and showed a relation between the pointwise definition on K and the

average-value definition on Σ∗. This agrees with our Martin boundary consideration. From this point

of view, it will be interesting to consider the above identification problem of the Martin boundaries for

more general self-similar sets, as it would potentially offer another tool to study the harmonic structure

and the Laplacian on such self-similar sets.

2 Basic hitting probabilities

We first introduce some notation for the symbolic space of the SG. Let Σn := {i1 · · · in : ij = 1, 2, 3},
n � 1, denote the set of all words on level n (Σ0 := {ϑ} by convention), and let Σ∗ :=

⋃∞
n=0 Σn be the

set of finite words. For a word x = i1 · · · in, we let |x| = n denote the length of x. We also use Σ
(i)
n ⊂ Σn,

i = 1, 2, 3, to denote the three copies of Σn−1 in the obvious way. On Σn, let Vn := {1n, 2n, 3n} denote

the three vertices, and Σ̃n := Σn \ Vn. Similarly, we let Σ∞ denote the set of infinite words i1i2 · · · , and
let Σ̃∞ = Σ∞ \ {1̇, 2̇, 3̇}. We use x, y to denote elements in Σ∗, and x,y for elements in Σ∞.

Let K denote the SG and let S1, S2, S3 be the three similitudes generating it. For u = i1 · · · in ∈ Σn,

we let Su := Si1 ◦ · · · ◦ Sin denote the composition and let Kw = Sw(K). We say that u, v ∈ Σn are

neighbors, denoted u ∼ v, if Ku ∩ Kv �= ∅. We define a Markov chain {Xk}∞k=0 on the state space Σ∗
with transition probabilities

P (u, v) =

⎧
⎪⎨

⎪⎩

1/3, if u, v ∈ Σ̃n, u ∼ v;

1/3, if u ∈ Vn, v = ui, i = 1, 2, 3;

0, otherwise.

See Figure 1 for an illustration of this Markov chain. The words of Σn are denoted by solid dots, and

two words are neighbors if and only if they are connected by an edge. On level n, the chain starting at a

state in Σ̃n walks to one of its three neighbors, and when it hits a vertex, it must go down to one of its

three neighbors in Σn+1. The chain moves down from Σn to Σn+1 only through one of the three vertices

in Vn.

We also use the following notation throughout the paper. A 1-cell Δw in Σn consists of the three

words of the form wi, where w is a word of length n − 1 and i = 1, 2, 3. If n � m and w ∈ Σn−m, we

define the (n,m)-cell in Σn determined by the word w, denoted Δn
w, to be the set of words of the form

{wi1 · · · im : i1, . . . , im ∈ {1, 2, 3}}.
Note that the three vertices of Δn

w are w1m, w2m, w3m. In particular, a 1-cell is an (n, 1)-cell; Σn is the

only (n, n)-cell. Also, two words x = i1 · · · in, y = j1 · · · jn belong to the same (n,m)-cell if and only if

i1 · · · in−m = j1 · · · jn−m.

For C ⊂ Σn, we let ρx,C be the probability for the chain {Xn}∞n=0, starting at x, to ever reach C at

some positive time. If C is a single point y, we will denote it by ρx,y. In the sequel we will repeatedly use

the following elementary identity to set up systems of linear equations to calculate the probabilities ρx,y:

ρx,y = P (x, y) +
∑

z �=y

P (x, z)ρz,y. (2.1)

For the random walk on each Σn, we regard 1n, 2n, 3n ∈ Vn as absorbing states (via which the chain

moves to Σn+1 and will not return). For any x ∈ Σ̃n, let ρ(x) = [ρ1(x), ρ2(x), ρ3(x)], where ρi(x) is
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the probability for the chain, starting at x, to be absorbed by the vertex in in Σn, i.e., ρi(x) = ρx,in .

If x = jn ∈ Vn, we simply define ρi(x) = δij . In order to calculate these probabilities, we need some

additional notation. Let an, bn, cn be the probabilities for the chain starting at 1n2 to reach the vertices

1n, 2n, 3n, respectively; analogously let αn, βn, γn be the probabilities if the chain starts at 12n−1 instead

(see Figure 2). For n � 2, let εn := 1− an. Lastly, we let ei, i = 1, 2, 3, be the standard basis of R3.

Proposition 2.1. Let n � 2.

(a) (a2, b2, c2) = (α2, β2, γ2) = (5/8, 1/4, 1/8).

(b) αn+1 = (5− 3an)/(8− 3an), βn+1 = 2/(8− 3an), and γn+1 = βn+1/2.

(c) an+1 = (5/2)βn+1, [
bn+1

cn+1

]
=

1

8
βn+1 · · ·β3

[(
3
2

)n
+
(
1
2

)n
(
3
2

)n − (
1
2

)n

]
.

(d) {an}, {βn}, {γn} are monotone increasing, while {bn}, {cn}, {αn} are monotone decreasing.

Proof. (a) That (a2, b2, c2) = (α2, β2, γ2) follows by definition, and their values are obtained by solving

the following equations (by (2.1) and symmetry):

α2 =
1

3
+

1

3
α2 +

1

3
β2, β2 =

1

3
α2 +

1

3
γ2, γ2 =

1

3
β2 +

1

3
γ2.

(b) We only consider the case n = 3; the proof for any n � 3 is the same because all equations involved

have exactly the same pattern. Write u = ρ1(121), v = ρ1(123). By using (2.1) and symmetry, and

applying the values a2, b2, c2 for Σ2 to Σ
(1)
3 , we have

α3 =
1

3
β3 +

1

3
u+

1

3
v, u = b2 + a2α3 + c2α3, v = c2 + a2α3 + b2α3.

Eliminating u and v, and using a2 + b2 + c2 = 1, we obtain

(2 − a2)α3 = β3 + (b2 + c2).

Applying the same argument to β3 and γ3, we get

(3 − 2a2)β3 = α3 + (b2 + c2)γ3, (2− 2a2)γ3 = (b2 + c2)β3.

These three equations together with a2 + b2 + c2 = 1 imply (b).

(c) Similarly we can express (a3, b3, c3) in terms of a2, b2, c2 and β3 as follows:

a3 = a2 + b2α3 + c2α3 =
5

2
β3,

b3 = b2β3 + c2γ3 =

(
b2 +

c2
2

)
β3,

c3 = b2γ3 + c2β3 =

(
b2
2

+ c2

)
β3.

11 111 111

22 33 222 333 222 333

a2 = α2

b2 = β2 β3

α3
a 3

b3

c2 = γ2  γ3c3

Figure 2 The probabilities an, bn, cn and αn, βn, γn for n = 2, 3
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Likewise for n � 2,

an+1 =
5

2
βn+1, bn+1 =

(
bn +

cn
2

)
βn+1, cn+1 =

(
bn
2

+ cn

)
βn+1.

Putting bn+1, cn+1 in a matrix form, we have

[
bn+1

cn+1

]
= βn+1

[
1 1/2

1/2 1

] [
bn

cn

]
. (2.2)

Observe that the eigenvalues of the matrix are 3/2 and 1/2 with corresponding eigenvectors [1, 1]t and

[−1, 1]t, respectively. By diagonalizing the matrix and iterating (2.2), we arrive at the second equality

in (c).

(d) From (a) and (b), it follows that the statement holds for n = 2, 3. Let n � 3. Since βn+1 � 2/5, it

can be checked directly that

[
bn+1

cn+1

]
� 1

8
βn · · ·β3

[
(3/2)n−1 + (1/2)n−1

(3/2)n−1 − (1/2)n−1

]
=

[
bn

cn

]
.

This shows that {bn}, {cn} are decreasing to 0, and hence {an} is increasing to 1. Consequently, βn+1 =

2/(8− 3an) and γn+1 = βn+1/2 are increasing, and thus αn+1 is decreasing.

As a direct consequence, we have

Corollary 2.2. Let a, b, c, α, β, γ be the respective limits of an, bn, cn, αn, βn, γn. Then (a, b, c) =

(1, 0, 0) and (α, β, γ) = (2/5, 2/5, 1/5).

Recall that εn := 1− an.

Corollary 2.3. There exists a constant c > 0 such that for all n � 3, c(3/5)n � εn � (3/5)n.

Proof. By Proposition 2.1(b) and (c), β3 = 16/49 and βn � 2/5 for n � 2, and thus for all n � 3,

εn = bn + cn =
4

49
βn · · ·β4

(
3

2

)n−1

<

(
3

5

)n

.

On the other hand, by Proposition 2.1(b), β−1
k = (8 − 3ak−1)/2 = (5/2)(1 + 3εk−1/5). In view of∑∞

k=2 εk �
∑∞

k=2 (3/5)
k−1 <∞, there exists C > 0 such that

(βn · · ·β3)−1 =

(
5

2

)n−2 (
1 +

3ε2
5

)
· · ·

(
1 +

3εn−1

5

)
� C

(
5

2

)n−2

.

This implies that εn � c(3/5)n for some c > 0, proving the corollary.

For n � 2, we define

A(1)
n =

⎡

⎢⎢⎣

1 0 0

αn βn γn

αn γn βn

⎤

⎥⎥⎦ , A(2)
n =

⎡

⎢⎢⎣

βn αn γn

0 1 0

γn αn βn

⎤

⎥⎥⎦ , A(3)
n =

⎡

⎢⎢⎣

βn γn αn

γn βn αn

0 0 1

⎤

⎥⎥⎦ . (2.3)

Note that A
(i)
n denotes the probabilities for the chain starting at the vertices of Σ

(i)
n to reach the vertices

of Σn, i.e.,

A(i)
n =

⎡

⎢⎢⎣

ρ(i1n−1)

ρ(i2n−1)

ρ(i3n−1)

⎤

⎥⎥⎦ , i = 1, 2, 3. (2.4)

Note also that each A
(i)
n is stochastic, i.e., nonnegative with each row sum equal to 1. We can use this to

express the probability to reach a vertex from an arbitrary point in Σn in terms of a matrix product.
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Remark 2.4. For i ∈ {1, 2, 3}, and for any n1, . . . , nk, the i-th row of the product of A
(i)
n1 · · ·A(i)

nk is

ei. This can be proved easily by induction.

Theorem 2.5. Let n � 2 and x = i1 · · · in ∈ Σn. Then

ρ(x) = einA
(in−1)
2 · · ·A(i1)

n .

Proof. For x ∈ Vn, the expression for ρ(x) follows from Remark 2.4. So we assume that x ∈ Σ̃n.

First consider the case in−1 �= in. The (n, 2)-cell that contains x is Δi1···in−2 , which has vertices

i1 · · · in−2kk, k = 1, 2, 3 (see Figure 3).

By first expressing ρ(x) in terms of these ρ(i1 · · · in−2kk) using the definition of A
(in−1)
2 , and then

using induction, we get

ρ(x) = einA
(in−1)
2

⎡

⎢⎢⎣

ρ(i1 · · · in−211)

ρ(i1 · · · in−222)

ρ(i1 · · · in−233)

⎤

⎥⎥⎦

= · · · (inductively)
= einA

(in−1)
2 · · ·A(i2)

n−1A
(i1)
n (by (2.4)).

Next we consider the case x = i1 · · · in−mi
m for some m � 2, where in−m �= i. By Remark 2.4 again,

einA
(in−1)
2 · · ·A(in−m+1)

m = eiA
(i)
2 · · ·A(i)

m = ei.

Thus, a similar proof as above yields the same expression for ρ(x).

We will give a detailed study of the convergence of the above product in the next section. In the

following we prove some simple consequences of the hitting probabilities using Proposition 2.1. The next

proposition is intuitively clear (see Figure 1). It is an important step in proving the limit properties of

the Green function (Proposition 4.1).

Proposition 2.6. Assume that n � m+1. Then limm→∞ ρim,in = 1 and ηmij := limn→∞ ρim,jn exists

and is positive. Moreover, limm→∞ ηmij = δij.

Proof. It follows from the definitions of the transition probability P on Σ∗ that

ρik,ik+1 =
1

3
+

2

3
ak+1 = 1− 2

3
εk+1. (2.5)

Since ρik,in � ρik,ik+1ρik+1,in for k � n− 1, by induction and Corollary 2.3, we have

ρim,in �
n−1∏

k=m

ρik,ik+1 =
n−1∏

k=m

(
1− 2

3
εk+1

)
�

n−1∏

k=m

(
1− 2

3

(
3

5

)k+1)
. (2.6)

β2

α2

 γ2

i1�in–3111

i1�in–3222
i1�in–222

i1�in–3333

i1�in–211

x

Figure 3 The (n, i)-cells (i = 1, 2, 3) in the portion of Σn containing the word x = i1 · · · in
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This implies that limm→∞ ρim,in = 1.

Now to consider limn→∞ ρim,jn , we assume without loss of generality that i = 1. First we have

ρ1m,1m+1 =
1

3
+

2

3
am+1 and ρ1m,2m+1 = ρ1m,3m+1 =

1

3
(1− am+1).

Inductively we have

ρ1m,1n = ρ1m,1n−1

1 + 2an
3

+ ρ1m,2n−1

1− an
3

+ ρ1m,3n−1

1− an
3

. (2.7)

Similar expressions hold for ρ1m,2n and ρ1m,3n . To put these in a matrix form, we let

Mk :=
1

3

⎡

⎢⎢⎣

1 + 2ak 1− ak 1− ak

1− ak 1 + 2ak 1− ak

1− ak 1− ak 1 + 2ak

⎤

⎥⎥⎦ , m+ 2 � k � n.

Hence from (2.7), we have

⎡

⎢⎢⎣

ρ1m,1n

ρ1m,2n

ρ1m,3n

⎤

⎥⎥⎦ = Mn · · ·Mm+2

⎡

⎢⎢⎣

(1 + 2am+1)/3

(1 − am+1)/3

(1 − am+1)/3

⎤

⎥⎥⎦ . (2.8)

For i, j ∈ {1, 2, 3} with i �= j,

|Mk(i, i)− 1| = 2

3
εk and |Mk(i, j)− 0| = 1

3
εk.

If we let ‖M‖ := maxi
∑

j |M(i, j)|, a norm satisfying ‖MM ′‖ � ‖M‖‖M ′‖ for all matrices M,M ′, then
by Corollary 2.3,

lim
�→∞

∞∑

k=�

‖Mk − I‖ = lim
�→∞

(4/3)

∞∑

k=�

εk = 0.

As the Mk are stochastic matrices, for any � � n, {‖Mn · · ·M�‖}�,n is bounded by 1, and it follows easily

from the above limit that limn→∞Mn · · ·Mm+2 exists. Hence for j = 1, 2, 3, limn→∞ ρ1m,jn exists.

Since limn,k→∞Mn · · ·Mk = I and each entry of Mi is positive, we conclude that limn→∞ ρim,jn > 0.

Lastly, it follows from (2.8) that limm→∞ ηm1j = δ1j .

To conclude this section, we will estimate the probability ρϑ,Δ for a 1-cell Δ ⊆ Σm. It is necessary

in Section 5 (Proposition 5.1) to obtain an upper bound for the Green function. We use Δ� = Δ2m−1 ,

Δr = Δ3m−1 to denote the two 1-cells at the left and right corners of Σm.

Lemma 2.7. Let m � 2 and Δ be any 1-cell in Σm. Then

ρ1m−1,Δ � ρ1m−1,Δ� = ρ1m−1,Δr � C1(3/5)
m

for some constant C1 > 0 (independent of m).

Proof. It is clear that ρ1m−1,Δ� = ρ1m−1,Δr , and from the transition probabilities and Corollary 2.3

that

ρ1m−1,Δ� � ρ1m−1,2m =
1

3
(bm + cm) � C1(3/5)

m.

To prove the first inequality, we use induction. It can be verified directly for m = 2 or 3. Assume that

it holds for some m � 2, and consider Σm+1. For the clarity of induction, we denote Δ,Δ�,Δr ∈ Σm by

Δm,Δ
�
m,Δ

r
m, respectively. Recall that for i = 1, 2, 3,

Σ
(i)
m+1 = {(i, I) : I ∈ Σm},

i.e., Σ
(i)
m+1 are the three sub-triangles making up Σm+1. Consider the following two cases.
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Case 1. Δm+1 ⊆ Σ
(1)
m+1. Note that Σm can be identified with Σ

(1)
m+1. We let Δm be the 1-cell in Σm

corresponding to Δm+1. Then

ρ1m,Δm+1 � ρ1m−1,Δm
� ρ1m−1,Δl

m
� ρ1m,Δl

m+1
= ρ1m,Δr

m+1
.

(The first and third inequalities are clear by considering the paths that reach the points; the second

inequality is by induction hypothesis.)

Case 2. Δm+1 ⊆ Σ
(2)
m+1. Note that any path that reaches Δm+1 or Δl

m+1 must first hit one of the

two vertices 21m−1 or 23m−1 of Σ
(2)
m+1. Hence we can apply induction hypothesis to conclude that

ρ1m,Δm+1 � ρ1m,Δl
m+1

.

Proposition 2.8. There exists a constant C2 > 0 such that for any m � 2 and x ∈ Σm,

ρϑ,x � C2(3/5)
m.

Proof. Assume without loss of generality that x ∈ Σ
(1)
m . Let Δ be the (unique) 1-cell containing x. Then

by Lemma 2.7,

ρϑ,x � 1

3
ρ1m−1,x � 1

9
ρ1m−1,Δ � C

(
3

5

)m

.

(The second inequality holds since any path reaching Δ has a probability of at least 1/3 to reach x.)

3 Random product of the A
(i)
n

One of our main purposes in this section is to show that any random product A
(in−1)
2 · · ·A(i1)

n of the

matrices in (2.3) converges to a stochastic matrix whose rows are identical. To this end, we need two

parameters λ and δ, both introduced by Hajnal [9], which measure the difference of the rows of a matrix.

For any stochastic matrix M = (M(i, j)), define

λ(M) := 1−min
i1,i2

∑

j

min{M(i1, j),M(i2, j)} ∈ [0, 1].

M is called scrambling if λ(M) < 1 (see [9]). In other words, M is scrambling if and only if for every pair

of rows i1 and i2, there exists a column j (which may depend on i1 and i2) such that M(i1, j) > 0 and

M(i2, j) > 0. Also, λ(M) = 0 if and only if the rows of M are identical.

There is another parameter that measures how different the rows of M are. Define

δ(M) := max
j

max
i1,i2

|M(i1, j)−M(i2, j)| ∈ [0, 1].

In other words, δ(M) is the maximum difference between any pair of elements in the same column. Hajnal

called δ(M) the maximum range of M . Note that δ(M) = 0 if and only if λ(M) = 0.

It is not difficult to see that for any stochastic matrix M , we have δ(M) � λ(M). In fact Hajnal [9,

Theorem 2] (see also [25, Lemma 2]) proved the more general result that for any stochastic matrices

M1, . . . ,Mk,

δ(M1 · · ·Mk) �
k∏

i=1

λ(Mi). (3.1)

It can also be proved that for any 2 × 2 or 3 × 3 stochastic matrix M , δ(M) = λ(M). We do not need

such generality; instead we only need to use the following special case.

Lemma 3.1. For k � 2 and i = 1, 2, 3, each A
(i)
k defined in (2.3) is a scrambling matrix and

λ(A
(i)
k ) = δ(A

(i)
k ) = 1− αk < 1.

Moreover, for any m � 2 and k1, . . . , km � 2, we have

δ(A
(im)
km

A
(im−1)
km−1

· · ·A(i1)
k1

) �
(
3

5

)m

.



Lau K-S et al. Sci China Math March 2012 Vol. 55 No. 3 483

Proof. It is straightforward to check that λ(A
(i)
k ) = 1− αk. Since 1− αk = βk + γk, we also have

δ(A
(i)
k ) = max{1− αk, βk, γk} = 1− αk.

For the second part, we use (3.1), and observe that 1− αk = βk + γk < 3/5.

For i = {1, 2, 3}, let
A(i) := lim

n→∞A(i)
n . (3.2)

The limit exists because αn → 2/5, βn → 2/5 and γn → 1/5 by Corollary 2.2. In fact,

A(1) =

⎡

⎢⎢⎣

1 0 0

2/5 2/5 1/5

2/5 1/5 2/5

⎤

⎥⎥⎦ , A(2) =

⎡

⎢⎢⎣

2/5 2/5 1/5

0 1 0

1/5 2/5 2/5

⎤

⎥⎥⎦ , A(3) =

⎡

⎢⎢⎣

2/5 1/5 2/5

1/5 2/5 2/5

0 0 1

⎤

⎥⎥⎦ , (3.3)

with all A(i) being invertible. We fix a sequence i1i2 · · · ∈ Σ∞, and let

Tn = A
(in)
2 · · ·A(ik+1)

n−k+1A
(ik)
n−k+2 · · ·A(i1)

n+1 =: Qn,kRn,k, (3.4)

where Rn,k is the product of the last k matrices. Define R∞,k := limn→∞Rn,k.

Lemma 3.2. With the above notation, then

(a) the diagonal entries of Rn,k are positive, and for each s ∈ {1, 2, 3}, Rn,k(s, t) = δst if and only if

ij = s for all j = 1, . . . , k;

(b) R∞,k = A(ik) · · ·A(i1), and (a) holds the same for R∞,k.

Proof. (a) Observe that Rn,k+1 = A
(ik+1)
n−k+1Rn,k, and

Rn,k+1(i, i) � A
(ik+1)
n−k+1(i, i)Rn,k(i, i) � βn−k+1Rn,k(i, i) > 0.

The first statement follows by induction on k.

For the second statement, the sufficiency follows directly from (2.3). To prove the necessity, we use

induction. Assume that Rn,k+1(1, t) = δ1t. Suppose that ik+1 �= 1. Then

A
(ik+1)
n−k+1 =

⎡

⎢⎢⎣

βn−k+1 αn−k+1 γn−k+1

0 1 0

γn−k+1 αn−k+1 βn−k+1

⎤

⎥⎥⎦ or A
(ik+1)
n−k+1 =

⎡

⎢⎢⎣

βn−k+1 γn−k+1 αn−k+1

γn−k+1 βn−k+1 αn−k+1

0 0 1

⎤

⎥⎥⎦ .

In either case, ⎡

⎢⎢⎣

1 0 0

∗ ∗ ∗
∗ ∗ ∗

⎤

⎥⎥⎦ = Rn,k+1 = A
(ik+1)
n−k+1Rn,k

would imply

Rn,k =

⎡

⎢⎢⎣

∗ 0 0

∗ 0 0

∗ 0 0

⎤

⎥⎥⎦,

contradicting the first part that the diagonal is positive. Thus ik+1 = 1. Now by equating the first rows

of both sides of Rn,k+1 = A
(1)
n−k+1Rn,k, we get Rn,k(1, t) = δ1t. By induction hypothesis, ij = 1 for all

j = 1, . . . , k. The proofs for s = 2 or 3 are similar.

(b) The existence of the limit R∞,k follows from (3.2). The proof for the other properties can be

established similarly.
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Theorem 3.3. For any i1i2 · · · ∈ Σ∞, let Tn = A
(in)
2 · · ·A(i1)

n+1 be as in (3.4). Then the limit

T∞ := lim
n→∞ Tn = lim

k→∞
A(ik) · · ·A(i1) (3.5)

exists. Moreover, T∞ is stochastic and the rows of T∞ are identical.

Proof. For ε > 0, using Lemma 3.1, we can let k be sufficiently large so that

δ(Rn,k) �
(
3

5

)k

<
ε

2
.

This implies that for i = 2, 3,

Rn,k(1, 1)− ε

2
< Rn,k(i, 1) < Rn,k(1, 1) +

ε

2
. (3.6)

By Lemma 3.2, there exists n0 such that for n � n0, ‖Rn,k−R∞,k‖ < ε/2, where ‖ ·‖ is the norm defined

in the proof of Proposition 2.6. We write Tn = Qn,kRn,k as in (3.4). By using (3.6) and the fact that the

row sums of Qn,k are 1, we get

Tn(1, 1) =
3∑

k=1

Qn,k(1, k)Rn,k(k, 1)

� Qn,k(1, 1)Rn,k(1, 1) +Qn,k(1, 2)

(
Rn,k(1, 1) +

ε

2

)
+Qn,k(1, 3)

(
Rn,k(1, 1) +

ε

2

)

� Rn,k(1, 1) +
ε

2
.

Similarly, Rn,k(1, 1)− ε/2 � Tn(1, 1) and thus |Tn(1, 1)−Rn,k(1, 1)| � ε/2. Hence

|Tn(1, 1)−R∞,k(1, 1)| < ε, ∀ n � n0,

proving that {Tn(1, 1)} is a Cauchy sequence. The same proof holds for the other {Tn(i, j)}. This proves
the existence of the limit (3.5).

Since for each n � 2, the product A
(in)
2 A

(in−1)
3 · · ·A(i1)

n+1 is stochastic, it follows that T∞ must also be

stochastic.

Finally, by Lemma 3.1, δ(A
(in)
2 · · ·A(i1)

n+1) � (3/5)n → 0. Thus the rows of T∞ must be identical.

Define

L1 =

⎡

⎢⎢⎣

1 0 0

1 0 0

1 0 0

⎤

⎥⎥⎦ , L2 =

⎡

⎢⎢⎣

0 1 0

0 1 0

0 1 0

⎤

⎥⎥⎦ , L3 =

⎡

⎢⎢⎣

0 0 1

0 0 1

0 0 1

⎤

⎥⎥⎦ .

Corollary 3.4. For i1i2 · · · ∈ Σ∞, we have limn→∞ Tn = Ls for some s ∈ {1, 2, 3} if and only if ij = s

for all j ∈ N.

Proof. We prove the lemma for the case s = 1; the cases s = 2, 3 are the same. Assume limn→∞ Tn =

L1. Fix any k ∈ N and let n � k + 2. By Theorem 3.3, we have

lim
n→∞Qn,k := Q∞,k =

⎡

⎢⎢⎣

a b 1− a− b

a b 1− a− b

a b 1− a− b

⎤

⎥⎥⎦ . (3.7)

By assumption, we have L1 = Q∞,kR∞,k. By comparing the entries and making use of the fact that the

diagonal of R∞,k is positive (Lemma 3.2(b)), we have a = 1, b = 0 and R∞,k = I, the identity. The last

statement of Lemma 3.2(b) implies that ij = 1 for all j = 1, . . . , k. Since k is arbitrary, the assertion

follows.
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To prove the converse, we assume that ij = 1 for all j ∈ N. Note that

T∞ = lim
n→∞Tn =

(
lim
n→∞A

(1)
2 · · ·A(1)

n

)(
lim
n→∞A

(1)
n+1

)
.

It follows that T∞ = T∞A(1), where A(1) is given by (3.3). Also by Theorem 3.3, T∞ has the same form

as the matrix in (3.7). It is straightforward to solve the system of equations T∞ = T∞A(1) to obtain that

a = 1, and hence b = 0 and 1− a− b = 0. Therefore limn→∞ Tn = L1.

As a consequence we have

Proposition 3.5. Let T∞ be the matrix product for x = i1i2 · · · ∈ Σ∞ as above, and let T ′
∞ be the

corresponding matrix product for y = j1j2 · · · with i1 �= j1. Then T∞ = T ′∞ if and only if x = ijj · · ·
and y = jii · · · with i �= j.

Proof. Let

Tn = A
(in)
2 A

(in−1)
3 · · ·A(i1)

n+1 =: T̃nA
(i1)
n+1,

where T̃n is defined in an obvious way. Let T ′
n =: T̃ ′

nA
(j1)
n+1 be defined similarly. Using Theorem 3.3, we

have

T̃∞ =

⎡

⎢⎢⎣

a b 1− a− b

a b 1− a− b

a b 1− a− b

⎤

⎥⎥⎦ and T̃ ′
∞ =

⎡

⎢⎢⎣

c d 1− c− d

c d 1− c− d

c d 1− c− d

⎤

⎥⎥⎦ .

Hence

T∞ = lim
n→∞ Tn =

(
lim
n→∞ T̃n

)(
lim

n→∞A
(i1)
n+1

)
= T̃∞A(i1),

where A(i1) is defined in (3.2). Similarly, T ′∞ = T̃ ′∞A(j1).

Consider the case i1 = 1 and j1 = 2. Then T∞ = T ′
∞ if and only if T̃∞A(1) = T̃ ′

∞A
(2). Solving this

linear system yields

a =
1

3
(c− d− 1), b =

1

3
(c+ 8d+ 2).

Since a � 0, we obtain c � d + 1, which forces a = d = 0, b = c = 1. That is, T̃∞ = L2 and T̃ ′
∞ = L1.

It follows from Corollary 3.4 that ik = 2 and jk = 1 for all k � 2. The other cases can be proved

similarly.

For x ∈ Σ∞, we define

ρ(x) = [ρ1(x), ρ2(x), ρ3(x)] := lim
n→∞ρ(x|n). (3.8)

It follows from Theorems 2.5 and 3.3 that the limit exists. In terms of the SG, ρ(x) can be realized as

the probabilities for some random walk starting at x in the SG to reach the three vertices.

Let Si, i = 1, 2, 3, be the three similitudes defining the Sierpinski gasket K. Let π : Σ∞ → K be the

standard projection defined by

π(x) = lim
n→∞Si1 ◦ · · · ◦ Sin(x0) for x = i1i2 · · · ∈ Σ∞,

where x0 ∈ R
d is arbitrary and the definition is independent of x0. We say that x,y ∈ Σ∞ are π-equivalent,

denoted by x ∼π y, if π(x) = π(y). Note that if we write y = j1j2 · · · , then x ∼π y and x �= y if and only

if there exists some m > 0 such that ip = jp for all 1 � p � m and im+1im+2 · · · = �k̇, jm+1jm+2 · · · = k�̇

for some k �= �.

It follows easily from Proposition 3.5 that

Corollary 3.6. For x,y ∈ Σ∞, ρ(x) = ρ(y) if and only if x ∼π y.

The proof of Theorem 3.3 also implies the following continuity property of ρ(x).

Corollary 3.7. Let x ∈ Σ∞. Then for any ε > 0, there exists n ∈ N such that for any y ∈ Σ∞ with

x|n = y|n, we have |ρ(x) − ρ(y)| � ε.
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4 Green function

Recall that the Green function for a Markov chain is

G(x, y) :=

∞∑

n=0

Pn(x, y),

where Pn(x, y) is the n-step transition probability from x to y, with P 0(x, x) := 1. G(x, y) is the expected

number of visits from x to y. It is related to the hitting probabilities by the simple formula

G(x, y) =

{
ρx,y/(1− ρy,y), x �= y,

1/(1− ρx,x), x = y.
(4.1)

Note that our random walk satisfies

G(in−1, x) =
1

3
(G(in−1j, x) +G(in−1k, x)), x ∈ Σ̃n, i �= j, k. (4.2)

We let

c := lim
n→∞ ρin−1j,in−1j , i �= j, (4.3)

and

c′ := lim
n→∞ ρin−1j,in−1k, where i, j, k are distinct. (4.4)

These limits exist as it is easy to show that the sequences are increasing. To obtain a crude estimate

for c we notice that if the chain starts at in−1j, it has a probability of 1/9 of jumping to one of the

neighboring non-vertex points and returning directly. Also it can be absorbed by in in one step. Thus,

2/9 < c < 2/3.

Let σ(i1i2 · · · ) = (i2i3 · · · ) be the shift operator on the symbolic space Σ∞. Our main purpose in this

section is to prove

Proposition 4.1. Let x = iqiq+1 · · · ∈ Σ∞, with iq+1 �= i. Then for j, k ∈ {1, 2, 3} \ {i}, j �= k, we

have

(a) limn→∞G(jn−1,x|n) = c1(2ρj(σ(x)) + ρk(σ(x))),

(b) limn→∞G(in−1,x|n) = c1(c2ρi(σ(x)) + 2ρj(σ(x)) + 2ρk(σ(x))),

where c1 = 2/(15(1− c)), c2 = (5/2)(c+ c′), and c, c′ are defined as in (4.3) and (4.4), respectively.

We need some additional notation to prove the proposition. For x = i1 · · · in, let Δn
i1···in−m

denote the

(n,m)-cell (m < n) containing x (as defined in Section 2); it has vertices i1 · · · in−mj
m, j = 1, 2, 3. For

y ∈ Σn \Δn
i1···in−m

, we use the following notation:

G(Δn
i1···in−m

, y) =

⎡

⎢⎢⎣

G(i1 · · · in−m1m, y)

G(i1 · · · in−m2m, y)

G(i1 · · · in−m3m, y)

⎤

⎥⎥⎦ . (4.5)

We use Qn,k to denote A
(in)
2 · · ·A(ik+1)

n−k+1 as in the previous section. Then

G(Δn
i1···in−1

, y) = Qn−1,n−mG(Δn
i1···in−m

, y). (4.6)

This amounts to saying that starting at a vertex of Δn
i1···in−1

, the chain has to go through one of the

vertices of Δn
i1···in−m

before it reaches y (as y �∈ Δn
i1···in−m

); the probabilities of reaching these vertices

are given by Qn−1,n−m (by Theorem 2.5).

Proof of (a). Note that if x = iqiq+1iq+2 · · · and y = j1 · · · jn with j1 �= i, then y �∈ Δn
i , and (4.6)

implies

G(x|n, y) = einG(Δn
iqiq+1···in−1

, y) = einQn−1,1G(Δn
i , y).
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Note that by Theorems 2.5 and 3.3,

lim
n→∞ einQn−1,1 = lim

n→∞ einA
(in−1)
2 · · ·A(i2)

n−1 = ρ(σ(x)).

In view of G(x, y) = G(y, x) for x, y ∈ Σ̃n and the above, it is easy to see that

lim
n→∞G(jn−1,x|n) = ρj(σ(x)) lim

n→∞G(jn−1, ijn−1) + ρk(σ(x)) lim
n→∞G(jn−1, ikn−1).

To evaluate the limits on the right-hand side, we note that

lim
n→∞G(jn−1, ijn−1) =

1

3
lim
n→∞(G(jn−1i, ijn−1) +G(jn−1k, ijn−1))

=
1

3
lim
n→∞

(
βn

1− ρjn−1i,jn−1i

+
βn

1− ρjn−1k,jn−1k

)

=
2(2/5)

3(1− c)
= 2c1. (4.7)

By the same argument, we have

lim
n→∞G(jn−1, ikn−1) =

2

3(1− c)

(
1

5

)
= c1.

It follows that limn→∞G(jn−1,x|n) = c1(2ρj(σ(x)) + ρk(σ(x))).

To prove (b) we need some technical adjustments for the hitting probabilities ρ(x) and the corre-

sponding A
(i)
n in (2.3). Consider Σn with the three vertices in, jn, kn. We identify in−1j, in−1k, the two

neighboring states of in, as in∗ and use it to replace in as an absorbing state. Let Σ̂n be the modified

level-n states. We define the corresponding α̃n, β̃n, γ̃n, Ã
(i)
n and ρ̃, etc., as in Section 2. It is clear that

for x = i1i2 · · · ∈ Σ∞, we have ρ̃(σ(x|n)) = ein Ã
(in−1)
2 · · · Ã(i2)

n−1 =: einQ̃n−1,1. Moreover,

lim
n→∞ Ã(i)

n = lim
n→∞A(i)

n = A(i) and lim
n→∞ Q̃n−1,1 = lim

n→∞Qn−1,1. (4.8)

Proof of (b). We denote iq+1 = �. Let us first consider G(x|n, in−1j). From (4.6), we have

G(x|n, in−1j) = einQn−1,q+1G(Δn
iq�, i

n−1j). (4.9)

We cannot use (4.6) directly to expand G(Δn
iq�, i

n−1j) further in the form of a matrix product as in the

proof of (a) because in−1j is in the (n, n− q)-cell Δn
iq . We need some slight modification to continue the

reduction.

By adopting the notation set up above, we use Δ̃n
iq to denote the modified (n, n − q)-cell. It follows

that

G(Δn
iq�, i

n−1j) = Ã
(�)
n−qG(Δ̃n

iq , i
n−1j)

= Ã
(�)
n−qÃ

(i)
n−q+1G(Δ̃n

iq−1 , in−1j)

= · · ·
= Ã

(�)
n−qÃ

(i)
n−q+1 · · · Ã(i)

n−1G(Δ̃n
i , i

n−1j). (4.10)

Now, by using G(x, y) = G(y, x) for x, y ∈ Σ̃n again, we get

G(in−1j,x|n) = einQn−1,q+1G(Δn
iq�, i

n−1j)

= einA
(in−1)
2 · · ·A(iq+2)

n−q−1Ã
(�)
n−qÃ

(i)
n−q+1 · · · Ã(i)

n−1G(Δ̃n
i , i

n−1j).

By (4.8) and Theorems 2.5 and 3.3,

lim
n→∞ einA

(in−1)
2 · · ·A(iq+2)

n−q−1Ã
(�)
n−qÃ

(i)
n−q+1 · · · Ã(i)

n−1 = ρ(σ(x)).
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To evaluate limn→∞ G(Δ̃n
i , i

n−1j), we first observe that the three vertices of Δ̃i are v1 = ijn−1, v2 =

ikn−1 and in∗ = {in−1j, in−1k} =: {v3, v4}. We have

lim
n→∞G(v1, i

n−1j) = lim
n→∞

ρijn−1,in−1j

1− ρin−1j,in−1j
=

2/5

1− c
,

and the same for limn→∞G(v2, i
n−1j). Also

lim
n→∞G(v3, i

n−1j)− 1 = lim
n→∞

1

1− ρin−1j,in−1j

− 1 =
c

1− c
,

and

lim
n→∞G(v4, i

n−1j) = lim
n→∞

ρin−1k,in−1j

1− ρin−1j,in−1j
=

c′

1− c
.

Note that if the chain starting at x|n hits in∗ before hitting v1 and v2, the conditional probability that it

first hits either v3 or v4 tends to 1/2 as n→ ∞. Thus,

lim
n→∞G(Δ̃n

i , i
n−1j) = (1− c)−1[(c+ c′)/2, 2/5, 2/5]t.

Combining the above and (4.2), we have

lim
n→∞G(in−1,x|n) = c1((5/2)(c+ c′)ρi(σ(x)) + 2ρj(σ(x)) + 2ρk(σ(x))).

This completes the proof of (b).

We remark that if x = ijj · · · ∈ Σ∞, then ρi(σ(x)) = 0 = ρk(σ(x)) and ρj(σ(x)) = 1. Thus the

formulas in (a) and (b) coincide. Moreover, we have

Corollary 4.2. Assume x = i1i2 · · · ∈ Σ∞ \ {1̇, 2̇, 3̇} with i1 = i. Define uj := limn→∞G(jn−1,x|n).
Then for j �= i, we have ui � uj, and equality holds if and only if x = ijj · · · .
Proof. Using Proposition 4.1, we have

ui − uj = c1((5/2)(c+ c′)ρi(σ(x)) + 2ρj(σ(x)) + 2ρk(σ(x)
) − c1

(
2ρj(σ(x)) + ρk(σ(x)))

= c1((5/2)(c+ c′)ρi(σ(x)) + ρk(σ(x))) � 0.

Equality holds if and only if ρi(σ(x)) = 0 = ρk(σ(x)) and ρj(σ(x)) = 1. By Proposition 3.5 this happens

if and only if x = ijj · · · .

5 Martin kernel

We define the Martin kernel as

K(x, y) :=
G(x, y)

G(ϑ, y)
, x, y ∈ Σ∗.

Proposition 5.1. There exists C > 0 such that for any x, y ∈ Σ∗ with |x| � |y|,

K(x, y) � C(5/3)|x|.

Proof. Since G(ϑ, y) � G(ϑ, x)G(x, y), by using Lemma 2.8 we have

K(x, y) � G(x, y)

G(ϑ, x)G(x, y)
=

1

G(ϑ, x)
=

1− ρx,x
ρϑ,x

� 1

ρϑ,x
� C

(
5

3

)|x|
.
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Let R = 5/3 and define a function � : Σ∗ × Σ∗ → R
+ ∪ {0} as

�(x, y) =

∞∑

n=0

(
r

R

)n

sup
z∈Σn

|K(z, x)−K(z, y)|,

where 0 < r < 1. By Proposition 5.1, the series converges. Since the chain is transient, � is a metric on

Σ∗, called a Martin metric. It is straightforward to verify that with this Martin metric, a sequence {xn}
in Σ∗ is �-Cauchy if and only if xn is eventually equal to some x ∈ Σ∗, or

|xn| → ∞ and lim
n→∞K(z, xn) exists for every z ∈ Σ∗. (5.1)

We say that two �-Cauchy sequences {xn}, {yn} are �-equivalent, denoted {xn} ∼� {yn}, if limn→∞ �(xn,

yn) = 0. We denote the �-equivalence class of {xn} by �{xn}�. Let Σ∗ be the collection of all �-equivalence

classes in Σ∗ and call it the Martin space. We call M := ∂Σ∗ = Σ∗ \ Σ∗ the Martin boundary.

We remark that this metric is topologically equivalent to the one defined in [7], both metrics define

the same collection of Cauchy sequences and their completions are also topologically equivalent.

First let us reformulate K(x, y) according to our specific transition probabilities. Let x ∈ Σm and

y ∈ Σn with m < n. In order for the chain starting at x to reach y, it must first reach one of the three

vertices in Vm = {1m, 2m, 3m} and then jump to level m+1. Recall that for x ∈ Σ̃m and i = 1, 2, 3, ρx,im

is the probability for the chain starting at x to be absorbed by im (see Proposition 2.5).

For x ∈ Σm, n � m+ 2, and j = 1, 2, 3, we let

bm,n−1
j (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

3∑

i=1

ρx,imρim,jn−1 , if x ∈ Σ̃m,

ρx,jn−1 , if x ∈ Vm.

(5.2)

These are the probabilities for the chain starting at x ∈ Σm to reach the three vertices in Vn−1.

Proposition 5.2. Let m ∈ N and x ∈ Σm. For n � m+ 2, let y ∈ Σ̃n. Then

K(x, y) =

∑3
i=1 b

m,n−1
i (x)G(in−1, y)

(1/3)
∑3

i=1G(i
n−1, y)

. (5.3)

Moreover for y ∈ Σ∞,

(a) K(x,y) := limn→∞K(x,y|n) exists ;
(b) for any ε > 0, there exists n ∈ N such that for any y′ ∈ Σ∞ with y|n = y′|n, we have

|K(x,y)−K(x,y′)| < ε.

Proof. The symmetry yields G(ϑ, y) = (1/3)
∑3

i=1G(i
n−1, y), which gives the denominator. The nu-

merator follows after regrouping the right-hand side of the following expression:

G(x, y) =
∑

i=1,2,3

ρx,imG(i
m, y) =

∑

i,j=1,2,3

ρx,imρim,jn−1G(jn−1, y).

For (a) we need to observe that limn→∞ bm,n−1
i (x) and limn→∞G(in−1,y|n) exist (by Proposition 2.6

and Proposition 4.1 respectively). For (b), we make use of, in addition, Corollary 3.7.

6 Martin boundary

For x = i1i2 · · ·, y = j1j2 · · · ∈ Σ∞, since {K(z,x|n)}n and {K(z,y|n)}n are Cauchy sequences for

each z ∈ Σ∗ (Proposition 5.2), {x|n} and {y|n} are �-Cauchy sequences. Hence �(x|n,y|n) is a Cauchy

sequence of real numbers. We can extend the Martin metric � to Σ∞ by defining

�(x,y) := lim
n→∞ �(x|n,y|n).
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Lemma 6.1. If x ∼π y, then limn→∞K(z,x|n) = limn→∞K(z,y|n) for all z ∈ Σ∗. It follows that

Σ∞/∼π is in the Martin boundary and � is well defined on Σ∞/∼π .

Proof. We write x = i1 · · · im�k̇ and y = i1 · · · imk�̇. Then for n sufficiently large and i = 1, 2, 3,

G(in−1,x|n) = ekA
(k)
2 · · ·A(k)

n−m−2A
(�)
n−m−1G(in−1,Δi1···im),

G(in−1,y|n) = e�A
(�)
2 · · ·A(�)

n−m−2A
(k)
n−m−1G(in−1,Δi1···im).

According to Proposition 3.5,

lim
n→∞G(in−1,x|n) = lim

n→∞G(in−1,y|n).

Therefore, limn→∞K(z,x|n) = limn→∞K(z,y|n). It follows that �(x,y) = 0 and hence � is well defined

on Σ∞/ ∼π.

We will show that � is a metric on Σ∞/∼π . The main difficulty lies in showing that if x �∼π y, then

�(x,y) > 0 (Proposition 6.3). We need a lemma.

Lemma 6.2. Suppose x = i1i2 · · ·, y = j1j2 · · ·∈Σ∞\{1̇, 2̇, 3̇}, and x �∼π y. Assume k �= i1, j1, and let

ri := lim
n→∞

G(in−1,x|n)
G(kn−1,x|n) and si := lim

n→∞
G(in−1,y|n)
G(kn−1,y|n) .

Then (ri, rj) �= (si, sj) for distinct i, j �= k.

Proof. We use the same notation of Proposition 4.1. First we consider the case i1 = j1. For convenience

we let 1 be the common index, k = 3, and write

ρ(σ(x)) = [ρ1, ρ2, ρ3] and ρ(σ(y)) = [η1, η2, η3].

Since x �∼π y, Corollary 3.6 implies that [ρ1, ρ2, ρ3] �= [η1, η2, η3]. We observe that 2ρ3+ρ2 > 0 (otherwise

by Corollary 3.4, x = 1̇) and 2η3 + η2 > 0. Hence by Proposition 4.1, the limits defining ri and si exist.

Suppose on the contrary that (r1, r2) = (s1, s2). Then by using Proposition 4.1 and a direct calculation

we get
ρ1
η1

=
ρ2
η2

=
ρ3
η3
.

It follows that [ρ1, ρ2, ρ3] = c[η1, η2, η3] for some number c. As these are probability weights, we have

c = 1. This leads to a contradiction and completes the proof for the case i1 = j1 = 1.

Next we consider the case i1 �= j1. Without loss of generality, we let i1 = 1, j1 = 2 and k = 3. Since

x �∼π y, we have x �= 12̇ or y �= 21̇. We also abbreviate the notation in the lemma as: ri = ui/uk, si =

vi/vk. Suppose on the contrary that (r1, r2) = (s1, s2). Then this, together with Corollary 4.2, would

imply
u2
u3

� u1
u3

=
v1
v3

� v2
v3

=
u2
u3
.

Hence u1 = u2 and v1 = v2. By Corollary 4.2 again, we would have x = 12̇ and y = 21̇, a contradiction.

The proof is complete.

Proposition 6.3. � is a metric on Σ∞/∼π .

Proof. In view of Lemma 6.1, the only part we need to show is that if x �∼π y, then �(x,y) > 0. By

(5.1), it suffices to show that there exists z0 ∈ Σm0 such that

lim
n→∞ |K(z0,x|n)−K(z0,y|n)| > 0. (6.1)

We first consider the case x,y �∈ {1̇, 2̇, 3̇}. Let x = i1i2 · · · , y = j1j2 · · · and assume i1, j1 ∈ {1, 2}.
Suppose on the contrary that (6.1) does not hold. Hence for ε > 0 and for any m > 0, we have

sup
z∈Σm

|K(z,x|n)−K(z,y|n)| � ε

2
(6.2)
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for sufficiently large n. Then Lemma 6.2 with k = 3 together with (5.3) yields

∣∣∣∣
bm,n
1 (z)r1 + bm,n

2 (z)r2 + bm,n
3 (z)

(1/3)(r1 + r2 + 1)
− bm,n

1 (z)s1 + bm,n
2 (z)s2 + bm,n

3 (z)

(1/3)(s1 + s2 + 1)

∣∣∣∣ < ε (6.3)

for all z ∈ Σm and for all m. Letting z = 3m, we have limm→∞ bm,n
j (z) = δ3j (by Lemma 2.6). This

implies that r1 + r2 = s1 + s2, and hence the denominators are equal. Next, choose z = 1m. Then

limm→∞ bm,n
j (z) = δ1j , and we get r1 = s1. A similar argument shows that r2 = s2. This contradicts

that (r1, r2) �= (s1, s2).

Next we consider the case that x,y ∈ {1̇, 2̇, 3̇}. Assume x = 1̇ and y = 2̇. Then take z = 1m.

By using (4.1), it is straightforward to show that |K(z, 1n) − K(z, 2n)| = 3|ρ1m,1n − ρ1m,2n |. Since
limm→∞ ρ1m,1n = 1 and limm→∞ ρ1m,2n = 0, (6.1) follows.

Finally we consider x ∈ {1̇, 2̇, 3̇}, y �∈ {1̇, 2̇, 3̇}. We assume that x = 1̇. Then by using limm→∞ bm,n
j (1m)

= δ1j and the approximation ofK(1m,y|n) as in (6.3), we see that limn→∞K(1m,y|n) < 3 (as s1+s2 > 0

by Corollary 3.4). Hence (6.1) follows.

Recall that the standard metric d on Σ∞ is defined as d(x,y) = r−max{n:x|n=y|n}, where 0 < r < 1. Let

Q be the induced quotient topology on Σ∞/∼π . It follows that the Sierpinski gasket with the Euclidean

norm | · | is homeomorphic to (Σ∞/∼π ,Q). To prove our main theorem, we need to establish the second

and third homeomorphisms below:

(K, | · |) ∼= (Σ∞/∼π,Q) ∼= (Σ∞/∼π, ρ) ∼= (M, ρ).

Theorem 6.4. The Martin boundary of {Xn}∞n=0 is homeomorphic to the Sierpinski gasket K.

Proof. We first identify (Σ∞/∼π, ρ) with (M, ρ). Define ϕ : Σ∞/∼π → M by ϕ(x) = �{x|n}�. It

follows from Lemma 6.1 and Proposition 6.3 that the map ϕ is well defined and injective. We show that

ϕ is surjective. This follows from a diagonal argument as follows: Let {wn} be a �-Cauchy sequence in

Σ∗ with limit w ∈ M. Since Σ1 is the finite set {1, 2, 3}, there exists a subsequence {w(1)
n } of {wn} such

that w
(1)
n |1 = i1 for all n. Denote the first element of this subsequence by {w(1)

1 }. For the same reason,

there exists a subsequence {w(2)
n } of {w(1)

n : n � 2} such that w
(2)
n |2 = i1i2 for all n � 2. Denote the

first element of this subsequence by w
(2)
2 . Inductively, for each k � 1, there exists a subsequence {w(k)

n }n
of {w(k−1)

n : n � k} such that w
(k)
n |k = i1i2 · · · ik for all n � k, and we denote the first element of this

subsequence by w
(k)
k . Using a diagonal argument, we extract the �-Cauchy subsequence {w(n)

n }n. Clearly
its �-limit is also w.

Let x := i1i2 · · · ∈ Σ∞. We claim that ϕ(x) = w; that is, �{x|n}� = �{w(n)
n }�, or equivalently,

limn→∞ �(x|n, w(n)
n ) = 0. This follows from

lim
n→∞ |K(z,x|n)−K(z, w(n)

n )| = lim
n→∞ |K(z,x|n)−K(z,x|njn+1 · · · jn+�)| = 0,

for all z ∈ Σm (by Proposition 5.2(a) and (b)). Hence we can identify (Σ∞/∼π , �) with (M, �).

Next we let ι : (Σ∞, d) → (Σ∞/∼π , �) be the natural map. In terms of the metric d on Σ∞, Proposition

5.2(b) implies that for each x ∈ Σ∗, K(x, ·) is continuous on (Σ∞, d) and hence ι is continuous. Being a

continuous surjection on the compact space (Σ∞/∼π , �), it induces a homeomorphism ι̃ : (Σ∞/∼π,Q) →
(Σ∞/∼π, ρ).

Our next objective is to identify the minimal Martin boundary Mmin (see [24]) of our Markov chain.

For this, we use a result in [21, p. 235]. Let {Ek} be an increasing sequence of events such that the state

space E =
⋃∞

k=1Ek and assume that for each k, the Green function G(·, Ek) is bounded. Let Lk be the

last hitting time defined as

Lk(ω) := sup{n � 0 : Xn(ω) ∈ Ek}.
Then Lk � Lk+1 on {Lk <∞} and limk→∞ Lk = ∞ a.s. Define

Zk := XLk
.
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Theorem 6.5. limn→∞Xn(ω) = X∞(ω) Pϑ-almost surely, where X∞ is a {1̇, 2̇, 3̇}-valued random

variable. Moreover, Mmin = {1̇, 2̇, 3̇}.
Proof. Since {Xn} is a transient Markov chain, it converges Pϑ-almost surely to an Mmin-valued

random variable X∞ [7, Theorems 4 and 5]. It remains to show that Mmin = {1̇, 2̇, 3̇}. Define

Ek :=
⋃

n�k

Σn.

Then for each k, G(·, Ek) is bounded, and Zk = XLk
takes values in {1k, 2k, 3k}. Since

Lk(ω) = inf{n � 0 : Xn(ω) ∈ Σk+1} − 1,

it is a stopping time. Therefore, {Zk} is also a Markov chain. It follows that Zk(ω) → Z∞(ω) as k → ∞
Pϑ-almost surely, where Z∞ takes values {1̇, 2̇, 3̇}. Now

|Xn(ω)− Zn(ω)| = |Xn(ω)−XLn(ω)| → 0, Pϑ-a.s.

Hence limn→∞Xn(ω) ∈ {1̇, 2̇, 3̇} Pϑ-a.s. This completes the proof.

7 Harmonic functions

We call h : Σ∗ → R a harmonic (or P -harmonic) function on Σ∗ if

Ph(x) :=
∑

y∈Σ∗

P (x, y)h(y) = h(x), ∀ x ∈ Σ∗.

It is well known that for any y ∈ M, K(·,y) is a harmonic function on Σ∗ and any bounded harmonic

function h has a unique integral representation

h(x) =

∫

Mmin

K(x,y)φ(y)dν(y),

where ν is the measure on Mmin representing the constant harmonic function 1, and φ is some bounded

ν-integrable function. In our case, Mmin = {1̇, 2̇, 3̇} and ν(k̇) = 1/3 for k = 1, 2, 3. We define

ψi(x) := K(x, i∞), x ∈ Σ∗.

Then all the bounded harmonic functions are linear combinations of the ψi, i = 1, 2, 3.

Proposition 7.1. For the above ψi, the extension

ψi(x) := lim
n→∞ψi(x|n), x ∈ M,

is well defined and is continuous on M.

Proof. We show that ψi(x|n) = K(x|n, i∞) is a Cauchy sequence, and the limit follows. For m < n,

|K(x|n, 1∞)−K(x|m, 1∞)|
= lim

k→∞
|K(x|n, 1k)−K(x|m, 1k)|

= 3 lim
k→∞

|G(x|n, 1k)−G(x|m, 1k)|

= 3 lim
k→∞

∣∣∣∣
3∑

j=1

ρx|n,jnρjn,1k −
3∑

j=1

ρx|m,jmρjm,1k

∣∣∣∣

= 3

∣∣∣∣
3∑

j=1

ρx|n,jnη
n
j,1 −

3∑

j=1

ρx|m,jmη
m
j,1

∣∣∣∣,

where the last equality follows from Proposition 2.6. Thus by Proposition 2.6 and Theorem 3.3, {K(x|n,
1∞)}n is a Cauchy sequence and hence ψi is well defined on M. The above estimation also shows that

ψi is uniformly continuous on Σ∗, and hence it has a continuous extension to its closure M.
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Let K denote the SG, Kw = Sw(K) for w ∈ Σ∗, vj = wj∞ correspond to the three vertices of Kw,

and vjk correspond to the intersection of Kwj and Kwk. We have the “1/5− 2/5 rule” as in [23].

Proposition 7.2. Assume the above notation and let j, k, � ∈ {1, 2, 3} be distinct. Then

ψi(vjk) =
2

5
ψi(vj) +

2

5
ψi(vk) +

1

5
ψi(v�), i = 1, 2, 3.

Proof. Fix m and for any n > m, let Δn
w ⊆ Σn be an (n, n−m)-cell with vertices vnj = wjn−m, where

j = 1, 2, 3 and w ∈ Σm. Consider the following six words around the center of Δn
w: v

n
jk := wjkn−m−1.

We have

K(vnjk, i
∞) = lim

q→∞K(vnjk, i
q) = lim

q→∞
G(vnjk, i

q)

G(ϑ, iq)
=

1

3
lim
q→∞G(vnjk , i

q)

=
1

3
lim
q→∞(αn−mG(v

n
j , i

q) + βn−mG(v
n
k , i

q) + γn−mG(v
n
� , i

q))

= αn−mK(vnj , i
∞) + βn−mK(vnk , i

∞) + γn−mK(vn� , i
∞).

Since limn→∞ αn−m = limn→∞ βn−m = 2/5 and limn→∞ γn−m = 1/5, the result follows.

The above vjk has four neighboring vertices in Kwj ∪Kwk. We denote this neighborhood relation by

∼κ. By solving the system of equations above, we obtain the following graph harmonic property of ψi

on the SG.

Corollary 7.3. Let x = vjk be given as above. Then

ψi(x) =
1

4

∑
y∼κx

ψi(y), i = 1, 2, 3.

We remark that the above graph harmonic property is the defining property for the canonical harmonic

functions considered by Kigami [14]. We call them theK-harmonic functions; they are of three dimension.

It follows from above that the K-harmonic functions are generated by ψi, i = 1, 2, 3. On the other hand,

in [22], Strichartz showed that for a continuous function ϕ on K, if we define the average

h(w) = 3−|w|
∫

Kw

ϕ(y) dμ(y), w ∈ Σ∗,

then ϕ is K-harmonic if and only if h satisfies the identities

h(u) =
1

3

∑

u∼v

h(v), u, v ∈ Σn \ Vn, n � 2,

and thus h is a P -harmonic function under the present random walk.

The existence of the Laplacian is still a major open question in the analysis of fractals. The harmonic

structures and random product of matrices can be used to induce Laplacians [14, 16]. It is seen from

the above that on the Sierpinski gasket, the harmonic functions obtained through this Martin boundary

approach coincide with the classical ones obtained by the minimal energy approach [12]. For the latter

approach, Kigami introduced the class of post-critically finite (p.c.f.) self-similar sets [13], and extended

the theory to a certain subclass of strongly symmetric p.c.f. sets. It is still not clear whether the symmetry

condition can be removed, as it hinges on the existence of a self-similar energy identity. In the present

consideration, it changes the problem to the identification of the Martin boundaries and the self-similar

sets. It is likely that this method can offer another approach to showing the existence of the Laplacian

on more general self-similar sets.
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