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1 Introduction

Consider the Cahn-Hilliard equation
ou

o = A(p(u) — adu), ze€Q, te(0,T], (1.1)
gz = 0, 8(¢(u)8; abu) = 0, te(0,T], (1.2)
u(x,0) = up(x), =€, (1.3)

where ¢(-) = ¢/(+), ¥(u) = jy(u® — 82)?, Q is a bounded domain in R, u is the relative concentration
difference of the mixture components, A is the Laplace operator, «;, 8 and ~ are positive constants, and v
is the unit normal vector to the boundary. The Cahn-Hilliard equation is a fourth order reaction-diffusion
equation and was originally introduced to describe the phase separation of binary mixtures [10,21, 37],
for example, the cooling processes of alloys, glasses or polymer mixtures. More recently, it has been used
to study phase transitions, interface dynamics, species competition and exclusion.

The wellposedness of the Cahn-Hilliard equation was discussed by many authors, for example, Elliott
and Zheng [22], Elliott [17], Yin [46], Blowey and Elliott [8], Elliott and Luckhaus [20], Elliott and
Garcke [19] and Barrett and Blowey [3]. The dynamical properties and its limit to certain free-boundary
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problems were investigated in [1,12,36,38]. The linear instability has been studied recently by Burger et
al. [9].

There are many of studies on numerical solutions to the normal boundary conditions and periodic
boundary conditions of the Cahn-Hilliard equation.

Finite element approximations of the Cahn-Hilliard equation have been analyzed by many researchers
such as Elliott and French [18], Copetti and Elliott [15], Barrett and Blowey [2, 3], Feng and Prohl [25],
Du [16] and Zhang [47]. The discontinuous Galerkin methods were considered in [24,33,41]. The subject
of a posteriori error estimates and adaptive methods for finite element approximations of the Cahn-
Hilliard equation has recently been taken up by Feng and Wu [27], and Bartels and Miiller [5]; see also
the applications to the Cahn-Hilliard equation with a double obstacle free energy in [6, 7], and to the
Allen-Cahn equation in [4,26, 34].

The Fourier collocation method and the Fourier spectral method have been applied to the Cahn-Hilliard
equation in [11,23,29-32,42-45].

Sun [39] presented a three level linearized difference scheme of second order convergence in discrete
La-norm. Choo [13,14] developed a conservative nonlinear difference scheme, and Khiari et al. presented
a nonlinear difference scheme in [35]. They proved the convergence of the difference scheme by supposing
the boundedness of the difference solution. Furihata [28] constructed a stable and conservative finite
difference scheme. Zhao [48] considered a two-level nonlinear and a three-level linear high accurate differ-
ence schemes for the one-dimensional Cahn-Hilliard equation and proved the conditional Le convergence
without noticing the boundary discretization errors.

Up to now, there are many works on the second order finite difference scheme but few works on the
high accuracy difference scheme for the Cahn-Hilliard equation.

In this article, we establish a compact difference scheme for the Cahn-Hilliard equation with the
normal boundary conditions and prove that the compact scheme is unconditionally convergent with the
convergence order of O(7? + h*) in the discrete L..-norm. The method is completely applicable to the
periodic boundary value conditions.

The remainder of the article is arranged as follows. In Section 2, a compact difference scheme is derived
for the one-dimensional Cahn-Hilliard equation. The mass conservation and the non-increasing of the
total energy with the unique solvability of the difference scheme are discussed in Section 3. The L.
convergence of the difference solution is shown by the discrete energy method in Section 4. The outline
for the two- and three-dimensional Cahn-Hilliard equation are presented in Section 5. Section 6 provides
two numerical examples to verify the theoretical results. The article ends with a brief conclusion.

2 The derivation of the difference scheme

Consider the one-dimensional problem

0 0? 0?

= s (s0 =03 L), we D) te .11 (2.1)
ou ou

0 0%u 0 9%u

o (o =ag )| <o J(em-ap )| -0 teom )
’U,(JZ, O) = Uo(l‘), (S [07 L] (2 4)

We assume that the problem has a smooth solution.

Take two positive integers M and N and denote h = L/M, 7 =T/N, Qp, = {x; | x; = ih, 0 <i < M}
andQT:{tMtk:kT, OSngN}

Let W, = {w | w = (w®,w!,...,w™)} be a grid function space on ),. For any w € W,, denote

ktl _ ;(warl Fuk), bt = l(wk+1 — k),
T
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z 1 1
wk _ (wk+1 + wk—l)’ Atwk _ (wk+1 _ wk—l).
2 2T
Let Vi, = {v | v = (vo,v1,...,vp)} be a grid function space on Q. For any u,v € Vy, denote

1 1
Upyp1 = 2(Ui+1 i), Oouy 1l = h(u”l —u;), 0<i<M-1,

S B
6“’0 6“’17 1=,
1
(A’U,)l = 12(ui+1 + 10u; + Ui—l), 1<i<M—-1,
1 5
6uM—1+6uM7 Z:]\47
5¢£U1, iZO,

2

)

S = SN

(d"cui-«—é _51%‘—;)7 1<i1<M-1

2
—h5zuM7;, =M,

and
1 M—1 1 M—1
(u,v) :h(2u0v0—|— 2 uv; + 2quM), (051, d,0) = h ; (62w y 1) (62054 1),
M—1 1
(62u, 620) = < (62u0)(82v0) + > _ (52u;)(62v;) + 2(5guM)(5gvM)>,
i=1
lulloo = jmax fual, lull = Vi), fuly = /(Geu, 6pu),  |uly = v/ (62u, 62u).
Then have

Lemma 2.1.  The following hold,

(Au,v) = (u, Av), (25)
(62u,v) = (u, 62v) = —(0zu, 6,0, (2.6)

)
lul? < [[Aul® < [lul®. (2.7)

12
If v = {vk |0<i< M, 0<k< N}isa grid function on Qf = Qp, x Q,, then we have vF =
koK — (0 1 N mlie: , 2.). ,
y U1y U (2 ) ety T ’ (2 x ) ()
(vg,v k)€ Vh and v, = (v],; v;') € W,. For simplicity, denote (Au); and (dZu); by Au

and §2u;, respectively.

We need the following lemma for the derivation of difference scheme.
Lemma 2.2.  Denote a(s) = (1 —5)3[5 — 3(1 — s)?].

(I) If g(x) € C%[xo, 1], then it holds that

o)+ g | = ¢ |00 )

6 6 h
h h3 h4 1
= —69”'(330) + 909(5)(330) + 150 / 99 (zo + sh)a(s)ds
0
ez W ) e
—6Y (xo0) + 907 (x0) + 9407 (xo + 6oh), 6y € (0,1). (2.8)

(1) If g(z) € COlwpr—1,2 0], then it holds that

g (@) + 5" onn)| = 1 o oas) - 70 )|
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h3 ht
©)(zpr) +
907 @)+ 1

h3 h*
90 240

g/l/(xM) _

/ g9 (zpr — sh)a(s)ds
0

= g"(xm) — o 9% @m)+ . gD (@n —Ouh), O € (0,1).

(SRS @ PRI

(1) If g(x) € CO[w;—1,wit1], we have

1

112 9" (zi+1) +10g" (2:) + g" (2i-1)] — p29(@i1) = 2g(@:) + g(@i-1)]
h4

1
= / (99 (@ + sh) + ¢'© (x; — sh)]a(s)ds
360 J,

h4
= ©) (z; + 0, € (—1,1).
9407 (z; + 6;h), 0; € (—1,1)

Proof.  We prove (2.8). From the Taylor expansion

h? h3 Rt
g(x1) = g(wo) + hg'(x0) + 5 g" (o) + 6 g" (zo) + 249(4) (o)
h‘5 5 h6 ! 6 5
T 1909 @)+ g [ 60 @0+ sh)(A - s)°ds,
we have
2 [g(z1) — g(zo) / _ o n h h? (4) h? (5)
b b g'(zo)| = g"(w0) + 39 (zo) + 129 (zo) + 607 (zo0)
nt ot
+6O / 99 (zo 4 sh)(1 — 5)°ds.
0

From the Taylor expansion

h2 h3 h? 1
g (01) = 9" (a0) + hg"(z0) + 'y 9D (ao) + g 9O o)+ g [ 9O+ sh)(1 - 9)ds,
0

we have

2

h3
9(5) (z0)

h h
9" (zo) + .. g (w0) + 36

5 4 1, o

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
(2.14)

(2.15)

(2.16)

(2.17)

h4 1
+ / 9 (zo + sh)(1 — s)3ds.
36 Jo
Subtracting (2.11) from (2.12), we get (2.8). Similarly, we can prove (2.9). The proof of (2.10) can refer
to [40].
Let v = ¢(u) — agi“;. Then Problem (2.1)—(2.4) is equivalent to the following problem of second order
equations,
ou 0%
= L)t T
5 = g2 xz € (0,L), te(0,T],
v—q&(u)—aa?u z € (0,L),te (0,T)
- aZQ ) ) ) ) )
ou _o, ou _o, ov —0, ov —0, te(0,7),
81‘ =0 8‘1: x=L 81‘ x=0 8‘1: x=L
u(z,0) =wup(x), x€]0,L]
From (2.13)—(2.15), we can obtain
D3u P3u dI3v 93v
=0 =0 =0 =0, te(0,T
ox3|,_, 0«3 _, 7 oz, _, T ox3|,._, € (0.7,
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Define, on Qp x €, the following grid functions,
UF = u(xi, ty), V¥ =v(zity), 0<i<M,0<k<N.

Considering (2.13) and (2.14) at the point (x;, t ), using the Taylor expansion and Lemma 2.2, we can
obtain

A‘/i2 AQS( (3717 )

0<i< M, (2.19)
T 2772 4 0 ,
2ut(a:1, 0)) —adzU? +¢q;, 0<i< M, (2.20)

and there exists a constant ¢; independent of h and 7 such that
1P| <ei(r? +hY), @0 <er(rP+hY), 0<i< M. (2.21)

Considering (2.13) and (2.14) at the point (z;,t;), using the Taylor expansion with the integration
remainder term and Lemma 2.2, we can obtain

AAtUkch?V’”rpf, 0<i<M, 1<k<N-1, (2.22
AVF = Ap(UF) — ad2UF +¢F, 0<i<M, 1<k<N-1, 2.23)

and there exists a constant ¢, independent of h and 7 such that
Pl <ea(m + 1Y), 0<i<M, 1<E<N-1, (2.24)
lgf| < ca(m® +1*), 0<i<M, 1<k<N-1, (2.25)
|0gF| S ea(r?> + 1Y), 0<i<M, 2<k<N-2 (2.26)

From (2.16), we have

U =ug(z;), 0<i<M. (2.27)

Omitting the small terms p¥,¢¥ in the equations (2.19)-(2.20) and (2.22)—(2.23), noticing (2.27), and
replacing the grid functions UF and V¥ with their numerical approximations u¥ and v¥, respectively, we
obtain the compact difference scheme for (2.13)—(2.16) as follows,

A&tw = 0% f, 0<i< M, (2.28)
Av Ang( (24,0) + ;ut(xi,0)> - aéiu%, 0<i< M, (2.29)
ANl = 620F, 0<i< M, 1<kE<N-1, (2.30)
AvF = Ap(uF) — ad?ul, 0<i<M, 1<k<N-1, (2.31)
ud =wug(z;), 0<i<M. (2.32)

We have the following theorem.
Theorem 2.1.  Finite difference scheme (2.28)—(2.32) is equivalent to

A26tu =2 (Agzﬁ( (x4,0) + ;ut(xi,O)) - aéﬁu%), 0<i< M, (2.33)

A/l = 2 (Ag(uF) — a?uF),  0<i<M, 1<k<N-1, (2.34)
ud = up(w;), 0<i<M, (2.35)
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and

3 x

h2
vi = A¢(u<xi,o> + ;'um,m) —aduf — | ASwi, 0<i<M, (2.36)

i

_ 2
vf = Ap(uk) — aéiuf - ]112AAtuf, 0<i<M, 1<k<N-1. (2.37)
Proof.  Acting A on both sides of (2.28) and substituting (2.29) into the result, we obtain (2.33). Since

b b s
Av? =v? + 125#’17
we have ) )
1 h 1 T 1 h 1
2 — Ap2 — 202 = A ’ ’ —aduz = ASu?.
v; v; 1253311% qb(u(a: ,0) + 2ut(a: ,O)) adu; 19 diu
This is (2.36). Similarly, we can get (2.34) and (2.37). This completes the proof.

We construct the difference scheme (2.33)-(2.35) for (2.1)-(2.4). At each time level, it is a system of
penta-diagonal linear algebraic equations.

Theorem 2.1 implies that the analysis of numerical solution to the difference system (2.33)—(2.35) can
be converted to that to the difference scheme (2.28)-(2.32).

Remark 2.1.  If we use 62u¥ instead of 02uF in (2.34), we will obtain an unconditionally unstable

(S

difference scheme. This can be checked similarly to applying von Neumann method to the difference
scheme Auf = —adtub.

3 The conservation and unique solvability of the difference scheme

The solution to (2.1)—(2.4) satisfies the mass conservation law [16]

L
d/ u(z,t)de =0, 0<t<T (3.1)
dt J,

and the non-increase of the total energy

U ptenae+ @ [ (2C0) wl <o, o<i<r, (3.2)
dt /0 2/0 dx

or

d

dt [W(“("t))v D= (aQu("t),U(ut))] <0, 0<t<T.

2 Oz

We point out that the solution to our difference scheme has the same properties.
Since 9’ (u) = ¢(u), we have

1
i

ul
YUY =p(UY) + o V' (s)ds = p(UY) + o P(s)ds
=(UD) + gb(u(xi,O) + ;ut(xi,0)> (U} =U)+0(r*), 0<i< M,

k+1 k+1
U, U;

BUF) = (UFY) + / W (s)ds = p(UF) + / o(s)ds

Ukt Ukt
=PUF N +oUHUF —UFNY +0(), 0<i<M, 1<k<N-1

Define
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o} —w0+A¢>( (i, >+;ut<xi70>> A (uf — ), 0<i <M,

Uit =T Ag(uf) - AT — T, 0<i<M, 1<ESN-L

Let
1 M—1
1ﬂ=h< +§:A%%+A? , 0<E<N
=1
GF = (y*,1) - 3‘ (52uk, A%uF), 0< k<N

G0 =G0
GF = ;(G’“+G’“*1)7 1<k<N.

Then we have

Theorem 3.1.  The solution to difference scheme (2.33)-(2.35) satisfies
<k <N,
<k<N.
Proof.  Taking the product of (2.33) with 1, we can obtain
F'=F°.

Taking the product of (2.34) with 1, we can obtain

Fl— k=1 1 <E<N-1.
Combining (3.7) with (3.8), we have (3.5).

1
Taking the product of (2.33) with (A¢(u(z;,0) + Ju¢(2,0)) — adiu?) and noticing
Agb( (z4,0) + ;ut(xi,0)> -A2§tu§ = 5751/}1;, 0<i< M,

we can obtain

G' < G°.
Taking the product of (2.34) with (A¢(u¥) — ad2u¥) and using
Ap(ul) - ANl = Ak, 0<i<M, 1<k<N-1,
we can obtain
G <GFY, 1<k<N-1.

Combining (3.9) with (3.10), we have (3.6).
Remark 3.1. If we define

M-—1

R 1 1 «

G0 =+ X0 o) - B A,
i=1

M—1

A 1k 1 w_

Gk=h<2w’5 D SR N )—Z(éﬁuk‘%,AQu’“‘%), 0<
=1

we have the following non-increase of the total energy,
GF <G, 1<k<N.

Next, we discuss the unique solvability of the difference scheme.

k

<

N,

811

(3.10)
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Theorem 3.2.  Difference scheme (2.33)—(2.35) has a unique solution.
Proof.  Consider the homogenous system of (2.33),

1
-

A%yl = —(;5;(5gug), 0<i<M. (3.11)
Taking the inner product (3.11) with u!, we have
Lo 1 1 Qeaie2 1y 1
(A%l ') + 5 ("), u') = 0.
-
Using the basic identities (2.5)—(2.6), we obtain

1
(Aut, Aut) + Z((Sgul,ézul) =0.
-

Consequently,
up =0, 0<i< M.
Thus, the system (2.33) determines u' = (u$,u}, ..., u},) uniquely.
Now, suppose u*~1 and «* have been uniquely determined. Consider the homogenous system of (2.34),
21 A?yhT = 52(52 ML 0<i< M,
-

we can obtain
k+1 __ -
u; =0, 0<i<M,

k+1

i.e., the system (2.34) has a unique solution ©***. This completes the proof.

4 The convergence of the finite difference scheme

In this section, we will prove the convergence of the finite difference scheme (2.33)—(2.35).

Lemma 4.1. Let u = (u®u',...,uN) € W, and U = (U°,U',...,UN) € W,. Then there are
€(0,1) and

¢ € (min{pu* ™ 4+ (1= p)u* =1, pU 4 (1 = p) U1}, max{pu* ™ + (1 = p)ut ", pU*! + (1 — p)U*'})
dependent on k such that
ABU*) = d(uh)] = & (u*+1 + (1 = p)ub~)A(UF — )
+¢"(O)[pUF — ) + (1= p) (U = h]A U™

Proof.  We have

Ado(U") = o)) =, {[6(U) = ("] = [(U*) = p(u" )]}

9 {[DU* ! +27AU%) — ¢(u*! + 278" = [H(UF) — o(u" )]}
¢ (UF~ 1+2p7AtUk)AtUk ¢ (WP + 20m AP Ak (4.1)
= ¢/ (uF 1 + 207 AuF) AL (UF — uF)
+ [/ (U*Y 4+ 207 AU%) — ¢ (uF 1 + 2prAu?)] AL UF
= ¢'(pu™* + (1= p)u* HA(UF —uP)

[ (UM + (1= p)UM) = ¢/ (pu™* + (1= p)a* )] AU"

= ¢/ (pu" 4 (1= p)u" ) A(UF — )

+¢"([p(UM —uM) + (1= p)(UF =" h)]AU". (4.2)

In obtaining (4.1), we consider ¢(U*~1 + 27pA,U*) — ¢p(u*~! + 27pAu¥) as a function of p € [0,1]

and then use the differential mid-value theorem. In obtaining (4.2), we apply the differential mid-value
theorem again. This completes the proof.
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Lemma 4.2.  The following hold,

1

i 5 (utv? —ut?), k=1,
.

27(

and

k; )
E ulAtvl = k—1
=1 - —

Proof.  Since

k
g ut At
=1

17_2 l+1 1)

1%: l le lg:ll lZl l
— +1 1) _ 1 +1
“a (B o) = (B - )

we have
k k—1
ZulAtvl _ 1! (ko uf ok — Ot — ul®) =Y (At
27 —
1 k—1
— 27-( k, k+1 + uk 1,k U2U1 _ u1U0) (Atul)vl

This completes the proof.

Lemma 4.3 (See [49]).  For any grid function v € Vy, there is a constant k1 such that the following
holds,

1/4
[ollos < allV|3/4 (| 0]z + [v])*/*.

Let

_ ¢ _ / _ "
c3 0<I3%§t<T|u(x, ), ca WE?;{HW(“)" cs |u\123§i1|¢ (u)l,

8c? 4¢3 8 /(6 1
cﬁzmax{<1+a24>(4+ 0:1)7 a(5i+c5+2)},
T 1 T 4 8T 2
C7=2[(T2+ )c§+2<1+ )Tcg]L, 082[4( + 2>+<16+ + 2>c§]L,
o « a o« a o«
2 T
= <1+ 8624)674-08, c:251\/09Lexp <Cﬁ2 ) (4.3)
a
Theorem 4.1.  Assume that the solution u(z,t) to (2.1)—(2.4) is sufficiently smooth. Then the solution

to difference scheme (2.33)—(2.35) unconditionally converges to the solution to (2.1)—(2.4) in the discrete

Loo-norm and the rate of convergence is the order of O(1? + h*) when h and T are small. More precisely,
denote

ef:Uik—uf, 0<i<M, O0<EZN.

Then, there exists a positive constant ¢ such that, if 72 + h* < 1/c, then the following estimate holds,

le¥loo < e(® +h*), 0<k<N. (4.4)
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Proof.  Let ¢ be defined in (4.3). Denote
fF=vF—uF, 0<i<M, 0<k<N.

Subtracting (2.28)-(2.32) from (2.19)-(2.20), (2.22)—(2.23) and (2.27), respectively, we obtain the follow-
ing error system,

Aber = 82F2 10, 0<i<M, (4.5)
Afié = —0563206% +q¢), 0<i<M, (4.6)
ANel =32 fF +pk, 0<i<M, 1<k<N-1, (4.7)
AfF = A@UF) = o(ub)) — adZef +qf, 0<i<M, 1<k<N-1, (4.8)
=0, 0<i<M (4.9)

(I) We estimate || Ae!|| and |els.
(1) Taking the product of (4.5) with Ae2, we have

(Ade, Ae?) = (62f2, Aez) + (p°, Ae?).
Taking the product of (4.6) with iAfé, we have

1 1 2 2 1 1 1 0 1

O[||Af2|| = _(533627‘4.]02) + O[(q 7Af2)'
Adding the two equalities above, we obtain

1 1 1 1 2 0 1 1 0 1 0 1 1 1 012 1 2
(Adied, Ach) + AP = 0%, Acd) + (%, Ard) < 0% Aed) + L (1P + 1A ?).
Noticing (4.9), we have
1 12 - L0 1 Loope o LTy o2, 1 12 Loge
< < .
p AP < 00 ety + P < (D10 + o et ) + el
Using (2.21), we obtain
T
A < 21+ 1 < (4 T )ttt < (10 ) RD6 e o)
(2) Taking the product of (4.5) with Adse2, we have

| A8e? || = (3272, Adie) + (b°, Adye?).

Taking the product of (4.6) with 626,e2, we have
(Af2,8500e2) = —alBle2, 820,e2) + (¢°, 838,e2).
Adding the two equalities above, we obtain
1
| Adee2|* +a(d2e?, 820ie2) = (1, Adre =) + (¢, 820,e2) < [[Abee? >+ [10°]1° + (¢, 620,e2).
Noticing (4.9), we have
@ g _ Lo oo oy 1 o2, 11 g0 @ 1
< <
It IO+ @82 < IO+ (Il e

or A
112 .~ T .02 012
[ B< I+ el
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Using (2.21), we obtain

T

T 4 4
le'f3 < (a + 02>C§L(T2 +h*)? < <a + 02>C§L(T2 + 02, (4.
(IT) Suppose (4.4) is true for k from 0 to m (1 < m < N — 1). Then, when 72 + h* < 1/c, we have
lle¥lloo <c(r? +h*) <1, 1<k<m.

Then it follows that

lu¥loo = U = (U* = a")[loo < N0l + le¥lloc S s +1, 1<k <m (4.

and

6(UF) — d(ub)| < calef|, 0<i<M, 1<k<m. (4.

K3

Consequently, we arrive at

[A(G(UF) = o(ud)| < Alp(UF) = o(uf)| < cadlef], 0<i<M, 1

N
o
IN
3

and

IA(G(U*) = o))l < callAct]l, 1<k <m. (4.

Using Lemma 4.1, we have

A DUF) = ¢ud| < eal AU = ui)| + es(UFT = uf ™+ [UFTH ™))

= calAvef | +es(lel T+ lef ), 0<i<M, 1<k<m—1. (4.

We will prove that (4.4) is valid for k = m + 1.
(1) Taking the product of (4.7) with Ae”, we have

(AAeF, Ac%) = (621, AeF) + (p*, AeF).
Taking the product of (4.8) with (iAfk, we have
1 1 z 1
LA = L AGF) - o)), A7) - 526E, AP + gk, Ar).
Adding the two equalities above and using (4.14), we obtain
_ 1 i 1
(ADF, A) AP = L (AGUF) — 6(u), A% + (0, AF) + (6%, Af9)

pe o 1
< MA@ = o@D - TAFF+ "] - 1Ak + el 1A

—_l PO =

1 —
< oo (A + AT + (I + | 4eF)?)

1
o, (g 1P+ AP, 1<k <m.

Consequently,

1

2 1 r 1 1
Ak+12_Ak712<c4 Ak |2 Ak |2 k2 K12 1< k<m.
2o UACETH2 = LA 2) < Ak 4 AR |2 4+ 1" 2+ lla¥I1%, m

Replacing the superscript k& by [ in the inequality above and summing up for [ from 1 to k, we have

1
4 (LA 4 [ Ak = et — | Ae0))

815

11)

12)

13)

14)

15)
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5 k k k k
c 1 7 1 1
<O AP+ D AP+ O IPP+ L, D A 1<k<m
2 2 2 2«
1=1 =1 =1 1=1
or,

[ Ae"H11% + || Ae®|?
23T 2T
< JAet| P+ 7 Z||A61||2+2TZI\A6l|\2+272||p 1+ leq 2, 1<k<
=1 =1

Suppose 7 < 1/2. Using (2.24)-(2.25) and (4.10), we have

22\ &
| Ae* 112 + || Ae¥|? < 2(2 + ;4)72 [ Ae |2 + er(72 + h*)?, 1< k< m. (4.16)
=1

(2) Taking the product of (4.7) with AAe*, we have
|AAR|? = (62 f%, AAeR) + (pF, ADe®), 1<k <m.
Taking the product of (4.8) with §2A;e*, we have

(Af*,6200e") = (A(D(U*) = d(u")), 67 A.e")
—a(82eF, 82 A0e") + (¢F, 52 00"), 1<k <m.

Adding the two equalities above, we obtain
IAD*|? + a(82e®, 2 A0e") = (A(S(U*) = d(u")), 57 00e%) + (¥, ADeF) + (¢, 520",
or,
« _ 1
[ AAe"|? + t FH — ") < (A(D(UF) — d(u")), 63A.e") + 2IIP’“II2
+ ;HAAtekﬂz + (g%, 02A€%), 1<k <m.

Replacing the superscript k& by [ in the above inequality and summing up for [ from 1 to k, we get

l k k
ZHAAten? I+ 1M — el — " 3)

k
<D (AGUY) = ¢(uh)), 620" Z|\p|\2+§jq JAel), 1<k<m. (4.17)

=1
Owing to Lemma 4.2, we have

k
D (A@UY) = g(uh), 83 A") = " I(A@(UY) — 6(uh)), 8264) + (AG(UH) — p(ah 1)), %)

2T
=1

— (A((U") = 6(u")),07¢") = (A(3(U") = d(u')), 67¢°)]
k—1
= D (AA(S(UY) = o(u')),03¢"), 1 <k<m

1

Applying the Cauchy-Schwarz inequality and noticing (4.9), (4.14)—(4.15) and (2.7), we have

k
D (AU = d(ul)), 570"

=1
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1
S 2T[|\A(¢(Uk) — W) [ 2 + AU ) = p(u* )| - [€¥]o]
k—1
+ Y IAABTY) = d(h))]| - [e']2
=1

1 _
<, leallAe®] e + eal| At [t o]
k—1
+ 3 (el A + sl + eslle M) - leflz, 1<k <m,
=1
or

(Ap(U") = p(u)), 62 Ae")

M=

N
Il
-

1 _
(C4||A€k|\ €51 o + cal| Ae™ M| - [e]2)

//\

12
\/ Z cal| AAGE| 4 cs||Aet || 4 cs||Ael ) - ety 1< k< m. (4.18)

For the last term of (4.17), using Lemma 4.2, we have

k k—1
1
D02 = ) ((¢" 05" + (6" 00e") — (a7, 83e) — (¢, 62°)) = Y (Avd' 5e!)
=2

=1
1 _
<o (gl 15+ Nlg™ M- le¥la + g - ez + gl - [e%]2)
k—1
+ ) 1Al e, 1<E<m. (4.19)
Substituting (4.18) and (4.19) into (4.17), noticing (4.9), we get
Z:IIAAte I+ (| R 1R — let3 — 1e°13)

<o, (C4||A€k|\ Py + cal| Ae T - e o)

k—1 k
12 _ 1
Ty 5 (el Al + esll A + esll At - fel D 10!
=1 =1
1 k—1
o (b1l 15 4+ g - bl 4+ 1] - ') + D 1A'l €'l
1=2
2c2 2¢2 o
< g (A + Sl 4 2 AP 4 1)

- 1 6 1
Z(IAAtelH? I+ DA+ e+ DA+ i)

k
2 a ) a 1 N
ne 4 k|2 k+1)2 k=12 k 912 1o
Fy oI g (24 IR DI Stk I+ ')
1k 1
+y LA+, 1<k <.

Consequently, we have

80 8
I+ ek < SR (Aek? + Ak 12 + a(c4+c5)72|e +4le 3
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k k—1
4T _ 2 47
+ > PP + 8llgk (I + 8llg"I? + a2|\q2||2+ o > A ? + [€'f3)

=1 =2
804 2 k—1 876 , 2 8 — 112

(P + A7) + | (e )+ 31l
+Cs(7'2+h4)27 1<k <m.

It follows from (4.16) that

k—1
2
||Ae’f||2+||Ae'f—1||2<2( ) JA? + er(r? + B2, 1<k <m
l

=1
Substituting (4.21) into (4.20) gives

k—1

8c 2c2
Bk < S 224 20 ) X el e 4
=1

8 /(6 4
+{a(5ci+c§) :|7'Z|62—|—687' +hh?% 1<k <m.

Let
E* = [+ [eh 3 4 AP + [ Ak2, 0< k< N -1,

Adding (4.22) with (4.16), we get
k—1
EF < cm’ZEl +eo(? + M2 1<k <m.
1=1
Using the discrete Gronwall inequality yields
E™ < cgexp(eeT) - (72 + h*)2

Consequently,
le™ T2 4 || Ae™ |2 < g exp(eeT) - (72 + )2,

or
5
le™ T2 + 12|| ™% < cgexp(eeT) - (7% + h*)2.

Applying Lemma 4.3, we may can obtain
e Moo < malle™ A ™ o + e DY < e(7® + hY).

Therefore, (4.4) is valid for £ = m + 1. This completes the proof.

5 The compact difference scheme for the two-dimensional problem

Consider the two-dimensional problem

g’:l = A(p(u) —alu), weQ, te(0,T),
Oul - _y 00w —ebu)l (0, 7],
oV |yq v 89

u(z,0) = up(x), =€,

where Q = (0, L;) x (0, Lz) and suppose that it has a smooth solution.

(4.20)

(4.21)

(4.22)
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Take the three integers Ml,Mg,N and denote hy
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Li/My,hy = Ly/Ms, 7 = T/N,z; = ihi,y; =

jho,ty = kT, Qh = {(zi,y,) | 0<i<M,0<j< M}yand Q, = {t; | 0 < k < N}. Suppose
uw=A{uf; | 0<i<M,0<j< Mg, 0 < k < N} is a grid function on QF = Q) x Q.. Introduce the
following notatlons,
k+1 k+1
Uyj ? = Q(Uffl +U§j)a Uyj ? = Q(Uffl +U§j)a
z 1
Eo_ k+1 k—1 ko_ uE ! k—1
Uz = 2(uij + g )s Atuz‘j = 27_( ij T Wy )s
Lo g k k Lo k
0 UH g hy (ui+1,j_uij)v 5yui,j+2 By (u i,j+1 uij)v
5 1
6u§j+6u§’j’ 1=0, 0<j < My,
1
Ayl = 12( Py H10uf +uf ) 1<i< M -1, 0< 5 < My,
L 5 k .
6uM1 1]+6U’Mlj7 Z:M1,0<]<M27
5 )
6f0+6u 0<i< My, j=0,
1
Ayuf; = 12(u§j+1 +10uf, +uf ), 0<i< M, 1< < Ma— 1,
61,M2 1+6u1M27 O<Z<M17]_MQ7
2 k . .
h15mué7j, 1=0, 0<j < M,
2ul; = h(duH_J Gy 1 ), 1<i<Mi—1,0<j< M,
2 k . .
_h16$uM1—§,j’ i =M, 0<j< M,
2
h26yu%, 0<i< M, j=0,
1 . .
6211?]»— h2(5yuf7j+é _5yuf,j—;)7 0<i< M,1<j< My—1,
6U1M2— Oglng,]ZMQ
Let v = ¢(u) — Au. Then the problem (5.1)—(5.3) is equivalent to the following problem
ou  0%v 9%
= Q, 0<t<T, 5.4
ot = o2 oy (z,y) €Q, 0< (5.4)
u  0%u
v =¢(u) — 0r2 " oy’ (r,y) €, 0<t<T, (5.5)
ou ou ov ov
0,y,t) = Ly,y,t) = 0,y,t) = Ly,y,t) =0, 0<y<Ls 0<t<T, 5.6
8!17( 'Y, ) ax( 1Y, ) ax( 'Y, ) 8!17( 1, Y, ) ) Y 2 ( )
ou ou v v
0,t) = Lo, t) = 0,t) = Lot) =0, 0<x<Ly, 0<t<T, 5.7
8y(x7 ’ ) ay(x7 2, ) 8y(x7 ) ) 8y(x7 2 ) ) z 1 ( )
U’(xvy70) :u0(x,y), (Z‘,y) € Q. (58)
It follows from (5.4)—(5.7) that
u Su v v
0,y,t) = Ly,y,t) = 0,y,t) = L,y,t) =0, 0<y<Lg 0K<t<T, 5.9
8%3( 'Y, ) 8%3( 1, Y, ) 8!173( 'Y, ) ox ( 1Y, ) ) Yy 2 ( )
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0%u 0%u 0%v 9%v

95 O Ut) = o s(Lnyt)= o (0yt)= 5 ((L1,5,8) =0, 0<y< Ly, 0<t<T, (5.10)
03 03 03 03

ayZ(x,O,t) - 8;;(3:,@,15) - 8;; (2,0,1) = 8y§ (,L0,t) =0, 0<a<Li, 0<t<T, (5.11)
0° 0° 0° 0°

8;;(3;,0,75) - 8;5‘(3;,L2,t) - 8;5’ (2,0,1) = 8;5’ (,L2,t) =0, 0<a<Li, 0<t<T. (5.12)

Define the grid functions
UL =u(zi,yj,tr), Vi =vl(ziyj,te), 0<i< M, 0<j< My, 0<k<N.

Considering (5.4)-(5.5) at the points (2,y;,t1) and (2;,y;, tk), then using Lemma 2.2 with (5.6)-(5.7),
(5.9)-(5.12), and the Taylor’s expansion with the integration remainder term, we can obtain

1 1 1
Ay AgbUR = A2V + A1V +p7, 0<i < My, 0<j < My, (5.13)

T

A AV = AlAgng(u(a:i,yj, 0) + ;ut(xi,yj, 0)> — a(A202U2 + A1 52U2) + Y,
0<i<M,0<j< M, (5.14)
AL Ay NUE = As02VE + AL2VE + 9, 0<i< M, 0<j< My, 1<k<N-—1, (515)
AL AV = A1 As@(Uf) — oAU + AU + b,
0<i<M,0<j<My, 1<k<N-I, (5.16)

where there exists a constant ¢; independent of hy, ho and 7 such that

Bf| <eé(r® +hi+h3), 0
G5 < é(r>+hi+h3), 0

1
|85 ] < é1(72 + hi + h3),
Omitting the small terms in (5.13)—(5.16) and noting the initial condition
Uy = uo(i,95,0), 0<i< My, 0<j< M,
we construct for (5.4)-(5.8) the following compact difference scheme,

1 1 1
Ay Agbiul = Agbivd + Ardovd, 0<i < My, 0<j < My, (5.17)

1 T 1 1
AlAgvfj = A1A2¢(U(xi7yg‘70) + 2ut(xl7ijo)) - a(A262u?- + Aldz“‘fj%

x g

0<t< My, 0< g < Mo, (5.18)
Ay AgDNpuf; = AgSovf; + Ardouls, 0<i< My, 0<j < My, 1<k<N -1, (5.19)
A1 Asvl = Ay As(uly) — aAx82ul, + A162ul),

<

9 My, 0<j < M. (5.21)

’U,” :uo(xlvy]70)7 ng

Acting A; Az on both sides of (5.17) and inserting (5.18) into the result, we obtain
1 T
(A1A2)25tufj = (AQ(S?C + Alég) {A1A2¢<u(xi, Yi 0) + 2ut(xi, Yi 0))
1 1
—a(A07u? + Alégufj)], 0<i< M, 0<j< M. (5.22)
Acting A; Az on both sides of (5.19) and inserting (5.20) into the result, we get

(A1 A2)2Apuks = (4202 + A162)[A1 Az (uly) — a(A262ul; + A162ul))],

x g
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821
0<i< M, 0<j< My, 1<k<N-1 (5.23)
We construct the difference scheme (5.21)—(5.23) for the problem (5.1)—(5.3).
Let
]-7 1<1<M1_171<]<M2_17
1 .
Wij = 4’ (’L,]) = (070)7(M170)7(07M2)7(M17M2)7
1 .
, otherwise,
2
1 2
(w,0) = hha 3> Swiguisvgs - Ilull = /(w,w),
1=0 j=0
Jul2 = wwzw S2ul2,  fulleo = __max _fuyl.

OIS M1, 05 < M2
The solution to (5.1)—(5.3) satisfies the energy decreasing

dt{/L1 sz w(,y, O)dody + a/Ll/L2[(8uxy» ))

+(8“(§’y’ )> ]dxdy} <0, 0<t<T,
)

or

;lt {(w(u(-,-,t)), 1) 3‘ K@Q%(;?-,t)’u(-, -,t)) " (aQua(;;t))u(.,.,t))]} <0, 0<t<T. (5.24)
Since ¢/ (1) = ¢(u), we have

U U
VU =99 + [ Vs =v U+ | 6()ds
=¢(Ug>+¢<u<xi,yj,0>+;'uxxi,yj,t)))(%—Ué}>+0<f3), 0<i< M, 0<j< M,

Uk+1 k+1

ij Us;
k+1 k—1 /($)ds — k-1 $\ds
BUEF) = U + /U W (s)ds = p(UE) + /U o(s)d

k—1 k—1
ij ij

= U + UL UET —UE)+0(7*), 0<i<M, 0<j< My, 1<k<N-L
Define

Vg = P(ugy), 0<i< My, 0<j< My,

o= +A1A2¢<u(xi,yj,0) + ;ut(xi,yj,0)> S(ArA)?(ul —udy), 0<i< My, 0<j< M,
PET = pE 4 A Asg(ul) - (A1) (uf —ulh), 0<i <My, 0< < My

and

GF = (y*,1) — ‘;(Azaguk + A2, (AL Ag)?uF), 0 <k < N. (5.25)
Let
=G0, Wh= (GG, 1<k<N.
We can prove that the solution to difference scheme (5.21)—(5.23) satisfies the energy decreasing
Wk <wh 1l 1<k <N. (5.26)

In order to prove the convergence of the difference scheme (5.21)-(5.23), we need the following lemma
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Lemma 5.1 (See [49]).  For any grid function v on Q= {(z:,y;) |0 <i < M1,0 < j < M}, there is
a positive constant ko such that

1
olloe < mallo]l2 (Jolz + [[o]) 2.

Using Lemma 5.1 and similarly to the analysis in Section 4, we can prove

Theorem 5.1.  Assume that the solution u(x,y,t) to (5.1)—(5.3) is sufficiently smooth. Then the
solution to difference scheme (5.21)—(5.23) unconditionally converges to the solution to (5.1)—(5.3) in the
mazimum norm and the rate of convergence is the order of O(12 + hi + h3) when hq, ha and T are small.

Remark 5.1. The method in this section can apply to the three dimensional Cahn-Hilliard equation
by using the following three dimension space norm relation [49]

1 3
[0]lo < msflvfl (Jv]2 + [|vl)4,

where v is any grid function v on ), = {(xi,y5,21) |0 < i < Mip,0 < j < Mo, 0< 1< M}

Remark 5.2. If we let Ay and As be the identity operator I in the difference scheme (5.21)-(5.23),
we will get a new difference scheme for (5.1)-(5.3) as follows:

sl = (32 + 65) o (u<xi,yj,o> + Qe 0)) - ald + 83l
0<i< M, 0<j< M, (5.27)
Al = (02 + 52)[¢( uf;) — (52 + 8 uk;],

0<i< M, 0<j< My, 1<
u?j:uo(xivijo)v 0\ <M170 ]

k<N-—1, (5.28)
< Mo. (5.29)
Similarly to the proof of Theorem 5.1, we can show that the solution to the difference scheme (5.27)—(5.29)
is unconditionally convergent to the solution to (5.1)—(5.3) with the convergence order of O(72 + h? + h3)

in the maximum norm and the solution meets the mass conservation and the energy non-increasing. The
differece scheme (5.28) is just as that presented in [39], where only Ly convergence was proved.

6 Numerical experiments

Example 1 (1D problem). Let L =1,7 = 0.5,a = 0.5,3 = /2,7 = 1 and ug(z) = 1002(1 — z)?(z —
0.5) in (1.1)~(1.3) as in [28].

We compute the numerical solutions to this problem by the difference scheme (2.33)-(2.35). Take
h = L/M,7 =T/N. Denote the difference solution by {u¥(h,7)|0 <i < M,0< k < N}. Suppose

Og}€3L<XNOI<rﬁ>J<W|u(x“tk) uy (h,7)| = O(7?) + O(h9).

If O(7?) is sufficiently small, we have

ul (h,7) — ud; (ZT) ‘ = O(h?).

max

0<i<M
Denote h

— N —uN

E(h) —ngﬁ/[ u; (hyT) u2l<277) .

Then B
log, ~q.
E(%)

Some numerical results are presented in Table 1. If O(h?) is sufficiently small, we have

¥ hr) = ()

= O(7P).

max
0<i<M
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Denote

F(7) = max
0<i<M

ufv(h,T) - u?N (h, 72-) ‘ .

Then F(r)
-

log S\ RD.
2 F(3)

Some numerical results are presented in Table 1. From Tables 1 and 2, we see that p = 2,¢ = 4 and the
difference scheme (2.33)—(2.35) is convergent with the convergence order of O(72 + h*). This is accordance
with Theorem 4.1. Figure 1 shows the decrease of the total energy G* defined by (3.3)-(3.4). This is
accordance with Theorem 3.1.

Table 1 Some numerical results of (2.33)—(2.35) when 7 = T'/36000

E(h
h E(h) logo E(é/%)
: 4.945e—3 4.4532
" 2.258c—4 3.9634
1
s 1.447e—5 4.0119
1
40 8.971e—-7 *
1 * *
80
Table 2 Some numerical results of (2.33)—(2.35) when h = L /2000
F
T F(r) log p(r2)
T
. 1.012e—2 1.9628
T
L 2.5960—3 1.5413
T
800 8.920e—4 2.0093
T
1600 2.216e—4 *
T * *
3200
Table 3 Some numerical results of (6.1)—(6.2) when 7 = T/1000
E(h
h E(h) 1082 5 h )
1
100 3.961le—4 2.1235
1
o 9.089¢—5 1.8151
1
400 2.583e—5 1.8884
1
800 6.976e—6 *
1 * *
1600
5.0 5.0
4.5 4.5
4.0 4.0
3.5 3.5
. 3.0 =30
2.5 © 2.5
2.0} 1 2.0p
1.5¢ 1 1.5}
1.0f 1 1.0}
0.5L : : : : 0.5L - - - -
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
t t
Figure 1 The discrete total energy of the numerical so- Figure 2 The discrete total energy (6.3) of the nu-
lution obtained by the scheme (2.33)-(2.35) with o = merical solution obtained by the scheme (6.1)—(6.2) with
0.5,7 = 0.5,h = 1/30 and 7 = 1/900. The initial state T = 0.5, = 0.5,h = 1/100 and 7 = 1/100. The initial

is up(z) = 10022(1 — z)2(x — 0.5). state is ug(z) = 10022(1 — x)2(x — 0.5).
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Table 4 Some numerical results of (5.21)—(5.23) when 7 = T'/700000

= E(h)
h E(h) logg B(h/2)
: 1.184e—4 4.0976
1
10 6.915e—6 4.0340
1
o 4.221e—7 *
1 * *
40

0.96

0.94
0.92 +
0.90
. 088}
0.86 |
0.84 +
0.82 |

0.80 |

0.78

0 0.0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
t

Figure 3 The discrete total energy (5.26) of the numerical solution obtained by the scheme (5.27)—(5.29) with
T=0.1,a=0.18=+v2v=1h=1/20 and 7 = T/50000. The initial state is uo(x, y) = cos(nz) cos(ry).

We compare our difference scheme with Furihata’s scheme. Let

1 2
b(u,v) =~ 4(u3+u2v+uv2+v3)—52 (u+v)|.

Then we have
B(u,v)(u = v) = P(u) = P(v),  @(u,u) = d(u).
Furihata’s scheme for (2.1)—(2.4) in [28] is as follows,

Sut T2 = S2[B(uh uk) — a02u ), 0<i < M,0< k<N -1, (6.1)
ud =up(z;), 0<i< M.

Some numerical results are presented in Table 3. We see that the difference scheme (6.1)—(6.2) is conver-
gent at most with second order in space. For the proof of the convergence, Furihata needed a condition
= O(h?). Figure 2 shows the decrease of the total energy G(u*) defined by

M—1
!

G(u )_h{ Zw )+ qu)}+2hlZ: 5ul+), 0<k<N. (6.3)
Since (6.1)-(6.2) is a system of nonlinear equations at each time level, it needs much more CPU time
compared with our difference scheme (2.33)—(2.35).
Example 2 (2D problem). Let L1 = 1, Ly = 1, T =01, = 01,8 = V2,7 = 1, ug(z,y) =
cos(mx) cos(my) in (5.1)—(5.3). Take hy = hy = h. We compute the numerical solution to the problem by
the difference scheme (5.21)-(5.23). Denote the difference solution by {u (h,7)]0 <4< M,0<j<
M>,0 < k < N}. For sufficiently small fixed 7, denote

E(h)z ~ max ug(h,T)—u%72j<;,T>‘.

0<i<M1,0<j< M2
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Some numerical results are presented in Table 4. We can see that the difference scheme (5.21)-(5.23) is
convergent with the order 4 in spatial step sizes h. The energy W defined in (5.26) is plotted in Figure 3.
We see that W* is not increasing.

7 Conclusion

In this article, we constructed in detail a three level linearized compact difference scheme for the one-
dimensional Cahn-Hilliard equation. The mass conservation and the non-decrease of the total energy of
the difference solution were presented. The unique solvability and convergence of the difference scheme
in H2-norm and maximum-norm were showed by the discrete energy method. The outline for the high-
dimensional problem was also given. The numerical results verified the theoretical results. The compar-
ison was made with the existing difference scheme. The method in this article can apply to the periodic
boundary value problem.
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