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1 Introduction

The game tree which mainly describes the process of dynamic games is a kind of graph with simple
structure. Therefore, the research results of games on graph could be generally extended to the category
of dynamic games. The original type of games on graph, whose definition was given by Berge [1], is
the games on finite tree [7]. Rozen [6] discussed games on graph whose target structure is defined by
coherent relation of terminal state set. Rozen [6] extended Berge’s concept of simple strategy, namely, on
every given state of graph, the choice for the next state is determined by the former experienced state,
rather than only determined by the last state that the player had just reached. The results in [1, 6] are
both given on the two-dimensional graph for games with terminal payoff. The state payoff vector that
is introduced to every state node on finite graph is expected in this paper. The absolute equilibrium of
dynamic games is researched by applying the concept of strategy of games on the graph defined by Berge.
The related tasks finished by the authors contain the following:

(1) By establishing the corresponding relations between plays and routes of game tree on two-dimen-
sional directed graph, games on directed graph are transformed to game tree. Also, the algorithm of
characteristic function is given, and the Shapley vector is chosen as the cooperative solution of the two-
dimensional directed graph.

(2) Partial cooperative dynamic games are studied on the two-dimensional mesh-like finite graph [3].
Players adopt partial cooperative behaviors rather than completed cooperative behaviors. The main
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feature of partial cooperation is that behaviors of each player are the combination of cooperative behaviors
and individual behaviors. Also, algorithms of the solution of partial cooperative games and the optimal
path are given on the two-dimensional directed graph.

Symbol system, strategy of plays and state payoff of games on graph are given in Section 2. In Section 3,
the existence theorem of absolute equilibrium about games on connected graph with state payoff vector is
proved. The complete algorithm of absolute equilibrium is constructed in Section 4. Finally in Section 5,
we give an example of absolute equilibrium about games on the three-dimensional connected mesh-like
graph with state payoff vector.

2 Symbol and definition

Connected graph with state set A is written as 〈A, γ〉, where γ ⊆ A2 (γ is the arc set of the connected
graph) and state set is A = {a0, a1, . . . }. Let γ〈a〉 be all of the states after state a, and γ′〈a〉 be the
immediate subsequent state set of state a. Af is written as the state set which has no subsequent
states. 〈A, γ〉 is called n state graph, if subdivision of A\Af is given, which is {A1, . . . , An}. Using the
terminology of games, the set of players is N = {1, 2, . . . , n}, Ai is the state set of Player i, i ∈ N , the set
of decision-making nodes is written as Ã = {A1, A2, . . . , An} and Af is the set of terminal states. The
path (orbit) of graph 〈A, γ〉 is the sequence (finite or infinite) of states a0, a1, . . . , ak. For k = 1, . . . , t, . . . ,

we have ak ∈ γ〈ak−1〉. An orbit is called a play, if it is infinite or it contains terminal state al ∈ Af . All
of the rest orbits are called opening play. Every mapping si : Ai → A satisfying the condition si ⊆ γ

is called the simple strategy of Player i. The set of all the simple strategies of Player i is written as
Si. State a ∈ A and a situation (s1, . . . , sn) ∈ S1 × · · · × Sn under simple strategy define the play
〈a; s1, . . . , sn〉 = a, s(a), s2(a), . . . If each path on graph 〈A, γ〉 is finite, then every state a ∈ A has a
relation with a mapping Fa : S1 × · · · × Sn → Af , which maps the situation (s1, . . . , sn) under a simple
strategy to a terminal state of the play 〈a; s1, . . . , sn〉.
Definition 1. Giving every state a an n-dimensional real vector fa = (f1

a , . . . , fn
a )T (where T stands

for matrix transposition), it is called a state payoff vector of state a and the i-th component f i
a is called

Player i’s state payoff of state a.

Definition 2. The n-dimensional vector h(ar, . . . , al) =
∑l

k=r fak
= (h1(ar, . . . , al), . . . , hn(ar, . . . ,

al))T is called situation payoff vector corresponding to play ar, . . . , al (al ∈ Af ) on graph 〈A, γ〉. The i-th
component hi(ar, . . . , al), i = 1, . . . , n is called Player i’s play payoff corresponding to play ar, . . . , al.

According to the definition of simple strategy, different situations may lead to different plays all
from some initial state ar. Suppose that the play corresponding with situation (s1, . . . , si, . . . , sn) is
ar, . . . , al (al ∈ Af ), and the situation corresponding with (s1, . . . , s

′
i, . . . , sn) is ar, . . . , ak (ak ∈ Af ).

Notation �j is defined as

hj(ar, . . . , al) � hj(ar, . . . , ak) ⇐⇒ Far (s1, . . . , si, . . . , sn) �j Far (s1, . . . , s
′
i, . . . , sn),

where i = 1, . . . , n, j = 1, . . . , n.
Choosing a0 ∈ A as an initial state, non-cooperative simple games Γa0(T ) are achieved on graph with

state payoff vector T = 〈A, γ; A1, . . . , An, Af ; fa∈A〉, where the strategy set of Player i is Si, the set of
terminal state is Af , and fa is the state payoff vector of state a on graph 〈A, γ〉.
Definition 3. The situation s∗ = (s∗1, . . . , s∗n) that is independent of the initial state is called absolute
equilibrium, if s∗ is Nash equilibrium about any simple game Γa0(T ), a0 ∈ A.

3 Existence theorem of absolute equilibrium

Theorem. Absolute equilibrium situation exists in games on finite connected graph with state payoff
vector.
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Proof. First, the subset of state set Cα ⊆ A is defined for α by induction as follows:
a) C0 = Af ,
b) suppose that for all the β < α, subset Cβ ⊆ A have been defined.
If α is finite, then Cα = Cα−1 ∪ {a ∈ A\Af : γ〈a〉 ⊆ Cα−1} is defined. If α is infinite, then Cα =

⋃
β<α Cβ . The smallest ordinal number p(a) is called the rank of state a ∈ A, then we have a ∈ Cp(a). If

there is not infinite path on graph 〈A, γ〉, then every state has a rank and the rank is finite.
Second, the mapping s∗ : A → A is defined according to the rank of state by induction as follows. For

each 0 rank state a (a ∈ Af ), we define s∗(a) = a. If the rank of state a ∈ A\Af is p(a) = α, and mapping
s∗(a′) is defined by state a′ ∈ A with rank p(a′) < α. If γ〈a′〉 
= ∅, then s∗(a′) ∈ γ〈a′〉. Therefore, s∗

has been defined in Cα−1, and it satisfies condition s∗ ⊆ γ. s∗α−1
j is noted as s∗’s restriction which is

established in the subset Cα−1 ∩Aj (j = 1, . . . , n). Since Cα−1 is γ-steady, that is to say, the play whose
initial state has emerged into Cα−1 is completely located in Cα−1, and s∗α−1

j is regarded as a simple
strategy of Player j in the subgame of Cα−1. Considering a ∈ Cα\Cα−1, we have ∅ 
= γ〈a〉 ⊆ Cα−1. As
stated above, the function Fx(s∗α−1

1 , . . . , s∗α−1
n ) is defined on each x ∈ γ〈a〉. We denote

Ta = {Fx(s∗α−1
1 , . . . , s∗α−1

n ) : x ∈ γ〈a〉},

i.e., Ta is the terminal state set of play whose initial state passes set γ〈a〉 by Player j (j = 1, . . . , n)
adopting strategy s∗α−1

j . Obviously, Ta is the nonempty subset of the set of terminal state which can be
reached from state a. If a ∈ Ai, we can calculate Player i’s play payoff, the maximum of which is h∗

i , in
every state of subgame Ta. When Player i chooses maximal play payoff h∗

i on state a, and the chosen
state is x∗. We denote s∗(a) = x∗. Hence, the following relation is satisfied for each x ∈ γ〈a〉:

Fx(s∗α−1
1 , . . . , s∗α−1

n ) �j Fx∗(s∗α−1
1 , . . . , s∗α−1

n ). (1)

By induction, the mapping s∗ has been defined for each a ∈ A. If γ〈a〉 
= ∅, then s∗(a) ∈ γ〈a〉, i.e.,
s∗ ⊆ γ. If s∗j is the restriction of mapping s∗ in Aj , then s∗j is a simple strategy of Player j.

Finally, it is proved by induction for the rank of a0 that situation s∗ = (s∗1, . . . , s∗n) is Nash equilibrium
of every game Γa0(T ), where a0 ∈ A . Situation s∗ = (s∗1, . . . , s

∗
n) is called absolute equilibrium of games

on graph 〈A, γ〉.
Step 1. Suppose p(a0) = 0, i.e. a0 ∈ C0 = Af . Now the value a0 of function Fa0 is independent of
the situation. Therefore, every situation is Nash equilibrium.

Step 2. If α is given, suppose that p(a0) = α and the situation (s∗1, . . . , s∗n) is Nash equilibrium of
every game Γx(T ), where p(x) < α. The initial state a0 ∈ A is chosen, we will prove that (s∗1, . . . , s

∗
n) is

Nash equilibrium of game Γa0(T ). In fact, if a0 ∈ Ai, suppose that Player j (j = 1, . . . , n) adopts the
simple strategy s′j instead of s∗j . If j 
= i, considering γ〈a0〉 ⊆ Cα−1, we get the result. We only need to
consider j = i. Denote s∗i (a0) = a1, s

′
i(a0) = a′

1. By Formula (1), we have

Fa′
1
(s∗1, . . . , s

∗
n) �i Fa1(s

∗
1, . . . , s

∗
n).

Because a′
1 ∈ γ〈a0〉 ⊆ Cα−1, then according to the assumption mentioned above,

Fa′
1
(s∗1, . . . , s

∗
i−1, s

′
i, s

∗
i+1, . . . , s

∗
n) �i Fa′

1
(s∗1, . . . , s

∗
n).

By the relation between the two formulas above, we have

Fa′
1
(s∗1, . . . , s

∗
i−1, s

′
i, s

∗
i+1, . . . , s

∗
n) �i Fa1(s

∗
1, . . . , s

∗
n). (2)

According to the definition of Fa and s∗, the following equations hold:

Fa0(s
∗
1, . . . , s

∗
n) = Fa1(s

∗
1, . . . , s

∗
n),

Fa0(s
∗
1, . . . , s

∗
i−1, s

′
i, s

∗
i+1, . . . , s

∗
n) = Fa′

1
(s∗1, . . . , s

∗
i−1, s

′
i, s

∗
i+1, . . . , s

∗
n).
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Considering Formula (2), we have

Fa0(s
∗
1, . . . , s

∗
i−1, s

′
i, s

∗
i+1, . . . , s

∗
n) �i Fa0(s

∗
1, . . . , s

∗
n),

i.e., situation (s∗1, . . . , s
∗
n) is Nash equilibrium in game Fa0(T ). Because the initial state a0 ∈ A is chosen

arbitrarily, situation s∗ = (s∗1, . . . , s
∗
n) is absolute equilibrium of games on graph 〈A, γ〉. The proof of the

theorem is finished. �

4 Algorithm about absolute equilibrium in games with state payoff vector

on connected graph

First, calculate the rank p(a) of the state a ∈ A on graph 〈A, γ〉 according to the definition of rank.
Assume maxa∈Ap(a) = K. The set of state A on graph 〈A, γ〉 is split into K + 1 subsets P0, P1, . . . , PK ,
where Pk is the set of state whose rank equals k,

⋃K
k=0 Pk = A, Pl ∩ Pm = ∅, l 
= m, 0 � l, m � K. In the

following, we will use backward induction according to the ranks of the state.

Step 0. Consider each state a0 whose rank equals 0, i.e., a0 ∈ P0 = C0 = Af . Since nobody makes
move here, by Definition 2, we have h(a0) = fa0 . Denote Bellman function [5] by r0

i : P0 → R, where
r0
i (a0) = hi(a0), let r0(a0) = (r0

1(a0), . . . , r0
n(a0))T = h(a0), we denote s∗(a0) = a0.

Step 1. Consider each state a1 ∈ P1. Since γ′〈a1〉 ⊆ P0 for a1, by Definition 2, we have h(a1, a0) =
fa1 + r0(a0). Assuming a1 ∈ Ai, then Player i chooses ā0 ∈ γ′〈a1〉 satisfying maxa0∈γ′〈a1〉hi(a1, a0) =
hi(a1, ā0). Denote function by r1

i : P1 → R, where r1
i (a1) = hi(a1, ā0) at a1, and let r1(a1) =

(r1
1(a1), . . . , r1

n(a1))T = h(a1, ā0). Now we get s∗i (a1) = ā0 at a1 ∈ P1.

Step 2. Consider each state a2 ∈ P2. Denote γ′〈a2〉 = Z0〈a2〉 ∪ Z1〈a2〉, where Z0〈a2〉 ⊆ P0 prescribes
the set of state next to a2 of rank 0, Z1〈a2〉 ⊆ P1 prescribes the set of state next to a2 of rank 1. In the
following part, we use the similar prescription.

1) For the state in Z0〈a2〉 ⊆ P0, when a0 ∈ γ′〈a2〉, by Definition 2 we have h(a2, a0) = fa2 + r0(a0).
2) For the state in Z1〈a2〉 ⊆ P1, when a1 ∈ γ′〈a2〉 and ā0 has been chosen on Step 1, by Definition 2

we have h(a2, a1, ā0) = fa2 + r1(a1). Assuming that a2 ∈ Ai, then Player i chooses the state ā1 ∈ γ′〈a2〉
which can reach max{maxa0∈Z0〈a2〉hi(a2, a0), maxa1∈Z1〈a2〉hi(a2, a1, ā0)}. Also we denote function by
r2
i : P2 → R, where

r2
i (a2) =

{
hi(a2, ā1), if ā1 ∈ Z0〈a2〉 ⊆ P0,

hi(a2, ā1, ā0), if ā1 ∈ Z1〈a2〉 ⊆ P1.

At a2, let r2(a2) = (r2
1(a2), . . . , r2

n(a2))T. Now we get s∗i (a2) = ā1 at a2 ∈ P2.

Step k. Consider each state ak ∈ Pk, k � K. Now r0
i (a0), . . . , rk−1

i (ak−1) and r0(a0), . . . , rk−1(ak−1)
have been defined. Denote

γ′〈ak〉 = Z0〈ak〉 ∪ Z1〈ak〉 ∪ · · · ∪ Zk−1〈ak〉,

where Z0〈ak〉 ⊆ P0 = Af , Z1〈ak〉 ⊆ P1, . . . , Zk−1〈ak〉 ⊆ Pk−1.
1) For the state in Z0〈ak〉 ⊆ P0, when a0 ∈ γ′〈ak〉, by Definition 2 we have h(ak, a0) = fak

+ r0(a0).
2) For the state in Z1〈ak〉 ⊆ P1, when a1 ∈ γ′〈ak〉 and ā0 has been chosen on Step 1. By Definition 2,

we have h(ak, a1, ā0) = fak
+ r1(a1).

...
k) For the state in Zk−1〈ak〉 ⊆ Pk−1, when ak−1 ∈ γ′〈ak〉 and ā0, ā1, . . . , āk−2 have been chosen

respectively on Steps 1, 2, . . . , k−1, by Definition 2 we have h(ak, ak−1, āk−2, . . . , ā0) = fak
+rk−1(ak−1).

Assuming that ak ∈ Ai, then Player i chooses āk−1 ∈ γ′〈ak〉 which can reach

max
{

max
a0∈Z0〈ak〉

hi(ak, a0), max
a1∈Z1〈ak〉

h(ak, a1, ā0), . . . , max
ak−1∈Zk−1〈ak〉

h(ak, ak−1, āk−2, . . . , ā0)
}

.
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Denote Bellman function by rk
i : Pk → R , where

rk
i (ak) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

hi(ak, āk−1), if āk−1 ∈ Z0〈ak〉 ⊆ P0,

hi(ak, āk−1, ā0), if āk−1 ∈ Z1〈ak〉 ⊆ P1,
...

hi(ak, āk−1, āk−2, . . . , ā0), if āk−1 ∈ Zk−1〈ak〉 ⊆ Pk−1.

At ak, let rk(ak) = (rk
1 (ak), . . . , rk

n(ak))T. Now we get s∗i (ak) = āk−1 at ak ∈ Pk.
Continue the process till k = K. For each K rank state aK ∈ PK , suppose ak ∈ Ai, similarly, we get

s∗i (aK) = āK−1.
Given all above, by the algorithm we get the player’s choice for each state on connected graph with

state payoff vector. According to the proof of Theorem in Section 3, when we arbitrarily choose the state
a0 ∈ A to be the initial state on connected graph 〈A, γ〉 with state payoff vector, strategy (s∗1, . . . , s

∗
n)

which is independent of a0 is Nash equilibrium of simple game Γa0(T ), i.e., situation s∗ = (s∗1, . . . , s
∗
n)

is the absolute equilibrium of the game. The equilibrium route is related to the initial state. When
we choose the state a0 ∈ PL, 0 � L � K and a0 ∈ Ai as the initial state, the absolute equilibrium s∗

can define the equilibrium route of the simple game Γa0(T ), and the payoff on equilibrium orbit (play)
is rL(a0) = (rL

1 (a0), . . . , rL
n (a0))T. We need to point out that, in the algorithm above, the definition of

function rk(a) on some state a ∈ Pk, 0 < k � K maybe more than one, so choose one of them randomly
as defined. If this case does not happen, the absolute equilibrium of the game will be unique.

5 The calculation model of absolute equilibrium about games on three-dimen-

sional connected graph with state payoff vector

Consider the three-dimensional connected graph 〈A, γ〉 (Figure 1), where the set of players is N =
{1, 2, 3}. The set of terminal states is Af = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14}. The deci-
sion state sets of Player 1, Player 2, Player 3 are respectively A1 = {a000, a110, a020, a121, a011, a002}, A2 =
{a100, a012, a021, a111, a122, a102}, A3 = {a010, a120, a001, a101, a112, a022}.

Figure 1 The three-dimensional connected graph 〈A, γ〉
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Players’ strategy. On graph 〈A, γ〉, we define that the players’ strategies in horizontal and two-
dimensional state are along the mesh to the right, the left or terminal state; the strategies of players in
right-and-left and two-dimensional state are along the mesh to downward, the front, or terminal state; the
strategies of players in fore-and-aft and two-dimensional state are along the mesh to the right, downward
or terminal state.

By Definition 1, we give the state payoff vector on every state on graph 〈A, γ〉. Then we get the game on
the three-dimensional mesh-like and connected graph with state payoff vector T = 〈A, γ; A1, A2, A3, Af ;
fa∈A〉. This example gives the state payoff vector as follows:

fa000 = (1, 2, 2)T, fa010 = (2, 1, 3)T, fa020 = (4, 2, 1)T, fa001 = (5, 3, 2)T,

fa011 = (2, 2, 2)T, fa021 = (1, 3, 2)T, fa002 = (2, 4, 5)T, fa012 = (6, 5, 2)T,

fa022 = (1, 5, 3)T, fa100 = (3, 6, 7)T, fa110 = (2, 5, 1)T, fa120 = (5, 7, 4)T,

fa101 = (2, 5, 4)T, fa111 = (4, 0, 2)T, fa121 = (3, 3, 4)T, fa102 = (4, 6, 3)T,

fa112 = (0, 5, 3)T, fa122 = (3, 2, 4)T, fb1 = (4, 3, 2)T, fb2 = (2, 5, 4)T,

fb3 = (3, 4, 5)T, fb4 = (4, 6, 3)T, fb5 = (2, 5, 3)T, fb6 = (4, 2, 3)T, fb7 = (3, 2, 6)T,

fb8 = (4, 3, 1)T, fb9 = (3, 5, 7)T, fb10 = (4, 3, 5)T, fb11 = (2, 6, 5)T, fb12 = (3, 2, 4)T,

fb13 = (2, 4, 1)T, fb14 = (5, 3, 2)T.

First, compute the ranks of all states. We get the rank-subdivision of the state set A on the graph
〈A, γ〉 :

P0 = {b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14}, P1 = {a120},
P2 = {a110, a121, a020}, P3 = {a100, a111, a010, a122, a021},
P4 = {a101, a112, a000, a011, a022}, P5 = {a102, a001, a012}, P6 = {a002}.

Step 0. Consider every state in P0. According to the algorithm, we denote

r0(bj) = h(bj), j = 1, . . . , 14,

and define s∗(bj) = bj , j = 1, . . . , 14.

Step 1. Consider every state in P1 = {a120}. According to the algorithm, we get h(a120, b12) =
fa120+r0(b12) = (8, 9, 8)T, h(a120, b13) = (7, 11, 5)T. Since a120 ∈ A3, h3(a120, b12) = 8 > 5 = h3(a120, b13),
Player 3 will choose b12. We denote

r1(a120) = (r1
1(a120), r1

2(a120), r1
3(a120))T = h(a120, b12) = (8, 9, 8)T.

Similarly we get s∗3(a120) = b12.

Step 2. Consider every state in P2 = {a110, a121, a020}. For a110 ∈ P2, we have γ′〈a110〉 = Z0〈a110〉 ∪
Z1〈a110〉, where Z0〈a110〉 = {b10, b11}, Z1〈a110〉 = {a120}. We get

h(a110, b10) = (6, 8, 6)T, h(a110, b11) = (4, 11, 6)T,

h(a110, a120, b12) = fa110 + r1(a120) = (10, 14, 9)T.

For a110 ∈ A1, and

max{h1(a110, b10), h1(a110, b11), h1(a110, a120, b12)} = 10 = h1(a110, a120, b12),

so Player 1 will choose a120, denote

r2(a110) = (r2
1(a110), r2

2(a110), r2
3(a110))T = h(a110, a120, b12) = (10, 14, 9)T.

Then we get s∗1(a110) = a120.
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Similarly, for a121 ∈ P2, since a121 ∈ A1, and Player 1 has the only choice a120, we denote

r2(a121) = (r2
1(a121), r2

2(a121), r2
3(a121))T = h(a121, a120, b12) = (11, 12, 12)T,

and get s∗1(a121) = a120.
For a020 ∈ P2, we have γ′〈a020〉 = Z0〈a020〉 ∪ Z1〈a020〉, where Z0〈a020〉 = {b14}, Z1〈a020〉 = {a120}.

Since a020 ∈ A1, h1(a020, b14) = 9 < 12 = h1(a020, a120, b12), Player 1 will also choose a120, denote

r2(a020) = (r2
1(a020), r2

2(a020), r2
3(a020))T = h(a020, a120, b12) = (12, 11, 9)T.

Then we get s∗1(a020) = a120.

Step 3. Consider every state in P3 = {a100, a111, a010, a122, a021}. The results are given as follows:

r3(a100) = (13, 20, 16)T, s∗2(a100) = a110, r3(a111) = (14, 14, 11)T, s∗2(a111) = a110,

r3(a122) = (14, 14, 16)T, s∗2(a122) = a121, r3(a021) = (12, 15, 14)T, s∗2(a021) = a121.

For a010 ∈ P3, we have γ′〈a010〉 = Z0〈a010〉 ∪ Z1〈a010〉 ∪ Z2〈a010〉, where Z0〈a010〉 = Z1〈a010〉 = ∅,
Z2〈a010〉 = {a020, a110}, and h3(a010, a020, a120, b12) = 12 = h3(a010, a110, a120, b12), by the assumption,
Player 3 can arbitrarily choose a110 or a020. Then if Player 3 chooses state a020, denote r3(a010) =
(14, 12, 12)T. Then s∗3(a010) = a020.

Step 4. Consider every state in P4 = {a101, a112, a000, a011, a022}. The results are

r4(a101) = (15, 25, 20)T, s∗3(a101) = a100, r4(a112) = (14, 19, 19)T, s∗3(a112) = a122,

r4(a000) = (15, 14, 14)T, s∗1(a000) = a010, r4(a011) = (16, 14, 14)T, s∗1(a011) = a010

r4(a022) = (15, 19, 19)T, s∗3(a022) = a122.

Step 5. Consider every state in P5 = {a102, a001, a012}. The results are

r5(a102) = (19, 31, 23)T, s∗2(a102) = a101, r5(a001) = (20, 28, 22)T, s∗3(a001) = a101.

For a012 ∈ P5, since a012 ∈ A2, and h2(a012, a022, a122, a121, a120, b12) = 24 = h2(a012, a112, a122, a121, a120,

b12), Player 2 can arbitrarily choose a112 or a022. If Player 2 chooses state a022, denote r5(a012) =
(21, 24, 21)T. Then s∗2(a012) = a022.

Step 6. Now consider the unique state of rank 6, a002 ∈ P6. We have

γ′〈a002〉 = Z0〈a002〉 ∪ Z1〈a002〉 ∪ Z2〈a002〉 ∪ Z3〈a002〉 ∪ Z4〈a002〉 ∪ Z5〈a002〉,

where Z0〈a002〉 = {b1, b2, b3}, Z1〈a002〉 = Z2〈a002〉 = Z3〈a002〉 = Z4〈a002〉 = ∅, Z5〈a002〉 = {a102, a001,

a012}. For a002 ∈ A1, noting r6(a002) = (23, 28, 26)T, we get s∗1(a002) = a012.
Finally we get the absolute equilibrium of the game, which is noted by bold black line in Figure 1.

6 Conclusion

The result of this paper is valid for the random finite connected graph, no matter it is two dimension or
three dimension (where the dimension is usually in the sense of Euclid space). Of course the result includes
the game tree we have known. We choose the three-dimensional mesh-like graph in this paper only because
the initial inspiration comes from the exception for carrying out game’s research on three-dimensional
space. Moreover, on usual dynamic games, usually the absolute equilibrium is perfect equilibrium. But
from a different aspect, actually the absolute equilibrium is stronger than the perfect equilibrium.

The inductive method of the rank of state on the graph used in this paper will show its power on the
research of game theory on complex graph. For simple structure graph, by listing all likely appeared play,
we can always transform the game graph to the game tree. Then we can solve it by common method
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[4]. However, considering games on the three-dimensional connected graph, the complex computation
led by the large amounts of play can hinder and conceal some important research for the nature of
game [2]. We have reasons to believe that the arithmetic of the absolute equilibrium about the game
for limited connected graph established by this paper can be popularized to partial cooperation game of
finite three-dimensional graph with variable coalitional structure and so on.
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