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Abstract Latin hypercube design and uniform design are two kinds of most popular space-filling designs for

computer experiments. The fact that the run size equals the number of factor levels in a Latin hypercube design

makes it difficult to be orthogonal. While for a uniform design, it usually has good space-filling properties,

but does not necessarily have small or zero correlations between factors. In this paper, we construct a class of

column-orthogonal and nearly column-orthogonal designs for computer experiments by rotating groups of factors

of orthogonal arrays, which supplement the designs for computer experiments in terms of various run sizes and

numbers of factor levels and are flexible in accommodating various combinations of factors with different numbers

of levels. The resulting column-orthogonal designs not only have uniformly spaced levels for each factor but

also have uncorrelated estimates of the linear effects in first order models. Further, they are 3-orthogonal if the

corresponding orthogonal arrays have strength equal to or greater than three. Along with a large factor-to-run

ratio, these newly constructed designs are economical and suitable for screening factors for physical experiments.
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1 Introduction

Many physical phenomena encountered in science and engineering are governed by a set of complicated

equations. These equations often have only numerical solutions that are carried out by computer pro-

grams. Latin hypercube design (LHD) and uniform design are two kinds of most popular space-filling

designs for computer experiments (see [9, 27]). LHDs were introduced by [25]. The fact that each factor

in an LHD has as many uniformly spaced levels as its run size makes it attractive in that the design

achieves the maximum stratification when projected into any univariate dimension. Efforts have been

made to find orthogonal or nearly orthogonal LHDs, see e.g., [1–7, 18, 19, 26, 28, 31–34, 36, 37]. However,

the factors in an LHD have as many levels as the run size, which makes it very difficult for an LHD to be

orthogonal (see [4]). Uniform designs were proposed by [8] and [35], and have received great attention in

recent decades, see e.g., [9,10,13,29] and the references therein. A uniform design seeks design points that

are uniformly scattered on the design domain, it is robust against the model specification (see [12]) and
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limits the effects of aliasing to yield reasonable efficiency and robustness together (see [16]). However, a

uniform design does not necessarily have small or zero correlations between factors.

For computer experiments, practical experiments have revealed that designs with many levels are

desirable, but it is not essential that the run size equals the number of levels at which each factor is

observed (see [4]), as in an LHD. As we know, screening important factors and then estimating the effects

accurately are the main objectives of experimental designs. Therefore, lower correlations among effect

estimates are preferred, which will achieve the lowest correlation when the model matrix is orthogonal.

By relaxing the condition that the number of levels for each factor must be identical to the run size, we, in

this paper, propose some methods to construct column-orthogonal designs and nearly column-orthogonal

designs, which not only have uniformly spaced levels for each factor but also have some other attractive

properties, as will be discussed later.

The paper is organized as follows. Section 2 provides some notations and related work on rotation

designs. The construction methods for column-orthogonal designs are proposed in Section 3. Section 4

constructs a new class of nearly column-orthogonal designs. Some discussions and concluding remarks

are provided in Section 5.

2 Some notations and related work on rotation designs

A design with n runs andm factors, each having q1,. . . ,qm levels, respectively, is denoted byD(n, q1· · · qm).

A D(n, q1 · · · qm) design is an n×m matrix with entries of the jth column from a set of qj symbols, which

are assumed here to be {(2i−qj−1)/2, i = 1, . . . , qj} for odd qj and {2i−qj−1, i = 1, . . . , qj} for even qj .

If in each column the symbols occur equally often, the design is called a U-type design. The qj ’s are not

necessarily distinct, for example, aD(n, qm1
1 qm2

2 ) is a design that hasm1 factors of q1 levels andm2 factors

of q2 levels. In particular, when all the qj ’s are equal, the design is said to be symmetrical, otherwise,

asymmetrical. A D(n, nm) is called an LHD and denoted by LHD(n,m). A U-type design D(n, q1 · · · qm)

is called a column-orthogonal design, denoted by COD(n, q1 · · · qm), if the inner product of any two

columns is zero; and is called an orthogonal array of strength t, denoted by OA(n, q1 · · · qm, t), if all

possible level-combinations for any t columns appear equally often. We shall call the latter orthogonality

combinatorial orthogonality to distinguish it from the column-orthogonality. Clearly, the combinatorial

orthogonality implies the column-orthogonality, but the inverse is not necessarily true. Furthermore, a

column-orthogonal design is called 3-orthogonal (see [4]) if the sum of elementwise products of any three

columns (whether they are distinct or not) is zero.

Let X denote the regression matrix for the first-order model of a column-orthogonal design with m

factors, including a column of ones and the m factors in the design. Let Xint denote the n×m(m− 1)/2

matrix with all the possible bilinear interactions, and let Xquad denote the n×m matrix with all the pure

quadratic terms. The alias matrices for the first-order model associated with the bilinear interactions

and the pure quadratic terms are then given by (X
′
X)−1X

′
Xint and (X

′
X)−1X

′
Xquad, respectively. A

good design for factor screening should maintain relatively small terms in these alias matrices (see [28]).

It is easy to see that if a column-orthogonal design is 3-orthogonal, then these two alias matrices are both

zero matrices.

[1–3] showed that a class of LHDs can be constructed by rotating the points in d-factor, q-level

standard full factorial designs, where d is a power of 2, and defined a sequence of rotation matrices

by a recursive scheme. [5] proposed the idea of independently rotating groups of factors in two-level

designs. Recently, [26, 28] combined the above two ideas with the knowledge of Galois field to produce

the orthogonal LHD matrix with n = qd runs, where q is a prime and d is a power of 2. This severe run

size constraint is the primary limitation to their rotation methods.

Let Rq
0 = 1, and

Rq
c =

(
q2

c−1

Rq
c−1 −Rq

c−1

Rq
c−1 q2

c−1

Rq
c−1

)
for c = 1, 2, . . . , (1)

then we have



Sun F S et al. Sci China Math December 2011 Vol. 54 No. 12 2685

Lemma 1 (cf. [26]). The matrix Rq
c in (1) is a rotation of the d-factor (d = 2c), q-level standard full

factorial design which yields unique and equally-spaced projections to each dimension.

Remark 1. Here, we relax the definition of rotation to be a matrix R satisfying R′R = kI for some

scalar k, instead of R′R = I. It can be easily checked that the matrix Rq
c in (1) consists of columns (and

rows) of permutations of {1, q, . . . , q2c−1} up to sign changes, which guarantees that, for a 2c-factor q-level

standard full factorial design A, ARq
c yields unique and equally-spaced projections to each dimension.

This paper will extend the rotation method to orthogonal arrays for accommodating various run sizes.

Though the obtained designs are not always LHDs, they are column-orthogonal designs or nearly column-

orthogonal designs, and the factors have enough levels to be employed in computer experiments.

3 Construction of column-orthogonal designs

In this section, we present the construction methods for column-orthogonal designs by rotating symmet-

rical as well as asymmetrical orthogonal arrays.

3.1 Construction from symmetrical orthogonal arrays

For convenience, we denote

Rq
(c1,...,cv)

= diag{Rq
c1 , . . . , R

q
cv}, (2)

and

Rm,q = diag{Rq
1, . . . , R

q
1}, (3)

where Rq
c is given in (1) and Rq

1 occurs m/2 times in the diagonal of Rm,q.

Theorem 1. Suppose A is an OA(n, qm, t) with m = 2k and t � 2, D = ARm,q, then

(1) D is a COD(n, (q2)m);

(2) if t � 3, D is a 3-orthogonal COD(n, (q2)m).

The proof of Theorem 1 is given in the Appendix. Now, let us see some illustrative examples.

Example 1. Suppose A is an OA(12, 211, 2), A1 consists of the first 10 columns of A and D = A1R10,2,

then D is a COD(12, 410). The OA(12, 210, 2) and COD(12, 410) are listed in Table 1.

Example 2. Suppose A is an OA(18, 37, 2), A1 consists of the first 6 columns of A and D = A1R6,3,

then D is a COD(18, 96). A1 and D are shown in Table 2.

Example 3. Suppose A is an OA(24, 212, 3), and D = AR12,2, then D is a 3-orthogonal COD(24, 412).

A and D are shown in Table 3.

Table 1 OA(12, 210, 2) and COD(12, 410)

OA(12, 210, 2) COD(12, 410)

1 1 1 1 1 1 1 1 1 1 3 1 3 1 3 1 3 1 3 1

−1 1 −1 1 1 1 −1 −1 −1 1 −1 3 −1 3 3 1 −3 −1 −1 3

−1 −1 1 −1 1 1 1 −1 −1 −1 −3 −1 1 −3 3 1 1 −3 −3 −1

1 −1 −1 1 −1 1 1 1 −1 −1 1 −3 −1 3 −1 3 3 1 −3 −1

−1 1 −1 −1 1 −1 1 1 1 −1 −1 3 −3 −1 1 −3 3 1 1 −3

−1 −1 1 −1 −1 1 −1 1 1 1 −3 −1 1 −3 −1 3 −1 3 3 1

−1 −1 −1 1 −1 −1 1 −1 1 1 −3 −1 −1 3 −3 −1 1 −3 3 1

1 −1 −1 −1 1 −1 −1 1 −1 1 1 −3 −3 −1 1 −3 −1 3 −1 3

1 1 −1 −1 −1 1 −1 −1 1 −1 3 1 −3 −1 −1 3 −3 −1 1 −3

1 1 1 −1 −1 −1 1 −1 −1 1 3 1 1 −3 −3 −1 1 −3 −1 3

−1 1 1 1 −1 −1 −1 1 −1 −1 −1 3 3 1 −3 −1 −1 3 −3 −1

1 −1 1 1 1 −1 −1 −1 1 −1 1 −3 3 1 1 −3 −3 −1 1 −3
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Table 2 OA(18, 36, 2) and COD(18, 96)

OA(18, 36, 2) COD(18, 96)

1 1 1 1 1 1 4 2 4 2 4 2

−1 −1 −1 −1 −1 −1 −4 −2 −4 −2 −4 −2

0 0 0 0 0 0 0 0 0 0 0 0

1 1 −1 0 −1 0 4 2 −3 1 −3 1

−1 −1 0 1 0 1 −4 −2 1 3 1 3

0 0 1 −1 1 −1 0 0 2 −4 2 −4

1 −1 1 0 0 −1 2 −4 3 −1 −1 −3

−1 0 −1 1 1 0 −3 1 −2 4 3 −1

0 1 0 −1 −1 1 1 3 −1 −3 −2 4

1 0 0 1 −1 −1 3 −1 1 3 −4 −2

−1 1 1 −1 0 0 −2 4 2 −4 0 0

0 −1 −1 0 1 1 −1 −3 −3 1 4 2

1 −1 0 −1 1 0 2 −4 −1 −3 3 −1

−1 0 1 0 −1 1 −3 1 3 −1 −2 4

0 1 −1 1 0 −1 1 3 −2 4 −1 −3

1 0 −1 −1 0 1 3 −1 −4 −2 1 3

−1 1 0 0 1 −1 −2 4 0 0 2 −4

0 −1 1 1 −1 0 −1 −3 4 2 −3 1

Table 3 OA(24, 212, 3) and COD(24, 412)

OA(24, 212, 3) COD(24, 412)

−1 1 1 1 1 1 1 1 1 1 1 1 −1 3 3 1 3 1 3 1 3 1 3 1

−1 −1 1 −1 1 1 1 −1 −1 −1 1 −1 −3 −1 1 −3 3 1 1 −3 −3 −1 1 −3

−1 −1 −1 1 −1 1 1 1 −1 −1 −1 1 −3 −1 −1 3 −1 3 3 1 −3 −1 −1 3

−1 1 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 3 −3 −1 1 −3 3 1 1 −3 −3 −1

−1 −1 1 −1 −1 1 −1 1 1 1 −1 −1 −3 −1 1 −3 −1 3 −1 3 3 1 −3 −1

−1 −1 −1 1 −1 −1 1 −1 1 1 1 −1 −3 −1 −1 3 −3 −1 1 −3 3 1 1 −3

−1 −1 −1 −1 1 −1 −1 1 −1 1 1 1 −3 −1 −3 −1 1 −3 −1 3 −1 3 3 1

−1 1 −1 −1 −1 1 −1 −1 1 −1 1 1 −1 3 −3 −1 −1 3 −3 −1 1 −3 3 1

−1 1 1 −1 −1 −1 1 −1 −1 1 −1 1 −1 3 1 −3 −3 −1 1 −3 −1 3 −1 3

−1 1 1 1 −1 −1 −1 1 −1 −1 1 −1 −1 3 3 1 −3 −1 −1 3 −3 −1 1 −3

−1 −1 1 1 1 −1 −1 −1 1 −1 −1 1 −3 −1 3 1 1 −3 −3 −1 1 −3 −1 3

−1 1 −1 1 1 1 −1 −1 −1 1 −1 −1 −1 3 −1 3 3 1 −3 −1 −1 3 −3 −1

1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 −3 −3 −1 −3 −1 −3 −1 −3 −1 −3 −1

1 1 −1 1 −1 −1 −1 1 1 1 −1 1 3 1 −1 3 −3 −1 −1 3 3 1 −1 3

1 1 1 −1 1 −1 −1 −1 1 1 1 −1 3 1 1 −3 1 −3 −3 −1 3 1 1 −3

1 −1 1 1 −1 1 −1 −1 −1 1 1 1 1 −3 3 1 −1 3 −3 −1 −1 3 3 1

1 1 −1 1 1 −1 1 −1 −1 −1 1 1 3 1 −1 3 1 −3 1 −3 −3 −1 3 1

1 1 1 −1 1 1 −1 1 −1 −1 −1 1 3 1 1 −3 3 1 −1 3 −3 −1 −1 3

1 1 1 1 −1 1 1 −1 1 −1 −1 −1 3 1 3 1 −1 3 1 −3 1 −3 −3 −1

1 −1 1 1 1 −1 1 1 −1 1 −1 −1 1 −3 3 1 1 −3 3 1 −1 3 −3 −1

1 −1 −1 1 1 1 −1 1 1 −1 1 −1 1 −3 −1 3 3 1 −1 3 1 −3 1 −3

1 −1 −1 −1 1 1 1 −1 1 1 −1 1 1 −3 −3 −1 3 1 1 −3 3 1 −1 3

1 1 −1 −1 −1 1 1 1 −1 1 1 −1 3 1 −3 −1 −1 3 3 1 −1 3 1 −3

1 −1 1 −1 −1 −1 1 1 1 −1 1 1 1 −3 1 −3 −3 −1 3 1 1 −3 3 1

Corollary 1. Suppose q � 2 is a prime power, l � 2 and m = (ql − 1)/(q− 1), then a COD(ql, (q2)k)

exists, where k is the largest even integer not greater than m.

Proof. It is seen from Theorem 3.20 of [14] that for any prime power q � 2, an OA(ql, qm, 2) exists

whenever l � 2, where m = (ql−1)/(q−1). Thus from Theorem 1, the COD can be obtained by rotating

the OA consisting of some k columns of this OA by Rk,q.
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Next, we discuss the construction of asymmetrical column-orthogonal designs by rotating symmetrical

orthogonal arrays.

Remark 2. In Example 1, if we take

R =

(
R10,2 0

0 Rq
0

)
,

then AR is an asymmetrical COD(12, 41021). From the OA in Example 2, a COD(18, 9631) can also be

obtained similarly.

Now, we propose a general method to construct asymmetrical column-orthogonal designs. Suppose

A is an OA(n, qm, t) with t � 2, in which the strength of the first 2c1 factors is 2c1 , the strength of

the next 2c2 factors is 2c2 , . . . , the strength of the last 2cv factors is 2cv , and 2c1 + · · · + 2cv = m. Let

D = ARq
(c1···cv), where Rq

(c1···cv) is defined in (2). Then

Theorem 2. (1) D is a COD(n, (q2
c1
)2

c1 · · · (q2cv )2cv ).
(2) If t � 3, then D is a 3-orthogonal COD(n, (q2

c1
)2

c1 · · · (q2cv )2cv ).
The proof of Theorem 2 can be easily obtained from Lemma 1 along the lines of the proof of Theorem 1.

Now, let us see two examples for illustration.

Example 4. Suppose A is an OA(16, 215, 2), columns 1–4, 5–8 and 9–12 form three full 24 factorial

sets, respectively, A1 consists of the first 14 columns of A, and A2 consists of the first 12 columns of A.

Then, D = AR2
(2,2,2,1,0), D1 = A1R

2
(2,2,2,1) and D2 = A2R

2
(2,2,2) are COD(16, 16124221), COD(16, 161242)

and COD(16, 1612), respectively. Moreover, the COD(16, 1612) is in fact an orthogonal LHD(16, 12), and

each 4-column part is a 3-orthogonal column-orthogonal design. The OA(16, 215,2) and COD(16, 16124221)

are shown in Table 4.

Methods of partitioning the saturated factorial designs to the maximal number of full factorial sets

using the Galois field are provided in [26, 28].

Example 5. Suppose D is a 38−4
IV design with the defining relation 5 = 12234, 6 = 12234, 7 = 12324,

8 = 12342, then 1, 2, 3, 4 and 5, 6, 7, 8 constitute two full factorial sets, respectively. Let D1 = DR3
(2,2),

then D1 is a 3-orthogonal COD(81, 818) which is in fact an orthogonal LHD(81, 8) with the property that

the sum of elementwise products of any three columns is zero.

Table 4 OA(16, 215, 2) and COD(16, 16124221)

OA(16, 215, 2) COD(16, 16124221)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 5 9 3 15 5 9 3 15 5 9 3 3 1 1

1 1 1 −1 1 1 1 −1 1 −1 −1 −1 −1−1 −1 13 1 1 −13 13 1 1 −13 1 −13 −13 −1 −3 −1 −1

1 1 −1 1 1 −1 −1 1−1 1 1 −1 −1−1 −1 11 7 −7 11 3 −9 −5 15 −3 9 5 −15 −3 −1 −1

1 1 −1 −1 1 −1 −1 −1−1 −1 −1 1 1 1 1 9 3−15 −5 1 −13 −13 −1 −13 −1 −1 13 3 1 1

1 −1 1 1 −1 1 −1 1−1 −1 −1 −1 1 1 −1 7−11 11 7 −5 15 −3 9 −15 −5 −9 −3 3 1 −1

1 −1 1 −1−1 1 −1 −1−1 1 1 1 −1−1 1 5−15 3 −9 −7 11 −11 −7 −1 13 13 1 −3 −1 1

1 −1 −1 1 −1 −1 1 1 1 −1 −1 1 −1−1 1 3 −9 −5 15 −9 −3 15 5 3 −9 −5 15 −3 −1 1

1 −1 −1 −1−1 −1 1 −1 1 1 1 −1 1 1 −1 1−13 −13 −1 −11 −7 7 −11 13 1 1 −13 3 1 −1

−1 1 1 1 −1 −1 −1 −1 1 1 −1 1 1 −1 −1 −1 13 13 1 −15 −5 −9 −3 11 7 −7 11 1 −3 −1

−1 1 1 −1−1 −1 −1 1 1 −1 1 −1 −1 1 1 −3 9 5 −15 −13 −1 −1 13 5 −15 3 −9 −1 3 1

−1 1 −1 1 −1 1 1 −1−1 1 −1 −1 −1 1 1 −5 15 −3 9 −3 9 5 −15 −7 11 −11 −7 −1 3 1

−1 1 −1 −1−1 1 1 1−1 −1 1 1 1 −1 −1 −7 11 −11 −7 −1 13 13 1 −9 −3 15 5 1 −3 −1

−1 −1 1 1 1 −1 1 −1−1 −1 1 −1 1 −1 1 −9 −3 15 5 5 −15 3 −9 −11 −7 7 −11 1 −3 1

−1 −1 1 −1 1 −1 1 1−1 1 −1 1 −1 1 −1 −11 −7 7 −11 7 −11 11 7 −5 15 −3 9 −1 3 −1

−1 −1 −1 1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −13 −1 −1 13 9 3 −15 −5 7 −11 11 7 −1 3 −1

−1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 1 −1 1 −15 −5 −9 −3 11 7 −7 11 9 3 −15 −5 1 −3 1
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Table 5 OA(36, 283462, 2) and COD(36, 4894362)

OA(36, 283462, 2) COD(36, 4894362)
−5 −5 0 0 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −35 −15 0 0 4 2 −3 −1 −3 −1 −3 −1 −3 −1
−3 −3 0 0 1 1 1 −1 −1 −1 1 −1 1 −1 −11 −15 0 0 4 2 1 −3 −3 −1 1 −3 1 −3
−5 −3 1 1 0 0 −1 1 1 1 1 −1 −1 −1 −33 −13 4 2 0 0 −1 3 3 1 1 −3 −3 −1
−3 −5 1 1 0 0 1 1 1 −1 1 −1 −1 1 −13 −17 4 2 0 0 3 1 1 −3 1 −3 −1 3
−1 3 0 1 0 1 −1 1 −1 −1 1 1 1 1 −3 19 1 3 1 3 −1 3 −3 −1 3 1 3 1
1 5 0 1 0 1 −1 −1 1 −1 −1 1 −1 1 11 19 1 3 1 3 −3 −1 1 −3 −1 3 −1 3

−1 5 1 0 1 0 1 −1 −1 1 1 1 −1 1 −1 31 3 −1 3 −1 1 −3 −1 3 3 1 −1 3
1 3 1 0 1 0 1 1 −1 1 −1 1 −1 −1 9 17 3 −1 3 −1 3 1 −1 3 −1 3 −3 −1
3 −1 0 1 1 0 1 −1 1 1 −1 −1 1 1 17 −9 1 3 3 −1 1 −3 3 1 −3 −1 3 1
5 1 0 1 1 0 −1 1 −1 1 −1 −1 1 1 31 1 1 3 3 −1 −1 3 −1 3 −3 −1 3 1
3 1 1 0 0 1 1 1 1 −1 −1 1 1 −1 19 3 3 −1 1 3 3 1 1 −3 −1 3 1 −3
5 −1 1 0 0 1 −1 −1 1 1 1 1 1 −1 19 −11 3 −1 1 3 −3 −1 3 1 3 1 1 −3

−1 −1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −7 −5 4 2 −4 −2 −3 −1 −3 −1 −3 −1 −3 −1
1 1 1 1 −1 −1 1 −1 −1 −1 1 −1 1 −1 7 5 4 2 −4 −2 1 −3 −3 −1 1 −3 1 −3

−1 1 −1 −1 1 1 −1 1 1 1 1 −1 −1 −1 −5 7 −4 −2 4 2 −1 3 3 1 1 −3 −3 −1
1 −1 −1 −1 1 1 1 1 1 −1 1 −1 −1 1 5 −7 −4 −2 4 2 3 1 1 −3 1 −3 −1 3
3 −5 1 −1 1 −1 −1 1 −1 −1 1 1 1 1 13 −33 2 −4 2 −4 −1 3 −3 −1 3 1 3 1
5 −3 1 −1 1 −1 −1 −1 1 −1 −1 1 −1 1 17 −13 2 −4 2 −4 −3 −1 1 −3 −1 3 −1 3
3 −3 −1 1 −1 1 1 −1 −1 1 1 1 −1 1 15 −11 −2 4 −2 4 1 −3 −1 3 3 1 −1 3
5 −5 −1 1 −1 1 1 1 −1 1 −1 1 −1 −1 15 −35 −2 4 −2 4 3 1 −1 3 −1 3 −3 −1

−5 3 1 −1 −1 1 1 −1 1 1 −1 −1 1 1 −17 13 2 −4 −2 4 1 −3 3 1 −3 −1 3 1
−3 5 1 −1 −1 1 −1 1 −1 1 −1 −1 1 1 −13 33 2 −4 −2 4 −1 3 −1 3 −3 −1 3 1
−5 5 −1 1 1 −1 1 1 1 −1 −1 1 1 −1 −15 35 −2 4 2 −4 3 1 1 −3 −1 3 1 −3
−3 3 −1 1 1 −1 −1 −1 1 1 1 1 1 −1 −15 11 −2 4 2 −4 −3 −1 3 1 3 1 1 −3
3 3 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −1 −1 11 15 −4 −2 0 0 −3 −1 −3 −1 −3 −1 −3 −1
5 5 −1 −1 0 0 1 −1 −1 −1 1 −1 1 −1 35 15 −4 −2 0 0 1 −3 −3 −1 1 −3 1 −3
3 5 0 0 −1 −1 −1 1 1 1 1 −1 −1 −1 13 17 0 0 −4 −2 −1 3 3 1 1 −3 −3 −1
5 3 0 0 −1 −1 1 1 1 −1 1 −1 −1 1 33 13 0 0 −4 −2 3 1 1 −3 1 −3 −1 3

−5 −1 −1 0 −1 0 −1 1 −1 −1 1 1 1 1 −31 −1 −3 1 −3 1 −1 3 −3 −1 3 1 3 1
−3 1 −1 0 −1 0 −1 −1 1 −1 −1 1 −1 1 −17 9 −3 1 −3 1 −3 −1 1 −3 −1 3 −1 3
−5 1 0 −1 0 −1 1 −1 −1 1 1 1 −1 1 −19 11 −1 −3 −1 −3 1 −3 −1 3 3 1 −1 3
−3 −1 0 −1 0 −1 1 1 −1 1 −1 1 −1 −1 −19 −3 −1 −3 −1 −3 3 1 −1 3 −1 3 −3 −1
−1 −5 −1 0 0 −1 1 −1 1 1 −1 −1 1 1 −11 −19 −3 1 −1 −3 1 −3 3 1 −3 −1 3 1
1 −3 −1 0 0 −1 −1 1 −1 1 −1 −1 1 1 3 −19 −3 1 −1 −3 −1 3 −1 3 −3 −1 3 1

−1 −3 0 −1 −1 0 1 1 1 −1 −1 1 1 −1 −9 −17 −1 −3 −3 1 3 1 1 −3 −1 3 1 −3
1 −5 0 −1 −1 0 −1 −1 1 1 1 1 1 −1 1 −31 −1 −3 −3 1 −3 −1 3 1 3 1 1 −3

3.2 Construction from asymmetrical orthogonal arrays

We can also obtain column-orthogonal designs by rotating asymmetrical orthogonal arrays. Suppose A

is an OA(n, qm1
1 · · · qmv

v , t) with t � 2, and R(qm1
1 · · · qmv

v ) = diag(Rm1,q1 , . . . , Rmv ,qv ), where Rmi,qi is

defined in (3) and mi is even, i = 1, . . . , v. Let D = AR(qm1
1 · · · qmv

v ), then we have the following theorem,

which can be proved easily along the lines of the proof of Theorem 1.

Theorem 3. (1) D is a COD(n, (q21)
m1 · · · (q2v)mv ).

(2) If t � 3, D is a 3-orthogonal COD(n, (q21)
m1 · · · (q2v)mv ).

Remark 3. Let A = (A1, . . . , Av), where Ai is an OA(n, qmi

i , t) with t � 2, a more flexible partition

of Ai can be obtained according to the discussion that precedes Theorem 2 when we rotate A.

Example 6. Suppose A is an OA(36, 283462, 2), then from Theorem 3 we can construct a COD(36,

4894362). The two designs are shown in Table 5.

4 Construction of nearly column-orthogonal designs

In this section, Theorem 1 is modified to construct nearly column-orthogonal designs, which have flexible

run sizes and numbers of factors. Two measures defined in [4] are used to assess the near orthogonality of

a design D with m columns: the maximum correlation ρM (D) = maxi,j |ρij(D)| and the average squared

correlation ρ2(D) =
∑

i<j ρ
2
ij(D)/[(m(m−1)/2], where ρij(D) denotes the correlation coefficient between

the ith and jth columns. Firstly, we can easily have
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Lemma 2. Suppose A is an n×m matrix with A′A = cIm, and D = AT , where c is a constant and

T is a matrix with m rows, then

(1) ρM (D) = ρM (T ) and ρ2(D) = ρ2(T );

(2) if A is a 3-orthogonal column-orthogonal design, then the estimates of the linear effects of all factors

of D are uncorrelated with the estimates of all quadratic effects and bilinear interactions.

From Lemma 2, the following theorem can be obtained.

Theorem 4. Suppose A is an OA(n, qm, t) with t � 2, in which the strength of the first m1 factors is

m1, the strength of the next m2 factors is m2, . . . , the strength of the last mv factors is mv,
∑v

i=1 mi = m,

and T = diag{T q
m1,k1

, . . . , T q
mv,kv

} is a matrix with order m × k, where T q
mi,ki

is an mi × ki matrix

comprised of columns of permutations of {1, q, . . . , qmi−1} (up to sign changes), ki � mi and
∑v

i=1 ki = k.

Let D = AT , then

(1) ρM (D) = ρM (T ) and ρ2(D) = ρ2(T ) ;

(2) if t � 3, then the estimates of the linear effects of all factors of D are uncorrelated with the estimates

of all quadratic effects and bilinear interactions.

Remark 4. (1) Since the order of T q
mi,ki

, i = 1, . . . , v, is usually far smaller than D, finding a T q
mi,ki

with low correlations is easier than finding a D with low correlations.

(2) T = diag{T q
m1,k1

, . . . , T q
mv,kv

} is a partitioned diagonal matrix, thus any two columns not in the

same part are orthogonal.

Corollary 2. Suppose A = (A1, . . . , Av) is an OA(n, qm, t) with m = vm0 and t � 2, Ai is an

OA(n, qm0 ,m0), and T = diag{T q
m0,k

, . . . , T q
m0,k

} with T q
m0,k

repeating v times in the diagonal. Let

D = AT , then

(1) ρM (D) = ρM (T q
m0,k

) and ρ2(D) = k−1
kv−1ρ

2(T q
m0,k

);

(2) if t � 3, then the estimates of the linear effects of all factors of D are uncorrelated with the estimates

of all quadratic effects and bilinear interactions.

Example 7. Suppose A = (A1, . . . , A6) is an OA(32, 230, 2) with Ai’s being full 25 factorial sets. Let

T1 = diag{T 2
5,4, . . . , T

2
5,4} with T 2

5,4 repeating 6 times in the diagonal, and T2 = diag{T 2
5,5, . . . , T

2
5,5} with

T 2
5,5 repeating 6 times in the diagonal, where

T 2
5,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 4 8 16

4 −2 −16 8

8 16 −2 −4

16 −8 4 −2

1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and T 2
5,5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 4 16 −4 8

2 8 4 −1 −16

4 −16 8 2 −4

8 −1 −2 −16 1

16 2 −1 8 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be calculated that ρM (T 2
5,4) = 0.0029, ρ2(T 2

5,4) = 8.5999× 10−6, ρM (T 2
5,5) = 0.0938 and ρ2(T 2

5,5) =

0.0048.

(1) Let D1 = AT1, then from Corollary 2, D1 is an LHD(32, 24) and ρM (D1) = ρM (T 2
5,4) = 0.0029,

ρ2(D1) = k−1
kv−1ρ

2(T 2
5,4) = 4−1

4×6−1ρ
2(T 2

5,4) = 1.1217 × 10−6. Comparing to the nearly orthogonal

LHD(32, 15) with ρM = 0.0191 and ρ2 = 2 × 10−5 in [18], D1 can accommodate more factors and

has lower values of ρM and ρ2.

(2) Similarly, let D2 = AT2, then D2 is an LHD(32, 30) with ρM (D2) = ρM (T 2
5,5) = 0.0938 and

ρ2(D2) = 6.6207× 10−4.

Corollary 3. Suppose n = qd, where q is a prime and d � 2 is an integer, then an orthogonal

LHD(n, k) exists, where k = � qd−1
d(q−1)�.

Proof. From [26, 28], a saturated D(qd, qm) design A with m = (qd − 1)/(q − 1) can be parti-

tioned into k = � qd−1
d(q−1)� full factorial sets and a remainder part, without loss of generality, assume

A = (A1, . . . , Ak, S), where Ai for i = 1, . . . , k are full factorial sets. Let A0 = (A1, . . . , Ak), T =

diag{T q
d,c, . . . , T

q
d,c} with T q

d,c repeating k times in the diagonal, and D0 = A0T = (A1T
q
d,c, . . . , AkT

q
d,c).
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We take one column from every part AiT
q
d,c to form a design D, then from Theorem 4 and Lemma 1, D

is an orthogonal LHD(n, k).

5 Discussions and concluding remarks

In this paper, we propose some methods to construct column-orthogonal designs and nearly column-

orthogonal designs by rotating orthogonal arrays. The methods are easy to implement, and the resulting

column-orthogonal designs keep the estimates of the linear effects of all factors uncorrelated with each

other, sometimes even uncorrelated with the estimates of all quadratic effects and bilinear interactions,

along with flexible and economical run sizes. In addition, in each rotation part, the resulting designs also

preserve the geometric configuration of orthogonal arrays, thus have good space-filling properties. It is

seen from our methods in the previous sections that if the orthogonal arrays have no repeated runs, so

do the constructed designs. Therefore, such designs can be used for computer experiments. In addition,

our asymmetrical column-orthogonal designs and nearly column-orthogonal designs are useful if one feels

the need of studying some factors in more detail than others (cf. [4]).

Note that the column-orthogonality and uniformity do not necessarily agree with each other, i.e., the

uniformity does not guarantee that the design possesses low correlations among its effects, and vice versa.

The proposed designs can guarantee the nice column-orthogonality properties, and thus are optimal in

terms of the column-orthogonality criteria as we have discussed, but they may be not optimal under the

uniformity criteria. Now let us see an illustrative example.

Example 8. (Column-orthogonal design vs uniform design) Table 6 shows two designs with 12 runs

and 5 factors, each having 4 levels, where the COD(12, 45) is obtained by taking the 1st, 3rd, 5th, 7th

and 9th columns from the COD(12, 410) in Table 1, and the uniform design D(12, 45) is taken from the

Appendix of [13, p. 237], which was obtained by minimizing the uniformity measure of CL2-discrepancy

(cf. [15]). We can see that the COD(12, 45) is slightly worse than the uniform design D(12, 45) under the

CL2-discrepancy, but is better in terms of both ρM and ρ2, which are zero.

Further, with a large factor-to-run ratio, these new designs are economical and suitable for factor

screening.

Example 9. Consider a screening experiment with 12 treatment factors each having 16 levels, and

two block factors each having 4 levels. The scientist wants to reduce the cost of this experiment and

plans to use a 16-run design. How to design a 16-run experiment and make sure that the estimates of

the linear effects of all factors (including treatment factors and block factors) are uncorrelated with each

other? The smallest run size of an orthogonal array for this problem is at least 256, which does not

satisfy the run size constraint. Here, the scientist can use the COD(16, 161242) constructed in Example 4

for conducting the experiment, and the active factors can then be easily identified under the first-order

model, since the estimates of the linear effects of all factors are uncorrelated with each other under this

model.

Table 6 COD(12, 45) and uniform design D(12, 45)

COD(12, 45) Uniform design D(12, 45)
3 3 3 3 3 −3 −1 1 −3 −3

−1 −1 3 −3 −1 −3 1 −3 3 −1
Optimal −3 1 3 1 −3 −3 3 −1 −1 3

1 −1 −1 3 −3 −1 −3 −3 −3 1
−1 −3 1 3 1 −1 −1 3 3 3

design −3 1 −1 −1 3 −1 3 3 1 −3
−3 −1 −3 1 3 1 −3 −1 3 −3
1 −3 1 −1 −1 1 1 −1 −1 −1

matrix 3 −3 −1 −3 1 1 1 1 1 1
3 1 −3 1 −1 3 −3 3 −1 −1

−1 3 −3 −1 −3 3 −1 −3 1 3
1 3 1 −3 1 3 3 1 −3 1

ρM 0 0.0400

ρ2 0 0.0160
CL2 0.2320 0.2277
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As we know, supersaturated designs are popularly used for factor screening. Such designs are mainly

evaluated under the E(s2) criterion for the two-level case, and the E(f
NOD

) and χ2 criteria for the multi-

level and mixed-level cases. There are also several other criteria for evaluating supersaturated designs.

Please refer to [11, 17, 21, 22] for the definitions and some reviews on these criteria. Some most recent

developments on such designs can be found in, e.g., [20, 23, 24, 30]. But we should note that the E(s2)

is only defined for two-level designs, which is equivalent to the ρ2 criterion in this case, while other

criteria like E(f
NOD

) and χ2 are defined for measuring the near orthogonality of a design combinatorially.

The factors evaluated under these criteria are usually considered to be qualitative ones, while those in

a column-orthogonal design or nearly column-orthogonal design are treated as quantitative ones. If the

factors here are treated as qualitative ones, then almost all the resulting designs are supersaturated.
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Appendix. Proof of Theorem 1

(1) Since A is an orthogonal array with centered levels, we have A′A = aIk, where a is the square norm

of any column of A. Then from the column-orthogonality of Rm,q, we know the conclusion is true.

(2) Let D = (dij), A = (xij), Rm,q = (rij). Then from D = ARm,q, we have

n∑
i=1

dijdikdil =

n∑
i=1

m∑
s=1

xisrsj

m∑
u=1

xiuruk

m∑
v=1

xivrvl

=

n∑
i=1

m∑
s=1

m∑
u=1

m∑
v=1

xisrsjxiurukxivrvl

=

m∑
s=1

m∑
u=1

m∑
v=1

n∑
i=1

xisxiuxivrsjrukrvl

=

m∑
s=1

m∑
u=1

m∑
v=1

rsjrukrvl

n∑
i=1

xisxiuxiv .

For the three numbers s, u, v, there are the following three cases:

(i) s = u = v, then
∑n

i=1 xisxiuxiv =
∑n

i=1 x
3
is;

(ii) only two of s, u, v are equal, without loss generality, suppose s = u �= v then
∑n

i=1 xisxiuxiv =∑n
i=1 x

2
isxiv;

(iii) s, u, v are all different from each other.

Since A is an orthogonal array with strength t � 3 and centered levels (2i−q−1)/2 for odd q or (2i−q−1)

for even q, i = 1, . . . , q, we can easily see that
∑n

i=1 xisxiuxiv = 0 for any of these three cases. Thus the

conclusion is true.


