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Abstract In this paper, we consider the following indefinite complex quadratic maximization problem: max-

imize zHQz, subject to zk ∈ C and zm
k = 1, k = 1, . . . , n, where Q is a Hermitian matrix with tr Q = 0, z ∈ Cn

is the decision vector, and m � 3. An Ω(1/ log n) approximation algorithm is presented for such problem.

Furthermore, we consider the above problem where the objective matrix Q is in bilinear form, in which case a
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approximation algorithm can be constructed. In the context of quadratic optimization, various

extensions and connections of the model are discussed.
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1 Introduction

Polynomial-time approximation algorithms for NP-hard problems via semidefinite programming (SDP)
have received much attention in the last decade, since, in several important cases, this approach leads to
significant improvements on the worst-case approximation ratios. The pioneering work along this direction
is the famous 0.87856 approximation algorithm of Goemans and Williamson [8] for the Max-Cut problem.
Nesterov [18] and Ye [23] obtained 2

π approximation algorithm for quadratic maximization problem with
a positive semidefinite objective matrix. Actually, the 2

π approximation result can also be derived from
the so-called real matrix cube theorem developed by Ben-Tal and Nemirovski in [3]. Alternatively, Alon
and Naor [1] demonstrated the 2

π approximation result via Rietz’s identity [19]. Moreover, the bound
2
π was proved to be essentially tight by Grothendieck [10], and Ben-Tal and Nemirovski [3] in different
settings.

Recently, Goemans and Williamson [9] proposed a randomized approximation algorithm, via complex
SDP relaxation, for solving the Max-3-Cut problem, which is formulated as a quadratic maximization
problem with complex-valued decision variables. In particular, they considered the following model:
maximize zHQz subject to z3

k = 1, k = 1, . . . , n, where Q is the Laplacian of the graph (hence positive
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semidefinite for a nonnegatively weighted graph). By a SDP relaxation and random hyperplane method,
Goemans and Williamson showed that the algorithm achieves a 0.836 approximation ratio. Recently,
Zhang and Huang [25] extended Goemans and Williamson’s model [9], where they first developed a closed-
form formula for computing the probability of a complex-valued normally distributed bivariate random
vector to be in a given angular region, and then applying this formula they obtained an approximation
ratio π

4 for the problem: maximize zHQz subject to |zk| = 1, k = 1, . . . , n, where Q is Hermitian positive
semidefinite. Similar to that with its real-case counterpart, in fact this π

4 approximation ratio can also be
obtained in two other ways: either by the so-called complex matrix cube theorem developed by Ben-Tal
et al. [4], or by the complex Grothendieck’s inequality approach developed by Haagerup [11]. However,
these approaches shed lights on the problem from very different angles. For the discrete version of the
model: maximize zHQz subject to zm

k = 1, k = 1, . . . , n, So et al. [21] obtained the m2(1 − cos 2π
m )/8π

approximation ratio based on an identity similar to Rietz’s identity. We obtained the same approximation
ratio in a later version of [25], by using the probability formula that we developed earlier.

So et al. [21] also considered the following problem: maximize zHQz subject to |zk| = 1, k = 1, . . . , n,
whereQ is a symmetric matrix with zero diagonal elements. They presented an Ω(1/ logn)-approximation
algorithm for such problems, and their result provides an alternative analysis of the algorithm in Charikar
and Wirth [6] for the (real) quadratic optimization problem. In fact, the Ω(1/ logn) also follows directly
from results of Nemirovski et al. [17] and Luo et al. [16]. However, algorithms and analysis in [21], [17]
and [16] are very different.

In this paper, we consider approximation algorithms for indefinite complex quadratic programming
with m-point constellation constraint. Specifically, we consider the following indefinite complex quadratic
maximization problem: maximize zHQz, subject to zk ∈ C and zm

k = 1, k = 1, . . . , n, where Q is a
Hermitian matrix with trQ = 0, z ∈ Cn is the decision vector, and m � 3. An Ω(1/ logn) approximation
algorithm is presented for such a problem in general. Furthermore, we consider the above problem where
the objective matrix Q is the bilinear form. We show that with the bilinear form of Q, a 0.7118

(
cos π

m

)2

approximation algorithm can be constructed. Various extensions and connections of the model, in the
context of quadratic optimization, are discussed.

This paper is organized as follows. In Section 2 we study the indefinite complex quadratic maximization
model with discrete decision variables. In Section 3, we introduce and study the bilinear maximization
problems.

Notation. We denote by ā the conjugate of a complex number a, by Arg z the argument of z, by |z|
the modulus of z, and by Cn the space of n-dimensional complex vectors. As a convention we assume
Arg z = 0 if z = 0. For a given vector z ∈ C

n, we denote zH the conjugate transpose of z, and Diag(z)
the n× n diagonal matrix with diagonal entries taken from z, and if Z is an n× n matrix, then diag(Z)
denotes an n-dimensional vector formed by the diagonal elements of Z. The space of n×n real symmetric
and the space of complex Hermitian matrices are denoted by Sn and Hn, respectively. For a matrix
Z ∈ Hn, we write Re Z and ImZ for the real part and imaginary part of Z, respectively. Matrix Z being
Hermitian implies that ReZ is symmetric and Im Z is skew-symmetric. We denote by Sn

+ (Sn
++) and

Hn
+ (Hn

++) the cones of real symmetric positive semidefinite (positive definite) and complex Hermitian
positive semidefinite (positive definite) matrices, respectively. The notation Z � 0 (� 0) means that Z
is positive semidefinite (positive definite). For two complex matrices Y and Z, their inner product Y •Z
is defined to be Re (tr Y HZ) = tr

[
(ReY )T(ReZ) + (ImY )T(ImZ)

]
, where “ tr ” denotes the trace of a

matrix and “ T ” denotes the transpose of a matrix.

2 Indefinite complex quadratic maximization

In this section, we consider the following (indefinite) complex quadratic maximization problem

(DQP) max zHQz

s.t. zk ∈ C and zm
k = 1, k = 1, . . . , n,
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where Q �= 0 is an indefinite Hermitian matrix with diag(Q) = 0, and m � 2 is an integer which is a part
of the input parameter of the problem. Clearly, the problem can be more explicitly written as

(DQP) max zHQz

s.t. zk ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , n,

where ω = ei 2π
m = cos 2π

m + i sin 2π
m .

We remark that, as |zk| = 1, the objective function value remains unchanged if we replace the condition
diag(Q) = 0 by tr Q = 0. Zhang and Huang [25] considered the approximation algorithms for the same
problem where Q is assumed to be Hermitian positive semidefinite. In that case, applications of such
models arise from solving the Max-3-Cut problem [9], the signal processing for wireless communications
[12, 15] and the radar signal processing [7].

We solve the following semidefinite programming as a relaxation of (DQP):

(SDP) max Q • Z
s.t. Zkk = 1, k = 1, . . . , n,

Z � 0.

This relaxed problem (complex SDP) can be solved in polynomial time up to any prescribed precision.
For practical solution methods, see e.g. [22].

In [21], So et al. considered approximation algorithms for solving the continuous version of (DQP):

(CQP) max zHQz

s.t. |zk| = 1, k = 1, . . . , n.

They proposed the following rounding scheme. Draw a random complex vector ξ ∈ Nc(0, Z∗), where
Nc(0, Z∗) stands for the n-dimensional complex-valued normal distribution with mean vector zero and
covariance matrix Z∗, and Z∗ is an optimal solution of (SDP). For k = 1, 2, . . . , n, let

yk :=

{
ξk/|ξk|, if |ξk| > T ,

ξk/T, if |ξk| � T ,
(1)

where T > 0 is an appropriately chosen parameter. Then, xk ∈ Cn is generated as follows:

xk =

{
eiArg yk , with probability (1 + |yk|)/2,
−eiArg yk , with probability (1 − |yk|)/2,

(2)

for k = 1, . . . , n.
This process produces a randomized feasible solution x ∈ C

n for (CQP). So et al. [21] established that

E[xHQx] � Ω(1/ logn)v(SDP).

Now our scheme is to generate a feasible solution z for (DQP), based on the solution x for (CQP)
as generated by the algorithm of So et al. [21]. Below we shall prove that the objective value of z is a
constant proportion of that of x, in expectation.

Let x be any feasible solution for (CQP). We now use xk to further randomly generate zk (indepen-
dently) as follows:

zk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, with probability (1 + Rexk)/m,
...

ωj, with probability (1 + Re (ω−jxk))/m,
...

ωm−1, with probability (1 + Re (ω−(m−1)xk))/m,

(3)
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where k = 1, . . . , n. Indeed we note that (1 + Re (ω−jxk))/m � 0 for all j = 0, 1, . . . ,m− 1, and that

m−1∑

j=0

1 + Re (ω−jxk)
m

= 1 +
1
m

Re
((m−1∑

j=0

ω−j

)
xk

)
= 1.

With regard to this second randomization process (from x to z), we have the following general result.

Lemma 2.1. For k �= l, it holds that

E[zkz̄l] =

⎧
⎨

⎩

E [RexkRe x̄l] , for m = 2,
1
4
E[xkx̄l], for m � 3.

Proof. The case m = 2 is easy to see, and is actually used in [20] and [12]. Now we consider the case
m � 3. Since for the random variables z and x it holds that

E[zkz̄l] = E[E[zkz̄l | (xk, xl)]], for k �= l,

we shall first compute E[zkz̄l | (xk = x0
k, xl = x0

l )]. For simplicity, we drop the superscript naughts of
x0

k and x0
l , and denote the expectation E[zkz̄l | (xk = x0

k, xl = x0
l )] simply by E[zkz̄l | (xk, xl)], and

Prob{zk = ωj , zl = ωj−i | (xk = x0
k, xl = x0

l )} by Prob {zk = ωj , zl = ωj−i | (xk, xl)}. We have

E[zkz̄l | (xk, xl)] = 1 ×
m−1∑

j=0

Prob {zk = ωj , zl = ωj | (xk, xl)} + · · ·

+ ωi ×
m−1∑

j=0

Prob {zk = ωj, zl = ωj−i | (xk, xl)} + · · ·

+ ωm−1 ×
m−1∑

j=0

Prob{zk = ωj , zl = ωj−m+1 | (xk, xl)}.

Obviously,

m−1∑

j=0

Prob {zk = ωj , zl = ωj−i | (xk, xl)} =
m−1∑

j=0

1 + Re (ω−jxk)
m

× 1 + Re (ω−j+ixl)
m

=
1
m

+
1
m2

m−1∑

j=0

Re (ω−jxk)Re (ω−j+ixl).

Thus we further have

E[zkz̄l | (xk, xl)] =
1
m

m−1∑

j=0

ωj +
1
m2

m−1∑

i=0

ωi

(m−1∑

j=0

Re (ω−jxk)Re (ω−j+ixl)
)

=
1
m2

m−1∑

j=0

Re (ω−jxk)
(m−1∑

i=0

ωiRe (ω−j+ixl)
)

=
1
m2

m−1∑

j=0

ω−jxk + ωj x̄k

2

(m−1∑

i=0

ω−j+2ixl + ωj x̄l

2

)

=
1

4m2

m−1∑

j=0

m−1∑

i=0

xkx̄l =
1
4
xkx̄l,

where we used the fact that
∑m−1

i=0 ω2i =
∑m−1

j=0 ω−2j = 0 form � 3. That is, E
[
zkz̄l | (xk = x0

k, xl = x0
l )
]

= 1
4x

0
kx

0
l . Therefore

E [zkz̄l] = E [E [zkz̄l | (xk, xl)]] =
1
4
E [xkx̄l] .

The lemma is proven. �
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Lemma 2.1 implies that E[zHQz] = 1
4E[xHQx] since the trace of Q is zero. Therefore we have the

following result.

Theorem 2.2. There is an approximation algorithm for (DQP) with approximation ratio Ω(1/ logn).

There is an immediate consequence of Lemma 2.1 regarding the relationship between the optimal
Max-2-Cut value and the optimal Max-3-Cut value for the same weighted graph. To be specific, consider
a weighted graph (undirected) with n nodes, and the weight on the edge (k, l) being wkl (k �= l). Let
Q be the Laplacian matrix of a weighted graph, i.e., Qkl = −wkl for k �= l, and Qkk =

∑
l�=k wkl,

k = 1, . . . , n. Let xk ∈ {1,−1}, k = 1, . . . , n, and zk ∈ {1, ei2π
3 , ei 4π

3 }. Let X = xxT and Z = zzH. It
is easy to verify that the corresponding 2-Cut value associated with x is 1

4Q •X , and the corresponding
3-Cut value associated with z is 1

3Q • Z. Let us denote the sum of all weights by W ∗ :=
∑

k<l wkl.
Now let x ∈ {1,−1}n correspond to the optimal Max-2-Cut solution. Based on x we again generate
z ∈ {1, ei2π

3 , ei 4π
3 } as described in the above procedure. Then we have

v(M3C) � 1
3
E[Q • Z] =

1
3

( n∑

k=1

Qkk + 2
∑

k<l

QklReE[zkz̄l]
)

=
1
3

(
2W ∗ +

1
2

∑

k<l

Qklxkxl

)

=
1
2
W ∗ +

1
3
v(M2C), (4)

where v(M3C) is the optimal Max-3-Cut value and v(M2C) is the optimal Max-2-Cut value. Note that
in the relation (4), no assumption is made regarding the signs of the weights.

We remark that the main ingredient to achieve an Ω(1/ logn)-approximation algorithm for (DQP) is
the new rounding procedure (3), and we believe that it could be of independent interest. Also we note
that as in the analysis of [18, 23, 24] for real continuous case, we can extend all the above results to the
following more general setting:

max zHQz

s.t. Arg zk ∈
{

0,
1
m

2π, . . . ,
m− 1
m

2π
}
, k = 1, . . . , n,

(|z1|2, . . . , |zn|2)T ∈ F ,

where Q ∈ Hn with diag(Q) = 0, and F is a closed convex set in R
n. The corresponding convex SDP

relaxation is
max Q • Z
s.t. diag(Z) ∈ F ,

Z � 0.

3 Discrete complex bilinear maximization

In this section, we shall consider the discrete complex bilinear maximization problem

max Re yHQz

s.t. yk, zl ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , p, l = 1, . . . , q,

or, equivalently, the following complex discrete quadratic program (DBLP):

(DBLP) max
1
2
(yH, zH)

(
0 Q

QH 0

)(
y

z

)

s.t. yk, zl ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , p, l = 1, . . . , q,
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where Q is a p × q complex matrix, and ω = cos(2π/m) + i sin(2π/m), m � 3. We also consider the
following continuous version of (DBLP),

(CBLP) max
1
2
(yH, zH)

(
0 Q

QH 0

)(
y

z

)

s.t. |yk| = |zl| = 1, k = 1, . . . , p, l = 1, . . . , q.

Clearly, the objective matrix of (DBLP) is Hermitian with zero diagonals. As its real counter-part,
(DBLP) is a subclass of (DQP) and (CBLP) is a subclass of (CQP). The SDP relaxation for (DBLP)
and (CBLP) is

(SDBLP) max
1
2

(
0 Q

QH 0

)

•W

s.t. Wkk = 1, k = 1, . . . , p+ q,

W � 0.

Lemma 4 of [21] implies that if Q �= 0 then v(SDBLP) > 0. Also, we note that in the summation form,
the objective function of (SDBLP) is

∑p
k=1

∑q
l=1 Re (Q̄klWk,p+l), and the objective function of (DBLP)

and (CBLP) is
∑p

k=1

∑q
l=1 Re (Q̄klykz̄l).

3.1 An approximation algorithm for the discrete complex bilinear program

Let W ∗ be an optimal solution for (SDBLP). We draw a random complex vector as
(

ξ

η

)

∈ Nc(0,W ∗),

and generate complex vectors y ∈ C
p and z ∈ Cq as follows:

for k = 1, . . . , p, assign yk := ωj if Arg ξk ∈ [ j
m2π, j+1

m 2π) with j ∈ {0, 1, . . . ,m− 1};

and
for l = 1, . . . , q, assign zl := ωj if Arg ηl ∈ [ j

m2π, j+1
m 2π) with j ∈ {0, 1, . . . ,m− 1}.

In [25] we have shown that

E[ykz̄l] =
m(2 − ω − ω−1)

8π2

m−1∑

j=0

ωj(arccos(−Re (ω−jW ∗
k,p+l)))

2 =: Fm(W ∗
k,p+l), ∀ k, l,

and Fm(z) = z for z ∈ {1, ω, . . . , ωm−1}. Furthermore, in Appendix of [25] we established that

Fm(z) =
m2(1 − cos 2π

m )
8π

z + φ1(z) + φ2(z)

with

φ1(z) =
m2(1 − cos 2π

m )
4π

∞∑

r=1

ar

2r+1∑

i=0

b2r+2−2iz
i(z̄)2r+1−i

and

φ2(z) =
m2(1 − cos 2π

m )
4π2

∞∑

s=0,t=0

asat

2s+2t+2∑

i=0

b2s+2t+3−2iz
i(z̄)2s+2t+2−i,

where

ar =
(2r)!

24r+1(r!)2(2r + 1)
, bk+1−2i =

(
k

i

)
m−1∑

j=0

ei( 2π
m ji).
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Note that
∑m−1

j=0 ei( 2π
m ji) is either 0 or m.

Let φ(z) := φ1(z) + φ2(z). If Z � 0 then Z̄ � 0. Moreover, the Hadamard product of Hermitian
positive semidefinite matrices remain positive semidefinite. This implies that if Z � 0 then φ(Z) � 0,
where φ(Z) := (φ(Zkl))n×n.

On the other hand, since Fm(1) = 1, we have 1 = m2(1−cos 2π
m )

8π + φ(1). Let βm := m2(1−cos 2π
m )

8π . We
conclude that (φ(W ∗))kk/(1 − βm) = 1, for k = 1, . . . , p+ q, and so, φ(W ∗)/(1 − βm) is itself a feasible
solution for (SDBLP). Now observe that for any feasible solution of (SDBLP), say W , it necessarily
follows that

−v(SDBLP) � 1
2

(
0 Q

QH 0

)

•W � v(SDBLP). (5)

The second inequality is obvious, by definition of the feasibility. To argue that the first inequality also
holds, we consider a decomposition of W � 0, i.e.,

W =

(
UH

V H

)

· (U, V ),

where the number of rows in UH is p, and the number of rows in V H is q. Let us now consider another
solution,

W̃ :=

(
UH

−V H

)

· (U,−V ) � 0.

Since the diagonal of W̃ remains the all-one vector, it is also a feasible solution for (SDBLP). Therefore

v(SDBLP) � 1
2

(
0 Q

QH 0

)

• W̃ = −1
2

(
0 Q

QH 0

)

•W,

and so the first inequality in (5) follows. Therefore,

1
2

(
0 Q

QH 0

)

• φ(W ∗)
1 − βm

� −v(SDBLP).

Now we are in a position to calculate the expected value of the randomized solution

E

[ p∑

k=1

q∑

l=1

Re (Q̄klykz̄l)
]

=
p∑

k=1

q∑

l=1

Re (Q̄klFm(W ∗
k,p+l)) =

p∑

k=1

q∑

l=1

Re (Q̄kl(βmW
∗
k,p+l + φ(W ∗

k,p+l)))

= βm × v(SDBLP) + (1 − βm) × 1
2

(
0 Q

QH 0

)

• φ(W ∗)
1 − βm

� βm × v(SDBLP) + (βm − 1) × v(SDBLP)

= (2βm − 1) × v(SDBLP) =
(
m2(1 − cos 2π

m )
4π

− 1
)
× v(SDBLP).

This leads to the following result.

Theorem 3.1. There is an approximation algorithm for (DBLP) with the ratio αm := m2(1−cos 2π
m )

4π − 1
for m � 3. In particular, α3 � 0.0742, α4 � 0.2732, α5 � 0.3746, α10 � 0.5198, and α100 � 0.5702.

Since (CBLP) is the limit of (DBLP) withm→ ∞, it is clear that if we let yk = eiArg ξk and zl = eiArg ηl

where (ξH, ηH)H is generated from Nc(0,W ∗) and W ∗ is an optimal solution of (SDBLP), then we will get
an approximation algorithm with an approximation ratio of limm→∞

m2(1−cos 2π
m )

4π − 1 = π
2 − 1 ≈ 0.5708.
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3.2 An improved approximation algorithm for the continuous bilinear problem

In this subsection, we shall show that this ratio 0.5708 can be improved if we further exploit particular
structures of Problem (CBLP). Our analysis below makes use of some of the results in our previous
paper [25], and also important insights presented in a paper by Haagerup [11].

According to the analysis in Subsections 3.1 and 3.3 of [25], if we generate yk = eiArg ξk and zl = eiArg ηl

with (ξH, ηH)H, then we have

E[ykz̄l] = lim
m→∞Fm(W ∗

k,p+l) (=: F (W ∗
k,p+l)) =

1
4π

∫ 2π

0

eiθ(arccos(−γ cos(θ − α)))2dθ

= eiα

∫ π/2

0

arcsin(γ sin θ) sin θdθ =
π

4
eiα

∞∑

r=0

crγ
2r+1,

where we denoted W ∗
k,p+l as γeiα and cr = ((2r)!)2

24r(r!)4(r+1) . For γ ∈ [−1, 1], let

ψ(γ) :=
∫ π/2

0

arcsin(γ sin θ) sin θdθ
(

= γ

∫ π/2

0

(cos θ)2
√

1 − (γ sin θ)2
dθ

)
.

In that notation, the transformation function F can be rewritten as

F (z) = eiArg zψ(|z|).

We remark here that the equation (3.9) in [25] coincides with Lemma 3.2 in [11], although we were not
aware of [11] at the time when we derived that equation.

Important properties of the function ψ(γ) are discussed in [11]. In particular, Theorem 2.1 of [11] states
that the inverse function ψ−1 : [−1, 1] → [−1, 1] of ψ exists and it can be expanded into an absolutely
convergent power series:

ψ−1(s) =
∞∑

r=0

b2r+1s
2r+1, s ∈ [−1, 1],

with b1 = 4
π and b2r+1 � 0 for all r � 1. Specifically, b3 = −8/π3, b5 = 0, b7 = −16/π7, b9 = −80/π9,

b11 = −480/π11, b13 = −3136/π13 and b2r+1 ∼ −4/((2r + 1) log(2r + 1))2 for r → ∞. Moreover, the
following result is shown in [11], which was used to bound the complex Grothendieck constant.

Lemma 3.2. There is a unique β ∈ (0, 1) for which
∑∞

r=0 |b2r+1|β2r+1 = 1 (i.e., ψ−1(β) = 8
πβ − 1),

with β ≈ 0.7118.

Now the inverse function of F (z) can be written as

F−1(z) = eiArg zψ−1(|z|) =
∞∑

r=0

b2r+1z
r+1z̄r.

For a given W ∈ Hp+q
+ with all-one diagonal elements, let us construct another Hermitian matrix

G(W ) ∈ Hp+q as follows:

Gk,p+l(W ) :=
4
π
βWk,p+l −

∞∑

r=1

|b2r+1|β2r+1(Wk,p+l)r+1(W̄k,p+l)r, k = 1, . . . , p, l = 1, . . . , q,

Gk1,k2(W ) :=
4
π
βWk1,k2 +

∞∑

r=1

|b2r+1|β2r+1(Wk1,k2)
r+1(W̄k1,k2)

r, k1, k2 = 1, . . . , p,

Gp+l1,p+l2(W ) :=
4
π
βWp+l1,p+l2 +

∞∑

r=1

|b2r+1|β2r+1(Wp+l1,p+l2)
r+1(W̄p+l1,p+l2)

r, l1, l2 = 1, . . . , q.

That is,

Gk,p+l(W ) = F−1(βWk,p+l), k = 1, . . . , p, l = 1, . . . , q,
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Gk1,k2(W ) =
8
π
βWk1,k2 − F−1(βWk1,k2), k1, k2 = 1, . . . , p,

Gp+l1,p+l2(W ) =
8
π
βWp+l1,p+l2 − F−1(βWp+l1,p+l2), l1, l2 = 1, . . . , q.

By the choice of β (see Lemma 3.2), we see that if W has all-one diagonal elements, then so is true for
the Hermitian matrix G(W ). Denote E := (eTp ,−eTq )T(eTp ,−eTq ) (� 0), where ep and eq are the all-one
vectors in R

p and R
q respectively. We can now write G(W ) in a uniform fashion as follows,

G(W ) =
4
π
βW +

∞∑

r=1

|b2r+1|β2r+1E ◦ (W )(r+1) ◦ (WT)(r),

where ‘A ◦ B’ stands for the Hadamard product between A and B, and A(r) is the r-th power in the
Hadamard sense, i.e.,

A(r) =

r
︷ ︸︸ ︷
A ◦A ◦ · · · ◦A .

If W � 0, then, by the fact that the Hadamard product of positive semidefinite matrices remains positive
semidefinite, we have G(W ) � 0. As a remark, we note here that combining this and the previous
observation (regarding the diagonals of G(W )) leads to the conclusion that if W is a feasible solution for
(SDBLP) then so is true for G(W ).

Suppose that W ∗ is an optimal solution of (SDBLP). Let us take yk = eiArg ξk and zl = eiArg ηl with
(ξH, ηH)H is randomly generated from Nc(0, G(W ∗)). In that case, the expected objective value is

E

[∑

k,l

Re (Q̄klykz̄l)
]

=
∑

k,l

Re (Q̄klE[ykz̄l]) =
∑

k,l

Re (Q̄klF (G(W ∗
k,p+l)))

=
∑

k,l

Re (Q̄klF (F−1(βW ∗
k,p+l))) =

∑

k,l

Re (Q̄klβW
∗
k,p+l)

= β
∑

k,l

Re (Q̄klW
∗
k,p+l) = β × v(SDBLP) ≈ 0.7118× v(SDBLP).

This proves the following theorem.

Theorem 3.3. The above randomized algorithm has an approximation ratio 0.7118 for the continuous
complex bilinear maximization problem (CBLP).

We remark that the 0.7118 approximation ratio should be in contrast to the 0.56 approximation ratio
for the real analog of the continuous bilinear maximization problem (CBLP), obtained by Alon and
Naor [1] where their proof was based on Krivine’s proof for the real Grothendick’s constant [13, 14].

3.3 Improved approximation algorithms for discrete complex bilinear programs

In this subsection we should note that the improved bound which we developed in Subsection 3.2 for the
continuous problem (CBLP) further helps to improve the approximation bound for the discrete problem
(DBLP). A first approximation algorithm for (DBLP) was proposed in Subsection 3.1.

Let us first consider a general problem

(GDQP) max zHQz

s.t. zk ∈ Pk, k = 1, . . . , n,

where Pk is a finite set contained in the complex plane, k = 1, . . . , n. Connect the points in Pk clockwise,
resulting a polygon to be denoted by P̄k, k = 1, . . . , n. Now, let us assume that the origin is contained
in the interior of P̄k, and moreover, assume that there is a pair of circles Cin and Cout in the complex
plane, centered at the origin, such that

Cin ⊆ P̄k ⊆ Cout, k = 1, . . . , n.
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Furthermore, let us denote the radius of Cin to be Rin, the radius of Cout to be Rout, and r := Rin/Rout

� 1. For instance, if Pk = {1, ω, . . . , ωm} with ω = ei 2π
m , then Rin = cos π

m , Rout = 1, and r =
cos π

m . However, (GDQP) is a general model allowing for an irregular constellation of discrete sets in the
constraints.

Let us now focus on (GDQP) where Q is either positive semidefinite, or it is in the form of

Q =

(
0 Q12

QH
12 0

)

.

In both cases, maximizing zHQz where zT = (z1, . . . , zn) ∈ P1 × P2 × · · · × Pn will have at least one
optimal solution ẑ such that ẑk is an extremal point of conv (P̄k) (hence in P̄k), 1 � k � n. Let z∗ be
the optimal solution of the following problem,

(GCQP) max zHQz

s.t. |zk| = 1, k = 1, . . . , n.

Suppose now that we have a feasible solution of (GCQP), say ẑ. Let z̃ := Rinẑ and implement the
following simple rounding procedure:

For k = 1, 2, . . . , n sequentially, let

z̃′k := argmax {zHQz | zk ∈ Pk, while (z1, . . . , zk−1, zk+1, . . . , zn) ≡ (z̃′1, . . . , z̃
′
k−1, z̃k+1, . . . , z̃n)}.

Clearly this procedure runs in polynomial-time of the input data. The solution so obtained is feasible
for (GDQP) and its objective value is never worse than that of Rinẑ, i.e., z̃′HQz̃′ � R2

inẑ
HQẑ. If ẑ is

chosen to be optimal for (GCQP), then we have v(GDQP) � R2
inv(GCQP). For convenience, let us

denote C to be the unit circle in the complex plane, and D to be the unit disk in the complex plane (thus
D = conv(C)). Since RoutD contains Pk and any zk ∈ Pk can be expressed as a convex combination of
points in RoutC, we have v(GDQP) � R2

outv(GCQP).
Suppose that there is ρ ∈ (0, 1) such that ẑHQẑ � ρ× v(GCQP). Then we have

z̃′HQz̃′ � R2
inẑ

HQẑ � R2
in × ρ× v(GCQP) � ρ

(
Rin

Rout

)2

v(GDQP). (6)

Consider a generalized form of (DBLP):

(GDBLP) max
1
2
(yH, zH)

(
0 Q

QH 0

)(
y

z

)

s.t. |yk|mk = 1, k = 1, . . . , p,

|zl|ml = 1, l = 1, . . . , q.

By Theorem 3.3 and the above observation, the next result follows.

Theorem 3.4. Let m0 = min{m1, . . . ,mp+q}. There is a polynomial-time approximation algorithm for
(GDBLP) with approximation ratio 0.7118(cos π

m0
)2.

In the case mk ≡ m for all k = 1, . . . , p + q, the above result yields the approximation ratios α′
m =

0.7118(cos π
m )2 for (DBLP): α′

3 ≈ 0.1780, α′
4 ≈ 0.3559, α′

5 ≈ 0.4659, α′
10 ≈ 0.6438, α′

100 ≈ 0.7111, while,
as a comparison, in Theorem 3.1 the approximation ratios for the previous approximation algorithm
were α3 ≈ 0.0742, α4 ≈ 0.2732, α5 ≈ 0.3746, α10 ≈ 0.5198, and α100 ≈ 0.5702. The improvements are
considerable.

A general form of (DQP) is

(GDQP) max zHQz

s.t. zk ∈ Pk, k = 1, . . . , n.

The next result follows from combining (6) with the well-known π
4 approximation ratio for the contin-

uous complex quadratic program [25].
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Theorem 3.5. Consider (GDQP) with Q � 0. Let convPk be the convex hull of Pk, k = 1, . . . , n.
Suppose that there are 0 < Rin � Rout < ∞ such that RinD ⊆ conv(P̄k) ⊆ RoutD, where D is the unit
disk in the complex plane. Then, there is a polynomial-time approximation algorithm for (GDQP) with
approximation ratio π

4 ( Rin
Rout

)2.

As an example of application for (GDQP), consider the following obnoxious facility location problem.
There are p possible locations for n (n < p) obnoxious facilities in the plane, say {a1, . . . , ap}, and
there are q given locations, say {b1, . . . , bq}, on which the obnoxious facilities would have adverse effects.
Moreover, the obnoxious facilities also have adverse effect on each other. Suppose that the harm caused
by each pair of facilities diminishes affine linearly in their square distances. Let zk be the location of
obnoxious facility k, k = 1, . . . , n. Then the problem becomes

max
∑

1�k<l�n

ckl|zk − zl|2 +
n∑

k=1

q∑

j=1

dkj |zk − bj|2

s.t. zk ∈ {a1, . . . , ap}, k = 1, . . . , n.

If the topology of the constellation {a1, . . . , ap} is reasonable, in the sense that they are spread more
or less evenly over a circular region, then Theorem 3.3 suggests that such problems can be solved with a
worst case guarantee.
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