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1 Introduction

Polynomial-time approximation algorithms for NP-hard problems via semidefinite programming (SDP)
have received much attention in the last decade, since, in several important cases, this approach leads to
significant improvements on the worst-case approximation ratios. The pioneering work along this direction
is the famous 0.87856 approximation algorithm of Goemans and Williamson [8] for the Max-Cut problem.
Nesterov [18] and Ye [23] obtained 2 approximation algorithm for quadratic maximization problem with
a positive semidefinite objective matrix. Actually, the 72T approximation result can also be derived from
the so-called real matrix cube theorem developed by Ben-Tal and Nemirovski in [3]. Alternatively, Alon
and Naor [1] demonstrated the 2 approximation result via Rietz’s identity [19]. Moreover, the bound
2 was proved to be essentially tight by Grothendieck [10], and Ben-Tal and Nemirovski [3] in different
settings.

Recently, Goemans and Williamson [9] proposed a randomized approximation algorithm, via complex
SDP relaxation, for solving the Max-3-Cut problem, which is formulated as a quadratic maximization
problem with complex-valued decision variables. In particular, they considered the following model:
maximize 27 Qz subject to 23 = 1, k = 1,...,n, where Q is the Laplacian of the graph (hence positive
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semidefinite for a nonnegatively weighted graph). By a SDP relaxation and random hyperplane method,
Goemans and Williamson showed that the algorithm achieves a 0.836 approximation ratio. Recently,
Zhang and Huang [25] extended Goemans and Williamson’s model [9], where they first developed a closed-
form formula for computing the probability of a complex-valued normally distributed bivariate random
vector to be in a given angular region, and then applying this formula they obtained an approximation
ratio 7 for the problem: maximize 2HQz subject to |z;| =1, k = 1,...,n, where Q is Hermitian positive

s

4
obtained in two other ways: either by the so-called complex matrix cube theorem developed by Ben-Tal

et al. [4], or by the complex Grothendieck’s inequality approach developed by Haagerup [11]. However,
these approaches shed lights on the problem from very different angles. For the discrete version of the
model: maximize 27Qz subject to zJ" =1, k = 1,...,n, So et al. [21] obtained the m?*(1 — cos 27)/87

semidefinite. Similar to that with its real-case counterpart, in fact this 77 approximation ratio can also be

approximation ratio based on an identity similar to Rietz’s identity. We obtained the same approximation
ratio in a later version of [25], by using the probability formula that we developed earlier.

So et al. [21] also considered the following problem: maximize 2Qz subject to |2| =1, k= 1,...,n,
where () is a symmetric matrix with zero diagonal elements. They presented an 2(1/logn)-approximation
algorithm for such problems, and their result provides an alternative analysis of the algorithm in Charikar
and Wirth [6] for the (real) quadratic optimization problem. In fact, the 2(1/logn) also follows directly
from results of Nemirovski et al. [17] and Luo et al. [16]. However, algorithms and analysis in [21], [17]
and [16] are very different.

In this paper, we consider approximation algorithms for indefinite complex quadratic programming
with m-point constellation constraint. Specifically, we consider the following indefinite complex quadratic
maximization problem: maximize zHQz, subject to zx € C and zj* = 1, k = 1,...,n, where Q is a
Hermitian matrix with tr @ = 0, z € C™ is the decision vector, and m > 3. An Q(1/logn) approximation
algorithm is presented for such a problem in general. Furthermore, we consider the above problem where
the objective matrix @ is the bilinear form. We show that with the bilinear form of @, a 0.7118 (cos 7’;)2
approximation algorithm can be constructed. Various extensions and connections of the model, in the
context of quadratic optimization, are discussed.

This paper is organized as follows. In Section 2 we study the indefinite complex quadratic maximization
model with discrete decision variables. In Section 3, we introduce and study the bilinear maximization
problems.

Notation.  We denote by a the conjugate of a complex number a, by Argz the argument of z, by |z|
the modulus of z, and by C" the space of n-dimensional complex vectors. As a convention we assume
Argz = 0 if z = 0. For a given vector z € C", we denote 2zl the conjugate transpose of z, and Diag(z)
the n x n diagonal matrix with diagonal entries taken from z, and if Z is an n X n matrix, then diag(Z)
denotes an n-dimensional vector formed by the diagonal elements of Z. The space of n X n real symmetric
and the space of complex Hermitian matrices are denoted by 8™ and H"™, respectively. For a matrix
Z € H", we write Re Z and Im Z for the real part and imaginary part of Z, respectively. Matrix Z being
Hermitian implies that Re Z is symmetric and Im Z is skew-symmetric. We denote by St (S%,) and
H" (H',) the cones of real symmetric positive semidefinite (positive definite) and complex Hermitian
positive semidefinite (positive definite) matrices, respectively. The notation Z = 0 (> 0) means that Z
is positive semidefinite (positive definite). For two complex matrices Y and Z, their inner product Y e Z
is defined to be Re (tr Y"Z) = tr [(ReY)T(Re Z) + (ImY)T(Im Z)], where “tr” denotes the trace of a
matrix and “T” denotes the transpose of a matrix.

2 Indefinite complex quadratic maximization

In this section, we consider the following (indefinite) complex quadratic maximization problem

(DQP) max zHQz
st. z€Candz*=1, k=1,...,n,
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where @) # 0 is an indefinite Hermitian matrix with diag(@Q) = 0, and m > 2 is an integer which is a part
of the input parameter of the problem. Clearly, the problem can be more explicitly written as

(DQP) max zHQz
st. oz e{lw,..., 0™ k=1,...,n,

27
We remark that, as |z;| = 1, the objective function value remains unchanged if we replace the condition
diag(Q) = 0 by tr @ = 0. Zhang and Huang [25] considered the approximation algorithms for the same

s 27 o .
where w = e*m :cosi’; + 2 sin

problem where @ is assumed to be Hermitian positive semidefinite. In that case, applications of such
models arise from solving the Max-3-Cut problem [9], the signal processing for wireless communications
[12, 15] and the radar signal processing [7].

We solve the following semidefinite programming as a relaxation of (DQP):

(SDP) max QeZ
s.t. Zie =1, k=1,...,n,
Z = 0.

This relaxed problem (complex SDP) can be solved in polynomial time up to any prescribed precision.
For practical solution methods, see e.g. [22].
In [21], So et al. considered approximation algorithms for solving the continuous version of (DQP):

(CQP) max 21Qz
st.  |zl=1, k=1,...,n.
They proposed the following rounding scheme. Draw a random complex vector £ € N.(0, Z*), where

N.(0,Z*) stands for the n-dimensional complex-valued normal distribution with mean vector zero and
covariance matrix Z*, and Z* is an optimal solution of (SDP). For k = 1,2,... n, let

_ { /G, it &l > T,

where T' > 0 is an appropriately chosen parameter. Then, x; € C™ is generated as follows:

g Uk with probability (1 + |yx|)/2,
T = (2)

—etAt8Yr - with probability (1 — |yx|)/2,

fork=1,...,n.
This process produces a randomized feasible solution = € C™ for (CQP). So et al. [21] established that

E[z"Qx] = Q(1/1logn)v(SDP).

Now our scheme is to generate a feasible solution z for (DQP), based on the solution = for (CQP)
as generated by the algorithm of So et al. [21]. Below we shall prove that the objective value of z is a
constant proportion of that of z, in expectation.

Let x be any feasible solution for (CQP). We now use x to further randomly generate z; (indepen-
dently) as follows:

1, with probability (1 + Rezy)/m,

2 =9 w, with probability (1 4+ Re (w™7zy))/m, (3)

w™ 1 with probability (14 Re (w™ (" Yxy))/m,
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where k = 1,...,n. Indeed we note that (1 + Re (w™7zy))/m >0 for all j =0,1,...,m — 1, and that

m—1 ; m—1
1+Re Ja:k) _ 1 —j _
—1+mRe<<E w x| = 1.

J=0 j=0
With regard to this second randomization process (from z to z), we have the following general result.
Lemma 2.1.  For k # 1, it holds that

E [RexiRexy], form =2,

FElziz)| = 1
S 4E[xk£l], for m > 3.

Proof.  The case m = 2 is easy to see, and is actually used in [20] and [12]. Now we consider the case
m > 3. Since for the random variables z and z it holds that

E[Zkil] = E[E[zkél | (a:k,a:l)]], for k 75 l,

we shall first compute Elz;z | (v, = 29,2, = 2¥)]. For simplicity, we drop the superscript naughts of
z) and z¥, and denote the expectation Elz,z | (zx = 29,2, = )] simply by Elz1z | (k,21)], and
Prob{z; = w’,z; = w/ ™" | (z = 29,2, = 2))} by Prob{z;, = w/, 2, = w™" | (xg,2;)}. We have

m—1
Elziz | (zg, )] =1 % Z Prob{z; = w, 2z = I | (zp, 1)} + -+~
j=0
m—1
+w' % Z Prob{zx =w’, 21 =’ 7" | (xg,z)} + -
j=0
m—1
-1 x Prob {z; = w/, 2, = w ™™ | (2g,21)}.
7=0
Obviously,
m—1 m—1 1 it
, - 1+ R -J 1+ R it
PI'Ob{Zk — u)j,Zl — it | (xk,xl)} _ + e(w ka) % + e(w J:l)
: ; m m
7=0 7=0
1 1 m—1
= + 2 jgo Re (w7 zg)Re (w7 T"2y).

Thus we further have

m—1 m—1 m—1
1 . 1 . , L
Elzpzi | (xg,x)] = E w! 4+ m2 2 wl< E Re (w™xi)Re (wJ“xl))

m
7=0 7 j=0
1 m—1 m—1
= Re (w 53%)( g w'Re (w J“xl))
m °
7=0 =0
m—1 m—1 _
1 wlm + W T w2y Wiz,
m2 4 2 , 2
7=0 =0

-1

1 m m—1 1
= g2 2 2 TREL= T,
4m = 4

J

Il
o

where we used the fact that 37! w? Z;n:_ol w™% =0form > 3. Thatis, E [zc2 | (z1 = 2, 3, = )]
= jala). Therefore
1
E [Zkil] =F [E [Zkil | (xk,xl)]] = 4E [Zkil] .

The lemma is proven. O
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Lemma 2.1 implies that E[z"Qz] = } E[2"Qx] since the trace of Q is zero. Therefore we have the
following result.
Theorem 2.2. There is an approximation algorithm for (DQP) with approximation ratio (1/ logn).

There is an immediate consequence of Lemma 2.1 regarding the relationship between the optimal
Max-2-Cut value and the optimal Max-3-Cut value for the same weighted graph. To be specific, consider
a weighted graph (undirected) with n nodes, and the weight on the edge (k,l) being wy; (k # ). Let
@ be the Laplacian matrix of a weighted graph, i.e., Qp = —wg for k # [, and Qkr = Zl;ﬁk W,
k=1,...,n. Let a, € {1,-1}, k =1,...,n, and 2z € {l,ei2§r,ei4§}. Let X = 22T and Z = 2z2M. It
is easy to verify that the corresponding 2-Cut value associated with x is }lQ e X, and the corresponding
3-Cut value associated with z is 1@ e Z. Let us denote the sum of all weights by W* := >, _, wg.
Now let & € {1,—1}" correspond to the optimal Max-2-Cut solution. Based on z we again generate
z € {1, et et 4;} as described in the above procedure. Then we have

v(M3C) > ;E[Q 7] = ;) (é Qrk +2)  QuRe E[zkzl])

k<l

k<l

1 1
) 31}( C)7 ( )

where v(M3C) is the optimal Max-3-Cut value and v(M2C) is the optimal Max-2-Cut value. Note that
in the relation (4), no assumption is made regarding the signs of the weights.

We remark that the main ingredient to achieve an Q(1/logn)-approximation algorithm for (DQP) is
the new rounding procedure (3), and we believe that it could be of independent interest. Also we note
that as in the analysis of [18, 23, 24] for real continuous case, we can extend all the above results to the
following more general setting:

max 2HQz
1

s.t.  Arg zke{O, 2m, ...,
m

(|21%, ..., |2a]?)T € F,

where Q € H™ with diag(Q)) = 0, and F is a closed convex set in R”. The corresponding convex SDP
relaxation is

max QeZ
st.  diag(Z) € F,
Z = 0.

3 Discrete complex bilinear maximization
In this section, we shall consider the discrete complex bilinear maximization problem

max Rey"Qz
ste yae{lw,...,wm Y k=1,...,p, l=1,...,q,

or, equivalently, the following complex discrete quadratic program (DBLP):

(DBLP) max ;(yH,zH)< C;)H cg ) ( ‘Z )

st g,z €{lw,...,wm Y k=1,...,p, l=1,...,q,
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where @ is a p X ¢ complex matrix, and w = cos(2w/m) + ¢sin(2w/m), m > 3. We also consider the
following continuous version of (DBLP),

1 0 @ y
(CBLP) max 2(yH7zH) ( oF 0 ) ( . )

st |ykl=lzl=1, k=1,...,p,1=1,...,¢

Clearly, the objective matrix of (DBLP) is Hermitian with zero diagonals. As its real counter-part,
(DBLP) is a subclass of (DQP) and (CBLP) is a subclass of (CQP). The SDP relaxation for (DBLP)
and (CBLP) is

Q" 0
st. Wiie=1, k=1,....p+gq,
W = 0.

(SDBLP) max ;( 0 @ ) oW

Lemma 4 of [21] implies that if @ # 0 then v(SDBLP) > 0. Also, we note that in the summation form,
the objective function of (SDBLP) is Y-7_; >, Re (QuWi p+1), and the objective function of (DBLP)
and (CBLP) is > 7_, "7 | Re (Quiyrzi)-

3.1 An approximation algorithm for the discrete complex bilinear program

Let W* be an optimal solution for (SDBLP). We draw a random complex vector as

( ¢ ) € N.(0, W),
n

and generate complex vectors y € CP and z € C? as follows:
for k =1,...,p, assign y := w’ if Arg&, € [31277, j:;lZﬂ') with j € {0,1,...,m —1};
and
for | =1,...,q, assign z := w’ if Argn, € [73;271', j;127r) with j € {0,1,...,m —1}.
In [25] we have shown that

m—1
m(2—w—w" N N
Elyrz] = ( W’ (arccos(—Re (/Wi 1)) = Fn(Wi 1), V1

Jj=0

and F,,(z) = 2 for z € {1,w,...,w™ 1}, Furthermore, in Appendix of [25] we established that

m?(1 — cos 2™)
Fn(z) = S "2+ 91(2) + d2(2)
with -
1-— cos > s
gZSl(Z) = ( . Zar Z b2r+2 232 2T+1 g
and
m2(1 25+2t+2 )
P2(z) = Z asay Z bostorra_oiz ()2 24271
s=0,t=0
where

m—1
(2r)! k
.= bit1_2i = et di) |
a 24r+1(r!)2(27, + 1)7 k+1-2 p jgo
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Note that Z;”:_Ol e*C777) s either 0 or m.
Let ¢(2) := ¢1(2) + ¢2(2). If Z = 0 then Z = 0. Moreover, the Hadamard product of Hermitian
positive semidefinite matrices remain positive semidefinite. This implies that if Z = 0 then ¢(Z) = 0,

where ¢(Z) := (&(Zk1))nxcn-

On the other hand, since F,,(1) = 1, we have 1 = (1 cos 37 + ¢(1). Let By, := miQ Sfrog . We

conclude that (¢(W*))pi/(1 —Bm) =1, fork=1,...,p+ q7 and so, p(W*)/(1 — (B,) is itself a fea81ble
solution for (SDBLP). Now observe that for any feasible solution of (SDBLP), say W, it necessarily
follows that

—v(SDBLP) < ; ( c;H %) ) o W < v(SDBLP). (5)

The second inequality is obvious, by definition of the feasibility. To argue that the first inequality also
holds, we consider a decomposition of W = 0, i.e.,

UH
W= ( - ) (U, V),

where the number of rows in U™ is p, and the number of rows in VH is ¢. Let us now consider another

solution,
- UH
W= n ) (U,-V) =0.

Since the diagonal of T remains the all-one vector, it is also a feasible solution for (SDBLP). Therefore

v(SDBLP)>;<C§H g).ﬁ/:—; ( QOH g).w,

and so the first inequality in (5) follows. Therefore,

L 0 @ oW
) ( o o ) iy 2 —v(SDBLP).

Now we are in a position to calculate the expected value of the randomized solution

P4 P4 P
E[Z Z Re (leykzl)} = Z Z Re (QuiFm (Wi ,11)) Z ZRG Qri(Bm Wiyt + 0(Wi i)
k=11=1 k=1 1=1 k=11=1
L0 Q) oW
DBLP 1—08m
B X v(SDBLP) + (1 - >x2<QH : )-1_%
> fm x v(SDBLP) + (8 — 1) x v(SDBLP)
2 1— 27
— (26, — 1) x v(SDBLP) = (m ( ) cos'm) _ 1) » v(SDBLP).
™
This leads to the following result.
Theorem 3.1. There is an approzimation algorithm for (DBLP) with the ratio qu, := (1 cos T

for m = 3. In particular, az > 0.0742, ay > 0.2732, a5 > 0.3746, a9 > 0.5198, and 199 = 0. 5702

Since (CBLP) is the limit of (DBLP) with m — oo, it is clear that if we let yj, = e*A™8% and z; = e*Arem

where (€%, nM)H is generated from A,.(0, W*) and W* is an optimal solution of (SDBLP), then we will get

m?(1—cos 27)

an approximation algorithm with an approximation ratio of lim,, s ' 4 " —1=7 —1=0.5708.
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3.2 An improved approximation algorithm for the continuous bilinear problem

In this subsection, we shall show that this ratio 0.5708 can be improved if we further exploit particular
structures of Problem (CBLP). Our analysis below makes use of some of the results in our previous
paper [25], and also important insights presented in a paper by Haagerup [11].

According to the analysis in Subsections 3.1 and 3.3 of [25], if we generate y; = ¢*A™8%r and z; = e*AT8™
with (€%, nM)H then we have

1

Elyea] = Jim Fu(Wi ) (= FOVi0) =

2
/ e (arccos(— cos(f — «)))%dh
0

(1 /2 0 0do T - 2r+1
_ ia . . L 0do — T eio 2L

e /0 arcsin(y sin 6) sin A€ ;)c y

((2r)hH?

24r (o)A (r 1) For v € [-1,1], let

/2 2
(cos9) d@).
0 /1—(ysinf)?

In that notation, the transformation function F' can be rewritten as

where we denoted Wy, as ~vet* and ¢, =

w/2
() = / arcsin(y sin 6) sin 6d6 ( =
0

F(z) = 8% (|2]).

We remark here that the equation (3.9) in [25] coincides with Lemma 3.2 in [11], although we were not
aware of [11] at the time when we derived that equation.

Important properties of the function () are discussed in [11]. In particular, Theorem 2.1 of [11] states
that the inverse function =1 : [-1,1] — [~1,1] of ¢ exists and it can be expanded into an absolutely
convergent power series:

Yi(s) = Zbgr+182r+1, s€[-1,1],
r=0

with b; = fr and ba, 11 < 0 for all 7 < 1. Specifically, by = —8/73, bs = 0, by = —16/77, bg = —80/77,
bin = —480/7!) b3 = —3136/7'3 and b1 ~ —4/((2r + 1) log(2r + 1))? for r — co. Moreover, the
following result is shown in [11], which was used to bound the complex Grothendieck constant.
Lemma 3.2. There is a unique 8 € (0,1) for which Y7 |bori1|B% Tt =1 (ie., v~1(B) = iﬁ - 1),
with B ~ 0.7118.

Now the inverse function of F(z) can be written as
o
F_l(z) = ezArgz¢—1(|Z|) = Z b2T+1ZT+1ZT.
r=0

For a given W € Hfrq with all-one diagonal elements, let us construct another Hermitian matrix
G(W) € HPT as follows:

4 ad _
Grpt1(W) == ﬂ_ﬂWk,p-H - Z b2 11182 W) T Wipt)', k=1,...,p,1=1,...,q,

r=1
4 s _
le’k2 (W) = BWkl’kQ + Z |b2T+1|ﬁ2r+1(Wk1,k2)r+1(Wk17k2)T7 klv ko = 1,...,p,

e
r=1

4 - r r 1 r
Gptiy,ptis (W) = ﬂ_ﬂWZPHl,;DJrlz + Z |b2T+1|ﬁ2 +1(Wp+l17p+l2) +1(Wp+l1>1)+12) ;o hl=1,.1q.

r=1

That is,

Gk,p+l(W) = Fﬁl(ﬁWk,erl)v k= ]-7 <o Dy l= ]-7 -4,
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8
le,k’Q(W) = ﬂ_BWkl,k’Q - F_l(BWliw)) k17k2 = 1>~ By 2
8 _
Gptiy pri (W) = POWpttiptis = F "BWpttiptin)s ll2=1,....q.

By the choice of 3 (see Lemma 3.2), we see that if W has all-one diagonal elements, then so is true for
the Hermitian matrix G(W). Denote E := (e, —el)T(e), —e]) (= 0), where e, and e, are the all-one
vectors in R? and R? respectively. We can now write G(W) in a uniform fashion as follows,

4 o0
G) = 400 + 3 bl #7410 ()01 o (W,
r=1
where ‘A o B’ stands for the Hadamard product between A and B, and A is the r-th power in the

Hadamard sense, i.e.,
T

A(T):;loA;\-qu\.

If W > 0, then, by the fact that the Hadamard product of positive semidefinite matrices remains positive
semidefinite, we have G(W) = 0. As a remark, we note here that combining this and the previous
observation (regarding the diagonals of G(W)) leads to the conclusion that if W is a feasible solution for
(SDBLP) then so is true for G(W).

Suppose that W* is an optimal solution of (SDBLP). Let us take y;, = ¢**™8% and z = ¢*'8" with
(€7, ™" is randomly generated from N.(0, G(W*)). In that case, the expected objective value is

E [ Z Re (leykzl)] = Z Re (QuEyrz)) = Z Re (QuF(G(Wy 1))
Kl Kl Kl

= Re(QuF(F ' (BW; ) = Y Re(QuBWy )

K, K,
=B Re(QuWy 1) = 8 x v(SDBLP) ~ 0.7118 x v(SDBLP).
k,l
This proves the following theorem.

Theorem 3.3. The above randomized algorithm has an approximation ratio 0.7118 for the continuous
complex bilinear mazximization problem (CBLP).

We remark that the 0.7118 approximation ratio should be in contrast to the 0.56 approximation ratio
for the real analog of the continuous bilinear maximization problem (CBLP), obtained by Alon and
Naor [1] where their proof was based on Krivine’s proof for the real Grothendick’s constant [13,14].

3.3 Improved approximation algorithms for discrete complex bilinear programs

In this subsection we should note that the improved bound which we developed in Subsection 3.2 for the
continuous problem (CBLP) further helps to improve the approximation bound for the discrete problem
(DBLP). A first approximation algorithm for (DBLP) was proposed in Subsection 3.1.

Let us first consider a general problem

(GDQP) max 2MQz
st. z€eP,, k=1,...,n,
where Py is a finite set contained in the complex plane, k = 1,...,n. Connect the points in P clockwise,
resulting a polygon to be denoted by Py, k = 1,...,n. Now, let us assume that the origin is contained

in the interior of P, and moreover, assume that there is a pair of circles Ci, and Coye in the complex
plane, centered at the origin, such that

Cingpkgcou‘m k=1,...,n.
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Furthermore, let us denote the radius of C}, to be Ry, the radius of Coyt to be Rout, and 7 := Rin/Rout
< 1. For instance, if P, = {l,w,...,w™} with w = et’n, then Ry = cos 7, Rouww = 1, and r =
cos . However, (GDQP) is a general model allowing for an irregular constellation of discrete sets in the
constraints.

Let us now focus on (GDQP) where @ is either positive semidefinite, or it is in the form of

Q-( 0 Qu)
h 0
T = (z1,...,2,) € PL x Py x --- x P, will have at least one

In both cases, maximizing 2HQz where z
optimal solution 2 such that 2j is an extremal point of conv (P) (hence in Py), 1 < k < n. Let z* be

the optimal solution of the following problem,
(GCQP) max 2MQz
st. |zwl=1, k=1,...,n.

Suppose now that we have a feasible solution of (GCQP), say 2. Let Z := R;,Z and implement the
following simple rounding procedure:

For k =1,2,...,n sequentially, let

zh = argmax {z9Qz | zx € Py, while (21,. .., 261, Zhi1s -5 2n) = (F1s oo oy Zh1s Zhtls - Zn) )

Clearly this procedure runs in polynomial-time of the input data. The solution so obtained is feasible
for (GDQP) and its objective value is never worse than that of Ri,2, i.e., #HQZ > R22HQ2. If 2 is
chosen to be optimal for (GCQP), then we have v(GDQP) > RZ v(GCQP). For convenience, let us
denote C' to be the unit circle in the complex plane, and D to be the unit disk in the complex plane (thus
D = conv(C)). Since RouD contains Py, and any z, € Py can be expressed as a convex combination of
points in Rou:C, we have v(GDQP) < R2,,v(GCQP).

Suppose that there is p € (0, 1) such that 2%Q2 > p x v(GCQP). Then we have
Rin

Rm> v(GDQP). (6)

#HQZ > RE2MQ2 > RE x p x v(GCQP) > p(
Consider a generalized form of (DBLP):

1 0 @ y
(GDBLP) max 2(yH,zH) ( of 0 ) ( . )

st. |yg/™ =1, k=1,...,p,
lz™ =1, 1=1,...,q

By Theorem 3.3 and the above observation, the next result follows.

Theorem 3.4. Let mg = min{ma, ..., mpyq}. There is a polynomial-time approximation algorithm for
(GDBLP) with approzimation ratio 0.7118(cos 7 )2.
In the case my, = m for all k = 1,...,p + ¢, the above result yields the approximation ratios o, =

0.7118(cos ;)2 for (DBLP): a4 ~ 0.1780, oy ~ 0.3559, af ~ 0.4659, o), = 0.6438, o)y, ~ 0.7111, while,
as a comparison, in Theorem 3.1 the approximation ratios for the previous approximation algorithm
were agz ~ 0.0742, ay ~ 0.2732, a5 =~ 0.3746, a9 ~ 0.5198, and 199 =~ 0.5702. The improvements are
considerable.

A general form of (DQP) is

(GDQP) max 2"Qz
st. zxeP, k=1,...,n.

s

7 approximation ratio for the contin-

The next result follows from combining (6) with the well-known
uous complex quadratic program [25].
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Theorem 3.5. Consider (GDQP) with Q > 0. Let conv Py be the convex hull of Py, k = 1,...,n.
Suppose that there are 0 < Rin < Rout < 00 such that RinD C conV(Pk) C RowtD, where D is the unit
disk in the complex plane. Then, there is a polynomial-time approximation algorithm for (GDQP) with
Igoi:t )2 :

As an example of application for (GDQP), consider the following obnoxious facility location problem.
There are p possible locations for n (n < p) obnoxious facilities in the plane, say {ai,...,a,}, and
there are ¢ given locations, say {b1,...,b,}, on which the obnoxious facilities would have adverse effects.
Moreover, the obnoxious facilities also have adverse effect on each other. Suppose that the harm caused

by each pair of facilities diminishes affine linearly in their square distances. Let z; be the location of

approximation ratio Z (

obnoxious facility k, kK =1,...,n. Then the problem becomes
n g
max Z Ckl|2k_Zl|2+zzdkj|zk_bj|2
1<k<I<n k=1 j=1
st.  zpxefar,...,ap}, k=1,...,n.
If the topology of the constellation {a1,...,a,} is reasonable, in the sense that they are spread more

or less evenly over a circular region, then Theorem 3.3 suggests that such problems can be solved with a
worst case guarantee.
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