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0 Introduction

All schemes and varieties will be assumed to be defined over an algebraically closed field k of characteristic

zero. We recall that a complete pentalateral in P
2 is a configuration consisting of five lines, three by three

linearly independent, together with the ten double points of their union, which are called vertices of the

pentalateral. A nonsingular Lüroth quartic is a nonsingular quartic plane curve containing the ten vertices

of a complete pentalateral. Such curves fill an open set of an irreducible, SL(3)-invariant, hypersurface

L ⊂ P
14. The (possibly singular) quartic curves parametrized by the points of L will be called Lüroth

quartics. In [16] we have computed that L has degree 54, by reconstructing a proof published by Morley

in 1919 [14]. Another proof has been given by Le Potier and Tikhomirov in [13].

In this paper we put together the projective techniques of [14] and [16] with the cohomological tech-

niques in [13], and we prove some new results about the Lüroth hypersurface. We refer to the introduction

of [16] for an explanation of the connection of this topic with moduli of vector bundles on P
2.

The locus of singular Lüroth quartics has been considered in [14] and [13]. It is obtained as the

intersection between the Lüroth hypersurface of degree 54 and the discriminant of degree 27. It has two

irreducible components L1 and L2, both of codimension 2 in P
14, and it is known that deg(L2)red = 27 ·15

[13, Corollary 9.4]. We compute the degree of L1, a question left open in [13] (end of 9.2). Indeed we

prove the following theorem.

Theorem 0.1. The intersection between the Lüroth hypersurface L and the discriminant D is trans-

verse along L1, and
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(i) degL1 = 27 · 24;
(ii) L2 is non-reduced of degree 27 · 30.
We warn the reader that our (L2)red corresponds to L2 in [13].

An interesting aspect of the geometrical construction in [16] is that any smooth cubic surface S defines in

a natural way 36 planes, which we called Cremona planes, one for each of the 36 double-six configurations

of lines on S. Their main property is that the ramification locus of the projection πP centered at p ∈ S

is a Lüroth quartic if and only if p belongs to any of the Cremona planes.

We describe the Cremona planes on a nonsingular cubic surface by pure projective geometry. To give

the flavour of this construction we state the following result.

Theorem 0.2. Let S be a nonsingular cubic surface. Fix a double-six on S. Let �s, s = 1, . . . , 15, be

the 15 remaining lines. For each 1 � s � 15 consider the three planes Πs,h, h = 1, 2, 3, containing �s
such that S ∩Πs,h consists of �s and of two residual lines not belonging to the double-six. Let Ps,h be the

intersection point of the two residual lines. Then the 15 points �s ∩ 〈Ps,1, Ps,2, Ps,3〉, s = 1, . . . , 15, lie on

a plane, which is the Cremona plane associated with the double-six.

Theorem 3.6 contains the statement of this theorem with additional informations on the involutory

and non-involutory points. They give a geometrical explanation of the reducibility of L ∩D (see Propo-

sition 3.1).

We conclude with the statement of non-existence of an invariant of degree 15 (Proposition 3.7) vanishing

on (L2)red, which we have obtained by a computer computation. This means that (L2)red is not a

complete intersection, and we relate this fact with the last sentence in Morley’s paper [14]. This leads

to a reconstruction of some speculations of Morley about the (still unknown) explicit form of the Lüroth

hypersurface. Our result implies that these speculations are partially wrong, but with a slight correction

they might become true.

In 1967 Shioda [17] found the Hilbert series for the invariant ring of plane quartics. From his formula

it follows that the space of invariants of degree 54 has dimension 1165. This shows the difficulty to find

the explicit expression (or the symbolic expression) of the Lüroth invariant, which, to the best of our

knowledge, is still unknown. In the last section we compute the class in M3 of the divisor of Lüroth

quartics.

The content of the paper is as follows. In the first section we summarize some results from [16] on

Cremona hexaedral equations and Cremona planes on a cubic surface. We recall the purely geometric

construction of the involutory points. In the second section we summarize the well-known facts about

the description of plane quartics as symmetric determinants with linear entries. We recall how Lüroth

quartics can be found in this description (they are the image of a pfaffian hypersurface Λ, which is an

invariant of degree 6) and, following [13] and [9], we also describe how the two components of singular

Lüroth quartics can be found. The third section contains our new results, the main ones being described

above, and their proofs. The last section is devoted to the computation of the class [L] of the divisor in

M3 parametrizing Lüroth quartics, as well as to some related remarks.

We thank Igor Dolgachev for calling to our attention the reference [9] and Carel Faber for a helpful

conversation with the second author about the topics of the last section.

1 Cremona hexahedral equations and Cremona planes

Recall that a double-six of lines on a nonsingular cubic surface S ⊂ P
3 consists of two sets of six lines

Δ = (A1, . . . , A6;B1, . . . , B6) such that the lines Aj are mutually skew as well as the lines Bj ; moreover

each Ai meets each Bj except when i = j.

In P
5 with coordinates (Z0, . . . , Z5) consider the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

Z3
0 + Z3

1 + Z3
2 + Z3

3 + Z3
4 + Z3

5 = 0,

Z0 + Z1 + Z2 + Z3 + Z4 + Z5 = 0,

β0Z0 + β1Z1 + β2Z2 + β3Z3 + β4Z4 + β5Z5 = 0,

(1)
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where the βs’s are general constants. These equations define a nonsingular cubic surface S in a P
3

contained in P
5 and are called Cremona hexahedral equations of S, after [6].

For any choice of two disjoint pairs of indices {i, j} ∪ {k, l} ⊂ {0, . . . , 5}, the equations Zi + Zj =

Zk + Zl = 0 define a line contained in S. There are 15 such lines and the remaining 12 determine a

double-six of lines on S. Therefore the equations (1) define a double six on S. More precisely we have

the following:

Theorem 1.1. Each system of Cremona hexahedral equations of a nonsingular cubic surface S defines

a double-six of lines on S. Conversely, the choice of a double-six of lines on S defines a system of Cremona

hexahedral equations (1) of S, which is uniquely determined up to replacing the coefficients (β0, . . . , β5)

by (a+ bβ0, . . . , a+ bβ5) for some a, b ∈ k, b �= 0.

We refer to [8, Subsection 9.4], for the proof. We need to point out from [16, Corollary 4.2], the

following:

Corollary 1.2. To a pair (S,Δ) consisting of a nonsingular cubic surface S ⊂ P
3 and a double-six of

lines Δ on S, there is canonically associated a plane Ξ ⊂ P
3 which is given by the equations

⎧
⎪⎪⎨

⎪⎪⎩

Z0 + Z1 + Z2 + Z3 + Z4 + Z5 = 0,

β0Z0 + β1Z1 + β2Z2 + β3Z3 + β4Z4 + β5Z5 = 0,

β2
0Z0 + β2

1Z1 + β2
2Z2 + β2

3Z3 + β2
4Z4 + β2

5Z5 = 0,

where the coefficients β0, . . . , β5 are those appearing in the Cremona equations of (S,Δ).

Definition 1.3. The plane Ξ ⊂ P
3 will be called the Cremona plane associated with the pair (S,Δ).

The link with the Lüroth quartics is given by the following.

Theorem 1.4. Let p ∈ S be a point. The projection from p defines a rational double covering

πP : S �����
P
2 ramified over a plane quartic. The ramification curve is a Lüroth quartic if and only if

p belongs to any of the Cremona planes.

Proof. See the Remark 10.7 and Theorem 6.1 of [16].

There is a second description of the Cremona planes, by means of the involutory points. In order to

state it, we give, following [16], a geometric construction of the involutory points. Consider two skew lines

A,B ⊂ S. Denote by f : A → B the double cover associating with p ∈ A the point f(p) := TpS∩B, where

TpS is the tangent plane to S at p. Define g : B → A similarly. Let p1, p2 ∈ A (resp. q1, q2 ∈ B) be the

ramification points of f (resp. g). Consider the pairs of branch points f(p1), f(p2) ∈ B, g(q1), g(q2) ∈ A,

and the new morphisms

f ′ : A → P
1, g′ : B → P

1

defined by the conditions that g(q1), g(q2) are ramification points of f ′ and f(p1), f(p2) are ramification

points of g′. Let Q1 + Q2 (resp. P1 + P2) be the common divisor of the two g12’s on A (resp. on B)

defined by f and f ′ (resp. by g and g′). The points

P̄ = g(P1) = g(P2) ∈ A, Q̄ = f(Q1) = f(Q2) ∈ B

are called the involutory points (relative to the pair of lines A and B).

Note that each line A ⊂ S contains 16 involutory points, which correspond to the 16 lines B ⊂ S which

are skew with A, and they are distinct (see the proof of Proposition 6.3 of [16]).

Let P̄i ∈ Ai, Q̄i ∈ Bi be the involutory points relative to the pair Ai and Bi. We obtain twelve points

P̄1, . . . , P̄6, Q̄1, . . . , Q̄6 ∈ S,

which are canonically associated with the double-six Δ.

Theorem 1.5. For any double-six Δ there is a unique plane Ξ ⊂ P
3 containing the involutory points

P̄1, . . . , P̄6, Q̄1, . . . , Q̄6.
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Moreover Ξ coincides with the Cremona plane associated with the pair (S,Δ).

The 36 Cremona planes obtained in this way are distinct.

Proof. See [16, Theorem 6.1 and Proposition 6.3].

2 The symmetric representation of Lüroth quartics

Let Q0, Q1, Q2 be three linearly independent quadrics in P
3 = P(W ). They generate a net of quadrics

〈Q0, Q1, Q2〉 whose base locus, in general, consists of eight points in general position. We can parametrize

any net of quadrics by the points of P2 = P(V ), and as such it can be seen as an element f ∈ P(V ⊗S2W ).

The symmetric determinantal representation of the quadrics of the net gives a dominant rational map

δ : P(V ⊗ S2W ) ��� P(S4V ) (see [8]). In [20] Wall studied the map δ in the setting of invariant theory.

He proved that the non-semistable points for the action of SL(W ) on P(V ⊗ S2W ) are exactly given by

the locus Z(δ) where δ is not defined.

There is a factorization through the GIT quotient

P(V ⊗ S2W )ss

π

��

δ

���������������

P(V ⊗ S2W )//SL(W )
g �� P(S4V ),

where g is generically finite of degree 36 and P(V ⊗ S2W )//SL(W ) parametrizes pairs (B, t) consisting

of a plane quartic B and an even theta-characteristic t on it.

Consider the hypersurface Λ ⊂ P(V ⊗ S2W ) of degree 6 consisting of the nets 〈Q0, Q1, Q2〉 satisfying
the equation:

Pf

⎡

⎢
⎢
⎣

0 Q0 −Q1

−Q0 0 Q2

Q1 −Q2 0

⎤

⎥
⎥
⎦ = 0,

where we identify each quadric Qi with its corresponding symmetric matrix. It can be shown [3,19] that

a net belongs to Λ if and only if Q0, Q1, Q2 are the polar quadrics of three points with respect to a cubic

surface in P
3. It follows (see [3, Section 4]) the classical fact that all Lüroth quartics can be obtained

as plane sections of the Hessian of a cubic surface, and conversely every such plane section is a Lüroth

quartic.

In [15, Section 4], it is shown that Λ is the 5-secant variety of P(V ) × P(W ) embedded with O(1, 2),

and this fact is used to give a new proof of the Lüroth theorem.

Let L ⊂ S4(V ) be the Lüroth invariant of degree 54. The map δ is constructed as the determinant of

a 4× 4 symmetric matrix, hence the entries of δ have degree four in the 30 indeterminates of V ⊗ S2W ,

so that δ∗L has degree 216 as a hypersurface in P(V ⊗ S2W ). The crucial fact, for our purposes, is that

δ∗L contains Λ as an irreducible component (see for example [15, Proposition 6.3(ii)]).

Then g−1(L) decomposes into two irreducible components P and P̃ , both dominating L, with degree

1 and 35 respectively, and P generically parametrizes the pairs (B, t) where t is the pentalateral theta-

characteristic on B (see Remark 10.7 of [16]). In particular, g has a rational section over L.
There are two other classically known invariants of nets of quadrics with respect to SL(V )× SL(W ),

nicely reviewed by Gizatullin in [9]. The tact-invariant J has degree 48 and vanishes if and only if two

of the eight base points of the net coincide. The invariant I of degree 30 vanishes when the net contains

a quadric of rank less than or equal to 2.

Let D be the discriminant invariant, which is irreducible of degree 27; then δ∗D is an invariant of

degree 108 of the nets of quadrics. Salmon proved the beautiful identity (up to scalar constants)

δ∗D = I2J. (3)
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It can be interpreted as saying that there are two ways to get a singular quartic as a symmetric determi-

nant. This is interesting when applied to Lüroth quartics. The singular Lüroth quartics are the elements

of L ∩ D. In [13, Section 9], it is shown that this locus has two irreducible components L1 and L2, so

that we have necessarily

L1 = δ(Λ ∩ {J = 0}) (L2)red = δ(Λ ∩ {I = 0})

(see Proposition 3.1). To connect our description with the setting of [13] it is enough to note that the

geometric quotient of Λ by SL(W ) is isomorphic to a compactification P of the moduli space M(0, 4) of

rank 2 stable bundles on P
2 with c1 = 0 and c2 = 4 and the restriction of g to M can be identified with

the Barth map (see [15, Section 8]).

The fact that the locus of singular Lüroth quartics consists of two irreducible components was known

also to Morley.

The 36 elements of the g-fiber over a general point of D are of two types: there are 16 points in

π({J = 0}) and 10 double points in π({I = 0}). This decomposition corresponds to the two types of even

theta-characteristics on a quartic nodal curve: 16 of them are represented by invertible sheaves, and 10

by torsion-free non-invertible sheaves, each counted with multiplicity two (see [9, Remark 10.1] and [10]).

3 The main results and their proofs

Consider the projective bundle π : P(Q) → P
3, where Q = TP3(−1) is the tautological quotient bundle.

For each z ∈ P
3 the fibre π−1(z) is the projective plane of lines through z. Also consider the projective

bundle β : P(S4Q∨) → P
3. For each z ∈ P

3 the fibre β−1(z) is the linear system of quartics in π−1(z).

The Picard group of P = P(S4Q∨) is generated by H = OP(1) and by the pullback F of a plane in P
3.

Let L̃ ⊂ P(S4Q∨) be the β-relative hypersurface of Lüroth quartics. It is invariant under the natural

action of SL(4) on P(S4Q∨), and in [16] we showed that L̃ = 54H − 72F . Moreover every invariant of a

plane quartic of degree d gives a covariant of the cubic surface of degree 2d
3 (see [16, Remark 8.2]).

Consider also the relative invariant subvarieties L̃1, L̃2 and D̃ in the projective bundle P(S4Q∨) on P
3.

For every smooth cubic surface S we have the projection P(S4Q∨)|S
β−→S and have defined the section

s : S → P(S4Q∨)|S associating with p ∈ S the branch curve of the projection from p. It is well-known

that such branch curve is singular if and only if p belongs to one of the twenty-seven lines. Hence s∗(D̃)

consists of the divisor of the twenty-seven lines, with multiplicity two, cut indeed by a covariant of S of

degree 18, which is the square of the classical covariant of degree 9 cutting the lines.

In Theorem 1.4 we have proved that s∗(D̃ ∩ L̃) consists of the intersection of the divisor s∗(D̃) with

the 36 Cremona planes. This is a zero dimensional scheme, consisting of two parts: the involutory points

(see Theorem 1.5) and the non-involutory points. By the above, its length is given by

degD · degL ·
(
2

3

)2

· 3 = 27 · 54 · 4
3
= 27 · 72.

Therefore on every line on S the scheme s∗(D̃∩L̃) has length 72, and multiplicity greater than or equal to

2 at each point. It is supported on the 16 involutory points and on less than or equal to 20 non-involutory

points.

Proposition 3.1. (i) Projecting S from an involutory point of s∗(D̃∩ L̃) we get a branch quartic in

L1 (corresponding to the tact-invariant J).

(ii) Projecting S from a non-involutory point of s∗(D̃∩ L̃) we get a branch quartic in L2 (corresponding

to the invariant I).

(iii) On each line of S there are exactly 10 non-involutory points, each counts with multiplicity four in

s∗(D̃∩ L̃).
Proof. By the Salmon identity (3), the two types of points correspond to the vanishing of the two

invariants I and J . We have just to distinguish which is the type obtained by each invariant. A check on
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the degrees (6048 = 20
16 ) suffices to prove (i) and (ii). In order to prove (iii), consider that in the Salmon

identity (3) the invariant I appears with exponent two, and this implies that the non-involutory points

have to be double ones, that is there are 10 distinct non-involutory points on each line, and at each of

these points two Cremona planes meet.

Proposition 3.1 explains why L2 is non-reduced. We will construct directly the ten non-involutory

points in Theorem 3.6.

Remark 3.2. It appears that the 36 Cremona planes carry an interesting combinatorial configuration.

Each of them has 27 marked points given by the intersection with the lines on the cubic surface, 12 of

these points are involutory points (corresponding to the twelve lines of the corresponding double-six, see

Theorem 1.5) and the other 15 belong respectively to other 15 Cremona planes. It is natural to expect

that this configuration of 36 planes can be obtained by cutting with a linear space the 36 hyperplanes

in P
5 considered at 6.1.5.1 of [12], related to the Weyl group of the exceptional group E6, which have

exactly the same properties.

Remark 3.3. The two components of the locus of singular Lüroth quartics can be also interpreted

analytically as follows. Consider the general equation

4∑

k=0

λk�0 · · · �̂k · · · �4 = 0

of a Lüroth quartic with inscribed pentalateral {�0, . . . , �4}, considered in (21) of [16]. Quartics in L2 have

three of the five lines �k which are concurrent at the same point. This follows easily from the identity:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�′1 + �′0 �′0 �′0 �′0
�′0 �′2 + �′0 �′0 �′0
�′0 �′0 �′3 + �′0 �′0
�′0 �′0 �′0 �′4 + �′0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

λ0λ1λ2λ3λ4

4∑

k=0

λk�0 · · · �̂k · · · �4,

where �′k := �k
λk

. Indeed, if �0, �1, �2 are concurrent at the same point, then the matrix evaluated at this

point has rank two. This condition corresponds to the vanishing of the invariant I, as already remarked in

Section 2. Quartics in L1 can be obtained for any given pentalateral, by a convenient choice of constants

λi. Summarizing : by specializing the �k’s we obtain quartics in L2, and by specializing the λk’s we obtain

quartics in L1.

Remark 3.4. The referee pointed out another geometrical interpretation of the two components of

the locus of singular Lüroth quartics. We saw in Section 2 that Lüroth quartics can be obtained as

plane sections of the Hessian of a cubic surface. The tangent plane sections at nonsingular points of the

Hessian cut quartics in L1, while the plane sections meeting the Hessian at one of its 10 singular points

cut quartics in L2. The referee also asked if the fact that the dual of the Hessian has degree 16 has

anything to do with the existence of 16 involutory points on each line of the cubic surface. We do not

know the answer to this intriguing question.

Proof of Theorem 0.1. We recall that s∗(D̃) consists of the divisor of the 27 lines, with multiplicity two.

The scheme s∗(L̃1) is supported on the involutory points, and its length (on each line) can be computed

as the difference between the length of s∗(D̃ ∩ L̃) and the length of s∗(L̃2) (both on a line); precisely

it is equal to 72 − 40 = 32. Since the 16 involutory points on each line are distinct (see the proof of

Proposition 6.3 in [16]), it follows that s∗(L̃1) consists of 16 points of length 2, in particular s∗(L̃) is

transversal to the lines of S at the involutory points, which implies formula (i). Then (ii) follows easily

from the computation 27 · 54− 27 · 24 = 27 · 30.
Remark 3.5. From Theorem 0.1 it follows that the Barth map is not ramified over L1, which answers

a question posed originally by Peskine, see [13, 6.3 and 9.2].

Part (ii) of the following theorem contains Theorem 0.2 of the introduction, with additional information.

Theorem 3.6. Let S be a nonsingular cubic surface.
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(i) Given a line � on S, consider the five planes Πi, i = 1, . . . , 5, containing � and such that S ∩ Πi

consists of � and of two residual lines. Let Pi be the intersection point of the two residual lines. For every

choice of distinct points Pi, Pj , Pk ∈ {P1, . . . , P5} let Πijk = 〈Pi, Pj , Pk〉 be the plane they span. Then

{� ∩ Πijk : 1 � i < j < k � 5}

are the ten non-involutory points on �.

(ii) Fix a double-six on S. Let �s, s = 1, . . . , 15, be the 15 remaining lines. For each 1 � s � 15 consider

the three planes Πs,h, h = 1, 2, 3, containing �s such that S ∩Πs,h consists of �s and of two residual lines

not belonging to the double-six. Let Ps,h be the intersection point of the two residual lines. Then the 15

points �s ∩ 〈Ps,1, Ps,2, Ps,3〉, s = 1, . . . , 15, lie on a plane, which is the Cremona plane associated to the

double-six. In particular, the points �s ∩ 〈Ps,1, Ps,2, Ps,3〉, s = 1, . . . , 15, are non-involutory points on �s.

Proof. It is enough to prove (ii). Write the equation of S in Cremona form (1) and take �s to be

Z0 + Z1 = Z2 + Z3 = Z4 + Z5 = 0. The three pairs of lines coplanar with �s are:

Z0 + Z1 = Z2 + Z4 = Z3 + Z5 = 0, Z0 + Z1 = Z2 + Z5 = Z3 + Z4 = 0,

Z2 + Z3 = Z0 + Z4 = Z1 + Z5 = 0, Z2 + Z3 = Z0 + Z5 = Z1 + Z4 = 0,

Z4 + Z5 = Z0 + Z2 = Z1 + Z4 = 0, Z4 + Z5 = Z0 + Z4 = Z1 + Z2 = 0.

The intersection points of the three pairs are respectively

Ps,1 = (−(β2 + β3 − β4 − β5), β2 + β3 − β4 − β5, β0 − β1, β0 − β1,−(β0 − β1),−(β0 − β1)),

Ps,2 = (β2 − β3, β2 − β3,−(β0 + β1 − β4 − β5), β0 + β1 − β4 − β5,−(β2 − β3),−(β2 − β3)),

Ps,3 = (β4 − β5, β4 − β5,−(β4 − β5),−(β4 − β5),−(β0 + β1 − β2 − β3), β0 + β1 − β2 − β3).

The plane spanned by the three points cuts �s at the point

− (β2 − β3)(β4 − β5)Ps,1 + (β0 − β1)(β4 − β5)Ps,2 − (β0 − β1)(β2 − β3)Ps,3

=

(
β2 + β3 − β4 − β5

β0 − β1
, −β2 + β3 − β4 − β5

β0 − β1
, −β0 + β1 − β4 − β5

β2 − β3
,

β0 + β1 − β4 − β5

β2 − β3
,
β0 + β1 − β2 − β3

β4 − β5
, −β0 + β1 − β2 − β3

β4 − β5

)

and a direct computation shows that this point belongs to the Cremona plane β2
0Z0 + β2

1Z1 + β2
2Z2 +

β2
3Z3 + β2

4Z4 + β2
5Z5 = 0. Since this computation can be repeated for all the 15 lines not belonging to

the double six corresponding to the given Cremona equations, we obtain the conclusion.

There is a more conceptual proof of the above theorem obtained by rephrasing an argument of Le

Potier-Tikhomirov in the geometry of the cubic surface, and indeed we discovered it in this way. In [13],

Proposition 7.1, they consider a nodal quartic with its six tangent lines passing through the node. It is a

classical fact (see e.g., [2, p. 279]) that the six contact points lie on a conic. If the quartic is in L2 then

this conic is singular (and also the converse holds). On the cubic surface S, when P belongs to a line �

in S, the ramification quartic of the projection centered at P has the six bitangents passing through the

node corresponding to the five planes Πi and to the tangent plane at P itself. The contact points of the

six bitangents correspond to the lines 〈PPi〉 and the sixth one corresponds to the tangent of the residual

conic cut by the tangent plane at P . Hence these six lines lie in a quadric cone with vertex at P . This

quadric cone splits into two planes when three contact points lie on a line and this in turn corresponds

to the fact that P, Pi, Pj , Pk lie on the same plane. So P = � ∩ 〈Pi, Pj , Pk〉 is a non-involutory point, as

in the proof given above.

We now come to the question of giving an explicit expression of the Lüroth invariant L. We have used

the description of invariants of plane quartics given in [4]. From this description we have shown, with a

brute force computer computation, that

Proposition 3.7. There is no invariant of degree less than or equal to 15 which vanishes on (L2)red.
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The existence of such an invariant was asked by Morley in the last paragraph of [14]. This is interesting

because from Proposition 3.7 it follows that (L2)red is a divisor on the Lüroth hypersurface which is not

cut by hypersurfaces. This makes it conceivable that there is an invariant I30 of degree 30 which vanishes

(doubly) on (L2)red, and that there is an invariant I24 of degree 24 which vanishes on L1.

Morley gives an explicit form of the restriction of the invariant of degree 24 to a nodal cubic surface,

assuming that it exists. But he does not show that his formula can be extended to all cubic surfaces, and

therefore he does not prove the existence of the invariant. If this invariant exists, then L1 is a complete

intersection. This might be true, but it has not yet been proved.

These speculations are important because they give a hint about a possible explicit description of the

Lüroth invariant. Morley suggested the form L = I27 ·I ′27+I24I
2
15 (up to scalar constants in the invariants

appearing in the formula) where I27 = D is the discriminant. By Proposition 3.7 this is not possible, but

still the expression L = I27 · I ′27 + I24I30 could be possible, and we leave its existence as a question.

This expression means that, modulo the discriminant, the Lüroth invariant is the product of the two

invariants I24 and I30. The computation of L could reduce in this case to smaller degree invariants. Let

us recall that the main result of Dixmier [7] states that every invariant of a plane quartics is algebraically

dependent on an explicit system of invariants of degrees up to 27.

Moreover, Morley asks if I ′27 is the discriminant too. This can be probably answered by a computational

analysis, which does not seem easy and we do not pursue here.

The following result says something about the singularities of the Lüroth hypersurface L:
Proposition 3.8. The Lüroth hypersurface L is not normal.

Proof. Consider the incidence relation:

L̃ :=

{

(B, {�0, . . . , �4}) :
{�0, . . . , �4} is a complete 5-lateral and B is an n.s.

quartic circumscribed to it

}

⊂ P
14 × (P2∨)(5)

and the projections:

L̃
q1

����
��

��
�� q2

������
����

�

P
14 (P2∨)(5).

Clearly q1(L̃) = L ⊂ P
14. L̃ is irreducible of dimension 14, and its nonsingular locus contains q−1

2 (U),

where U ⊂ (P2∨)(5) is the locus of strict pentalaterals (i.e., those having 10 distinct vertices). The fibre

q−1
1 (C) over a general [C] ∈ L is one-dimensional and irreducible, consisting of the 5-laterals which are

inscribed in C. But there is a class of nonsingular Lüroth quartics, the desmic quartics, such that q−1
1 (C)

is disconnected and each one of its component intersects q−1
2 (U) (see for example [3]). Consider the

morphism

q−1
2 (U) ��

P
14

and its Stein factorization:

q−1
2 (U) �� S υ ��

P
14 .

From the above description it follows that υ maps S birationally and dominantly to L, but it has

disconnected fibres over the locus of desmic quartics. From Zariski’s main theorem it follows that L is

not normal along the locus of desmic quartics. In particular the singular locus of L has codimension 1

in L.

4 The class of the Lüroth divisor in M3

Let M3 be the coarse moduli space of stable curves of genus 3. We will compute certain rational divisor

classes in Picfun(M3) ⊗ Q in terms of the Hodge class λ and of δ0, δ1, the classes of the boundary
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components Δ0,Δ1. Precisely, Δ0 generically parametrizes irreducible singular stable curves, and Δ1

generically parametrizes reducible stable curves.

The hyperelliptic locus H ⊂ M3 is a divisor whose class is

h = 9λ− δ0 − 3δ1.

For the proof see [11] and [18].

The discriminant D ⊂ P
14, being an SL(3)-invariant hypersurface of degree 27, admits a rational map

Φ : D ����� M3 . The closure of the image is a divisor D := Im(Φ) ⊂ M3. Since D contains the double

conics and the cuspidal curves, D contains H, Δ0 and Δ1. In [1] it is proved that D vanishes with

multiplicity 14 on double conics and with multiplicity 2 on cuspidal quartics. If we consider any test

curve intersecting double conics and cuspidal quartics transversely, we will have to perform a base change

in order to get stable reduction. Standard facts about stable reduction (see [11, Chapter 3.C]) imply that

the degrees of the base changes needed are respectively 2 and 6. It follows that [D] contains H and Δ1

with multiplicity 2 · 14 and 6 · 2 respectively. Therefore the class [D] is computed as follows:

[D] = 2 · 14[H ] + 6 · 2δ1 + δ0

= 28(9λ− δ0 − 3δ1) + 12δ1 + δ0

= 9(28λ− 3δ0 − 8δ1).

This formula can be easily tested and confirmed using the pencils considered in Exercise (3.166) of [11].

We define the divisor L ⊂ M3 of Luroth quartics, to be the closure of the locus of nonsingular Luroth

quartics.

Proposition 4.1. Let L ⊂ P
14 be the hypersurface of Luroth quartics. Then L does not contain the

loci of double conics and of cuspidal quartics. Moreover we have

[L] = 18(28λ− 3δ0 − 8δ1).

Proof. From Proposition 3.1 it follows that general quartics in L1 and in L2 can be obtained as branch

curves of projections from points belonging to a line � of a general cubic surface S. It is well-known

that such branch curves have one node, which is the projection of the line �, with principal tangents the

projections of the two planes containing � and such that the residual conic is tangent to �. Therefore

both L1 and L2 contain a nodal quartic. Since L ∩ D = L1 ∪ L2 has pure dimension 12, as well as the

locus of cuspidal quartics, it follows that this locus is not entirely contained in L.
For double conics we argue as follows. Consider an irreducible quartic C with a node O but otherwise

nonsingular. Then the six contact points of C with the tangents from O (which are the intersections

different from O of C with the first polar of O with respect to C) are on a conic θ, and this conic is

reducible if and only if C ∈ L2 (see [13, Section 7]). If the quartic C degenerates to a double conic 2ϑ

then ϑ is a component of the first polar of any of its points. This implies that ϑ is a degeneration of θ.

Then, since θ is reducible if C ∈ L2, it follows that C cannot degenerate to a double irreducible conic.

Therefore L2 does not contain the locus of double conics. Consider now a quartic C ∈ L1, such that

C /∈ L1 ∩L2. Then C is circumscribed to a 5-lateral having 10 distinct vertices (Remark 3.3). Therefore

C cannot be a double irreducible conic. In conclusion, L does not contain double irreducible conics.

Being SL(3)-invariant, L defines a divisor in M3, containing L, whose class is

[L] = 2[D],

because deg(L) = 54 = 2 deg(D). On the other hand, we have

[L] = [L]− ah− bδ1 = 2[D]− ah− bδ1,

where a, b are the multiplicities of L along the loci of double conics and of cuspidal quartics respectively.

From the first part of the proof it follows that a = b = 0. Therefore

[L] = 2[D] = 18(28λ− 3δ0 − 8δ1).
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In a similar vein one computes the class [Cat] of the catalecticant hypersurface to be:

[Cat] = 2(28λ− 3δ0 − 8δ1).

Note that 28λ − 3δ0 − 8δ1 is necessarily the class of the divisor defined by the SL(3) invariant of

(smallest) degree 3.
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19 Toeplitz E. Über ein Flächennetz zweiter Ordnung. Math Ann, 1877, 11: 434–463

20 Wall C T C. Nets of quadrics and theta-characteristics of singular curves. Philos Trans Roy Soc London Ser A, 1978,

289: 229–269



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


