
Science in China Series A: Mathematics
Nov., 2009, Vol. 52, No. 11, 2447–2458
www.scichina.com math.scichina.com
www.springer.com/scp www.springerlink.com

Estimates for the zeros of differences of meromor-
phic functions

CHEN ZongXuan1 & SHON Kwang Ho2†

1 School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
2 Department of Mathematics, College of Natural Sciences, Pusan National University, Pusan 609-735, Korea

(email: chzx@vip.sina.com, khshon@pusan.ac.kr)

Abstract Let f be a transcendental meromorphic function and g(z) = f(z + c1) + f(z + c2) −
2f(z) and g2(z) = f(z + c1) · f(z + c2) − f2(z). The exponents of convergence of zeros of differences

g(z), g2(z), g(z)/f(z), and g2(z)/f2(z) are estimated accurately.
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1 Introduction and results

We use the basic notions of Nevanlinna’s theory in this work (see e.g., [1–3]). In addition, we
use notations σ(f) to denote the order of growth of meromorphic function f(z); λ(f) and λ(f)
to denote the exponents of the convergence of the zero-sequence and the sequence of distinct
zeros of f(z), respectively.

Recently, a number of papers (including [4–11]) have focused on complex difference equa-
tions and differences analogues of Nevanlinna’s theory. In [5], Bergweiler and Langley first
investigated the existence of zeros of Δf(z) and Δf(z)/f(z), and obtained many profound and
significative results. The results may be viewed as discrete analogues of the following existing
theorem on the zeros of f ′.

Theorem A[12−14]. Let f be transcendental and meromorphic in the plane with

lim
r→∞ inf

T (r, f)
r

= 0, (1.1)

then f ′ has infinitely many zeros.

Theorem A is sharp, as shown by ez, tan z and examples of arbitrary order greater than 1
constructed in [15]. For f as in the hypotheses of Theorem A it follows from Hurwitz’ theorem
that if z1 is a zero of f ′ then the difference f(z + c)− f(z) has a zero near z1 for all sufficiently
small c ∈ C\{0}. This makes it natural to ask whether the difference f(z + c) − f(z), for
such functions f , must always have infinitely many zeros or not. In [5], Bergeiler and Langley
answered this problem, and obtained the following Theorem B, Theorem C and Lemma A.
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Theorem B[5]. There exists δ0 ∈ (0, 1
2 ) with the following property. Let f be a transcendental

entire function with order σ(f) � σ < 1
2 + δ0 < 1. Then

H(z) =
f(z + 1) − f(z)

f(z)

has infinitely many zeros.

Theorem C[5]. Let f be a function transcendental and meromorphic of lower order μ(f) < 1
in the plane. Let c ∈ C\{0} be such that at most finitely many poles zj , zk of f satisfy zj−zk = c.
Then h(z) = f(z + c) − f(z) has infinitely many zeros.

Lemma A[5]. Let f be a function transcendental and meromorphic in the plane which
satisfies (1.1), and let h = f(z+1)−f(z) and H = h/f . Then h and H are both transcendental.

For an entire function f(z), evidently h(z) = f(z + 1) − f(z) has infinitely many zeros by
Lemma A.

The above results show the existence of zeros of differences and divided differences in the
complex plane well.

Recently, in a number of papers, differences of the forms f(zj + c1) + f(zj + c2), f(zj + c1) ·
f(zj + c2) often appear (see [4, 6, 9, 11]).

Thus, two natural questions are:
(i) What are the exponents of convergence of zeros of differences and divided differences?

In other words, how do we estimate the amount of zeros of differences and divided differences
more precisely?

(ii) What can be said about zeros of differences g(z) = f(z + c1) + f(z + c2) − 2f(z) and
g2(z) = f(z + c1) · f(z + c2) − f2(z)?

In this study, we consider the aforementioned questions. We let

g(z) = f(z + c1) + f(z + c2) − 2f(z) and g2(z) = f(z + c1) · f(z + c2) − f2(z).

If c2 = 0, then g(z) and g2(z) become the problem on f(z + 1) − f(z). Hence, discussions on
g(z) and g2(z) are more general.

We will prove the following theorems.

Theorem 1.1. Let f be a transcendental entire function of order of growth σ(f) = σ < 1.
Let c1, c2 ∈ C\{0} be such that c1 + c2 �= 0. Then g(z) has infinitely many zeros and satisfies
λ(g) = σ(g) = σ.

In particular, if f has at most finitely many zeros zj satisfying f(zj + c1) + f(zj + c2) = 0,
then G(z) = g(z)/f(z) satisfies λ(G) = σ(G) = σ.

Theorem 1.2. Let f, c1, c2 satisfy the conditions of Theorem 1.1 Then g2(z) has infinitely
many zeros and satisfies λ(g2) = σ(g2) = σ.

In particular, if f has at most finitely many zeros zj, zs satisfying zj − zs = c1 or c2, then
G2(z) = g2(z)/f2(z) has infinitely many zeros and satisfies λ(G2) = σ(G2) = σ.

Theorem 1.3. Let f be a transcendental and meromorphic function of the order of growth
σ(f) = σ < 1. Let c1, c2 ∈ C\{0} be such that c1 + c2 �= 0. If f has at most finitely many poles
bj , bs satisfying

bj − bs = k1c1 + k2c2 (kd = 0,±1, d = 1, 2),
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then g(z) has infinitely many zeros and satisfies λ(g) = σ(g) = σ.
In particular, if f has at most finitely many zeros aj satisfying f(aj + c1) + f(aj + c2) = 0,

then G(z) = g(z)/f(z) has infinitely many zeros and satisfies λ(G) = σ(G) = σ.

Theorem 1.4. Let f, c1, c2 satisfy the conditions of Theorem 1.3. If f has at most finitely
many poles bj satisfying

f(bj + k1c1 + k2c2) = 0,∞ (kd = 0,±1, d = 1, 2),

then g2(z) has infinitely many zeros and satisfies λ(g2) = σ(g2) = σ.
In particular, if f has at most finitely many zeros aj , as satisfying aj − as = c1 or c2, then

G2(z) = g2(z)/f2(z) has infinitely many zeros and satisfies λ(G2) = σ(G2) = σ.

In the above theorems, if we suppose c2 = 0, then the following theorems are more easily
obtained. So, we omit their proofs.

Theorem 1.5. Let f be a transcendental entire function of the order of growth σ(f) = σ < 1.
Let c ∈ C\{0}. Then h(z) = f(z + c) − f(z) has infinitely many zeros and satisfies λ(h) =
σ(h) = σ.

In particular, if f has at most finitely many zeros zj , zs satisfying zj − zs = c, then H(z) =
h(z)/f(z) has infinitely many zeros and satisfies λ(H) = σ(H) = σ.

Theorem 1.6. Let f be a transcendental and meromorphic function of order of growth σ(f) =
σ < 1 and λ( 1

f ) < σ. Let c ∈ C\{0}. If f has at most finitely many poles bj, bs satisfying
bj − bs = c then h(z) = f(z + c)− f(z) has infinitely many zeros and satisfies λ(h) = σ(h) = σ.

In particular, if f has at most finitely many zeros aj , as satisfying aj − as = c, then H(z) =
h(z)/f(z) has infinitely many zeros and satisfies λ(H) = σ(H) = σ.

Remark 1.1. Suppose that f is a transcendental and meromorphic function of the order
of growth σ(f) = σ < 1. Set hj(z) = f(z + cj) − f(z), cj ∈ C\{0}, j = 1, 2. Then g(z) =
h1(z) + h2(z), g2(z) = h1(z)h2(z) + f(z)[h1(z) + h2(z)]. From Theorems 1.3, 1.4, 1.6 and latter
their proofs, we know that g(z), g2(z) are greatly different from h1(z). First, although h1(z)
is simpler than g(z) and g2(z), we need to add a condition λ(1/f) < σ to prove λ(h1) = σ in
the proof of Theorem 1.6. But the condition is not required in the proof of Theorems 1.3 and
1.4. Second, the proofs that g(z) and g2(z) are transcendental are more difficult than the case
of h1(z) (see the proofs of Lemmas 2.2, 3.1, 3.2 and Lemma A[5]).

2 Proof of Theorem 1.1

For proofs of Theorems 1.1–1.4, we need to deal with the term ε-set.
Remark 2.1 (On the ε-set). Following Hayman[16,pp. 75−76], we define an ε-set E to be a
countable union of open discs, not containing the origin and subtending angles at the origin,
whose sum is finite. If E is an ε-set then the set of r � 1 for which the circle S(0, r) meets
E has finite logarithmic measure, and for almost all real θ the intersection of E with the ray
arg z = θ is bounded.

We need the following lemma to prove Theorem 1.1, Lemmas 2.2 and 3.2.

Lemma 2.1[5]. Let f be transcendental and meromorphic of order less than 1 in the plane.
Let h > 0. Then, there exists an ε-set E such that

f(z + c) − f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C\E,
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uniformly in c for |c| � h.

We need also the following lemma to prove Theorems 1.1 and 1.3. The proof of Lemma 2.2
is greatly different from that of Lemma A[5].

Lemma 2.2. Let f be a transcendental and meromorphic function of order less than 1. Let
c1, c2 ∈ C\{0} be such that c1+c2 �= 0. Then g(z) and G(z) = g(z)/f(z) are both transcendental.

Proof. First, we prove that g(z) is transcendental. Without loss of generality, it may be
assumed that c1 = 1, thus, 1 + c2 �= 0 and

g(z) = f(z + 1) + f(z + c2) − 2f(z).

Assume that g(z) is a rational function. Then

f(z + 1) + f(z + c2) = R(z) + 2f(z), (2.1)

where R(z) is a rational function. Suppose that a set A = {xj + iyj | j = 1, . . . , s} consists of
all poles of R(z), and set M = max{|xj | + |yj | + 1 + |c2| : 1 � j � s}. Then there is no pole
of R(z) in regions D1 = {z : Re z > M}, D2 = {z : Re z < −M}, D3 = {z : Im z > M} and
D4 = {z : Im z < −M}.

Now we prove that f(z) has at most finitely many poles. Suppose to the contrary. Then
there is some Dj, say D1, in which there are infinitely many poles. So, there is a pole z0 of f(z)
in D1. If Re c2 � 0, then for any n, m ∈ N0 (N0 = {0, 1, 2, . . .}), zn,m = z0 + n + mc2 ∈ D1,

i.e., zn,m is not a pole of R(z). By (2.1), we can see that f(z) has a sequence of poles which is
of the form

{zn,m = z0 + n + mc2, n, m ∈ N
0, at least one of n, m gets all over 1, 2, . . .}.

So that λ(1/f) = 1. This is a contradiction.
If Re c2 < 0, then we can write (2.1) to

f(z + 1 − c2) − 2f(z − c2) = R(z − c2) − f(z). (2.2)

For any n, m ∈ N0, z′n,m = z0 + n−mc2 ∈ D1, and z′n,m is not a pole of R(z). By (2.2), we can
see that f(z) has a sequence of poles which is of the form

{z′
n,m = z0 + n − mc2, n, m ∈ N

0, at least one of n, m gets all over 1, 2, . . .}.

So that λ(1/f) = 1. This is also a contradiction.
If in D2 (or D3, or D4), f has infinitely many poles, we use the similar method to obtain a

contradiction. Hence f has at most finitely many poles.
Thus, there exists a rational function R1(z) such that h(z) = f(z)−R1(z) is a transcendental

entire function. By (2.1), we obtain that

h(z + 1) + h(z + c2) = 2h(z) + P (z), (2.3)

where
P (z) = R(z) + 2R1(z) − R1(z + 1) − R1(z + c2).
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Since h(z + 1), h(z + c2) and h(z) are entire functions, we see P (z) is a polynomial. By
Lemma 2.1, we see that there is an ε-set E such that as z → ∞ in C\E,

h(z + 1) − h(z) = h′(z)(1 + o(1)), h(z + c2) − h(z) = c2h
′(z)(1 + o(1)). (2.4)

If P (z) ≡ 0, by (2.3) and (2.4), we get as z → ∞ in C\E,

h′(z)(1 + o(1)) = −c2h
′(z)(1 + o(1)).

Since h′(z) �= 0 (as z �∈ E), we have 1 + c2 = 0. This contradicts our assumption. Hence
P (z) �≡ 0. Set deg P = d � 0. Then P (z) = azd(1 + o(1)) where a (�= 0) is a constant. By (2.3)
and (2.4), we obtain that

(1 + c2)h′(z)(1 + o(1)) = azd(1 + o(1)), as z → ∞ in C\E.

This is a contradiction since h′(z) is transcendental.
Second, we prove that G(z) is transcendental. Suppose that G(z) is a rational function.

Then
f(z + 1) + f(z + c2) − 2f(z)

f(z)
= R0(z),

where R0(z) is a rational function. By Lemma 2.1, we see that there is an ε-set E1 such that
as z → ∞ in C\E1,

(1 + c2)f ′(z)(1 + o(1))
f(z)

= R0(z). (2.5)

Since f(z) is transcendental and has either infinitely many zeros or infinitely many poles, we
see that f ′(z)/f(z) must be transcendental. Thus (2.5) is a contradiction.

Proof of Theorem 1.1. By Lemma 2.2, we see that g(z) is a transcendental function. By
Lemma 2.1, we see that there is an ε-set E such that as z → ∞ in C\E,

g(z) = (c1 + c2)f ′(z)(1 + o(1)). (2.6)

Set
H = {|z| : z ∈ E, or g(z) = 0, or f ′(z) = 0}.

Then the linear measure of H is finite. On |z| = r �∈ H, entire functions g(z) and f ′(z) have no
zero. By (2.6),

|g(z) − (c1 + c2)f ′(z)| = |o(f ′(z))| < |g(z)| + |(c1 + c2)f ′(z)|.

Thus g(z) and −(c1+c2)f ′(z) satisfy the conditions of Rouché’s theorem. By Rouché’s theorem,
we obtain that for |z| = r �∈ H ,

n

(
r,

1
g

)
− n(r, g) = n

(
r,

1
f ′

)
− n(r, f ′).

Since f is a transcendental entire function and σ(f) < 1, we obtain that

λ(g) = λ(f ′) = σ(f ′) = σ(f) = σ. (2.7)
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Now we prove that λ(G) = σ(G) = σ(f) = σ. Suppose that zj is a zero of g(z), then there
are two cases: (1) f(zj) = 0; (2) f(zj) �= 0. If f(zj) = 0, then f(zj + c1) + f(zj + c2) = 0. By
the hypotheses of the theorem, at most there exist finitely many such points. If f(zj) �= 0, then
zj must be a zero of G(z). Hence

n

(
r,

1
G

)
= n

(
r,

1
g

)
+ O(1). (2.8)

Thus, (2.7) and (2.8) show λ(G) = σ(G) = σ(f) = σ. Theorem 1.1 is thus proved.

3 Proof of Theorem 1.2

To prove Theorems 1.2 and 1.4, we need the following Lemmas 3.1 and 3.2. The proofs of
Lemmas 3.1 and 3.2 are greatly different from Lemmas A and 2.2.

Lemma 3.1. Let f be a transcendental and meromorphic function of order less than 1. Let
c1, c2 ∈ C\{0} be such that c1 + c2 �= 0. If g2(z) is a rational function, then f(z) has at most
finitely many poles.

Proof. Without loss of generality, it may be assumed that c1 = 1, thus, 1 + c2 �= 0 and

f(z + 1) · f(z + c2) = R(z) + f2(z), (3.1)

where R(z) is a rational function. Set

B = {bj : R(bj) = ∞, j = 1, 2, . . . , s}, M = 2 max{|bj| : j = 1, 2, . . . , s} + 1,

and
D1 = {z : Re z > M}, D2 = {z : Re z < −M},
D3 = {z : Im z > M}, D4 = {z : Im z < −M}.

Suppose that f(z) has infinitely many poles. Then there exists at least one of Dj(j =
1, . . . , 4), say D1, such that f(z) has infinitely many poles in D1. Assume a set A = {zj}
consists of all poles zj of f(z) in D1, and the poles zj satisfy M � |z1| � |z2| � · · · . Then there
exist only the following two cases.

Case 1. There exists pole zd ∈ A such that for any bj ∈ B, it is not of the form zd +n+mc2

(for any n, m ∈ N
0). So that R(zd + n + mc2) �= ∞. Thus, by (3.1), we see that there is one

infinite sequence A1 = {zd + n + mc2} such that each zd + n + mc2 ∈ A1 is a pole of f(z), and
there exists at least one of n, m, we say m, such that m gets all over 1, 2, . . . Hence λ( 1

f ) = 1.
This contradicts our assumption.

Case 2. For all zj ∈ A, there exists some btj ∈ B satisfying btj = zj + nj + mjc2 (for some
nj , mj ∈ N0). Since Re zj > M, and Re btj < M, we see Re c2 < 0. Since A is an infinite set
and B is a finite set, we see that there is a bj ∈ B, say b1, satisfying

b1 = z1 + n1 + m1c2 = z2 + n2 + m2c2 = · · · .

We may rearrange zj + nj + mjc2 according to n1 � n2 � · · · , m1 � m2 � · · · , and still use
original notations. Thus, z2 = z1+(n1−n2)+(m1−m2)c2, z3 = z1+(n1−n3)+(m1−m3)c2, . . .

and zj (j = 2, 3, . . .) satisfy

0 � n1 − n2 � n1 − n3 � · · · , 0 � m1 − m2 � m1 − m3 � · · · .



Estimates for the zeros of differences of meromorphic functions 2453

Now set
z3ij = z1 + (n1 − n3 + i) + (m1 − m3 + j)c2,

where

i = 0, 1, . . . , (n1 − n2) − (n1 − n3) − 1,

j = 0, 1, . . . , (m1 − m2) − (m1 − m3) − 1.

Since Re z3ij (Im z3ij) is between Re z2 (Im z2) and Re z3 (Im z3) respectively, we see that
z3ij ∈ D1, i.e., R(z3ij) �= ∞. Since f(z3) = ∞ and R(z3ij) �= ∞, by (3.1), we see that either
z310 or z301 is a pole of f(z). If z310 is the pole of f(z), then z320 or z311 is a pole of f(z); if
z301 is the pole of f(z), then z311 or z302 is a pole of f(z); · · · .

Thus from these poles, we see that at least one of i, j, we say j, gets all over 0, 1, . . . , (m1 −
m2) − (m1 − m3) − 1.

We may repeat the above processes to z4 → z3; z5 → z4; · · · . We can see that f(z) has
infinitely many poles being of the form

z1 + (n1 − n2 + i) + (m1 − m2 + j)c2

and at least one of i, j, we say j, gets all over 0, 1, . . . Thus, λ( 1
f ) = 1 which contradicts our

assumption.

Lemma 3.2. Let f be a transcendental and meromorphic function of order less than 1. Let
c1, c2 ∈ C\{0} be such that c1 + c2 �= 0. Then g2(z) is transcendental.

Proof. Assume
f(z + c1) · f(z + c2) − f2(z) = R(z), (3.2)

where R(z) is a rational function. By Lemma 3.1, we see that f has at most finitely many
poles. By Lemma 2.1, we know that there exists an ε-set E, such that as z → ∞ in C\E,

f(z + c1) − f(z) = c1f
′(z)(1 + o(1)), f(z + c2) − f(z) = c2f

′(z)(1 + o(1)). (3.3)

By (3.2) and (3.3), we obtain that

f ′(z) [c1c2f
′(z)(1 + o(1)) + (c1 + c2)f(z)(1 + o(1))] = R(z). (3.4)

Set f(z) = f0(z)/d(z), where d(z) is a polynomial formed by all poles of f(z), f0(z) is a
transcendental entire function with σ(f0) = σ(f) = σ < 1. From the Wiman-Valiron theory
(see [2, 17]), we see that there exists a subset F ⊂ (1,∞) of finite logarithmic measure such
that for large r �∈ F, for all z satisfying |z| = r and |f0(z)| = M(r, f0),

f ′
0(z)

f0(z)
=

ν(r)
z

(1 + o(1)), (3.5)

where ν(r) is the central index of f0(z). By (3.5) and f(z) = f0(z)/d(z), we use the same
method as in [18], and can see that for all z satisfying |z| = r and |f0(z)| = M(r, f0),

f ′(z)
f(z)

=
f ′
0(z)

f0(z)
− d′(z)

d(z)
=

ν(r)
z

(1 + o(1)). (3.6)
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Set F1 = {|z| : z ∈ E}. Since E is an ε-set, F1 is of finite logarithmic measure. By (3.4) and
(3.6), we obtain that for all z satisfying |z| = r �∈ [0, 1] ∪ F ∪ F1 and |f0(z)| = M(r, f0),

ν(r)
z

(1 + o(1))
[
c1c2

ν(r)
z

(1 + o(1)) + (c1 + c2)(1 + o(1))
]

=
R(z)d2(z)
[M(r, f0)]2

, (3.7)

i.e.,

c1c2
ν(r)
z

(1 + o(1)) + (c1 + c2)(1 + o(1)) =
R(z)d2(z)z
[M(r, f0)]2

1
ν(r)

(1 + o(1)). (3.8)

Since σ(f0) = σ < 1 and f0(z) is transcendental, we see

ν(r) → ∞,
ν(r)
z

→ 0 (z → ∞) (3.9)

and
R(z)d2(z)z
[M(r, f0)]2

1
ν(r)

(1 + o(1)) → 0 (z → ∞). (3.10)

By (3.9), (3.10) and c1+c2 �= 0, we see that (3.8) is a contradiction. Hence g(z) is transcendental.

Proof of Theorem 1.2. First, we prove that λ(g2) = σ(g2) = σ(f) = σ.
By Lemma 3.2 and the fact that f is transcendental, we see that g2(z) is a transcendental

entire function. Thus, σ(g2) � σ(f). If σ(g2) < σ(f), then there exist real numbers δ, α

satisfying
σ(g2) < δ < α < σ(f) = σ. (3.11)

Using the same method as in the proof of Lemma 3.2, we can obtain

ν(r)
z

(1 + o(1))
[
c1c2

ν(r)
z

(1 + o(1)) + (c1 + c2)(1 + o(1))
]

=
g2(z)

[M(r, f)]2
, (3.12)

where ν(r) is the central index of f(z), z satisfies |z| = r �∈ [0, 1] ∪ F ∪ F1 and |f(z)| =
M(r, f), F, F1 and E are defined as in the proof of Lemma 3.2. By (3.11), there exists a
sequence {rn} (rn → ∞) such that for any given ε (0 < ε < 1 − σ),

M(rn, f) > eαrn , ν(rn) < rσ+ε
n , |g2(zn)| < eδrn (|zn| = rn). (3.13)

By (3.13) and c1 + c2 �= 0, we see that (3.12) is a contradiction. Hence σ(g2) = σ(f), so,
λ(g2) = σ(g2) = σ(f).

Second, we prove that λ(G2) = σ(G2) = σ(f) = σ.

By G2(z) = g2(z)/f2(z) and the fact that f is an entire function, we see that if z0 is a zero of
G2(z), then z0 is also a zero of g2(z). If z0 is a zero of g2(z) and is not a zero of G2(z), then z0

must be a zero of f(z). Thus f(z0 + c1) = 0 or f(z0 + c2) = 0, by the condition of the theorem,
f(z) has only finitely many such zeros z0, so that

n

(
r,

1
G2

)
= n

(
r,

1
g2

)
+ O(1).

Thus Theorem 1.2 is proved.

4 Proof of Theorem 1.3

We need the following lemma. We may use the number c instead of 1 in Lemma 3.6 of [5].
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Lemma 4.1[5]. Let f be a function transcendental and meromorphic in the plane of the lower
order μ(f) < μ < 1. Then, there exists arbitrarily large R with the following properties. First,
T (32R, f ′) < Rμ. Second, there exists a set JR ⊆ [R/2, R] of linear measure (1− o(1))R/2 such
that, for r ∈ JR,

f(z + c) − f(z) ∼ cf ′(z) on |z| = r.

Proof of Theorem 1.3. Let f and c1, c2 be as in the hypotheses. By Lemma 2.2, we see g(z)
is transcendental. By Lemma 4.1, there exist arbitrarily large R and σ1 (σ < σ1 < 1) satisfying

T (32R, f ′) < Rσ1 , (4.1)

and there exists a set JR ⊂ [R/2, R] of linear measure (1 − o(1))R/2 such that for r ∈ JR,

f(z + c1) + f(z + c2) − 2f(z) = (c1 + c2)f ′(z)(1 + o(1)) on |z| = r. (4.2)

Let ε-set E contain all zeros and poles of g(z), f(z), f(z + c1), f(z + c2), f ′(z), and the set
for R ∈ (1,∞),

ER = {r : z ∈ E, |z| = r < R}, E∞ = {r : z ∈ E, |z| = r < ∞}.

Then by the property of ε-set and σ1 < 1, we see that E∞ has finite linear measure and the
linear measure of ER satisfies m(ER) = o(1)R/2 for sufficiently large R.

Let

FR =
{

r : r ∈
[
R

2
, R

]
, n(r, f) = n(r − (|c1| + |c2|), f)

}
. (4.3)

We note that there are at most o(R) points qk ∈ [R/3, R] at which n(t, f) is discontinuous by
(4.1), and if r ∈ [R/2, R] is such that n(t, f) > n(t− (|c1|+ |c2|), f), then r ∈ [qk, qk + |c1|+ |c2|]
for some k. So, FR has linear measure

m(FR) � (1 − o(1))
R

2
. (4.4)

By (4.2)–(4.4), we see that there exists r ∈ (FR∩JR)\ER such that g(z), f(z), f(z+c1), f(z+c2)
and f ′(z) have no zero and pole on |z| = r.

Without loss of generality, we may assume that bj + k1c1 + k2c2 (kd = 0,±1, d = 1, 2) are
not poles for all poles bj of f(z).

Now by the hypotheses, there exists r0 > 0, independent of R and r, such that if f(z) has
a pole of multiplicity m at z0 and r0 � |z0| � r − (|c1| + |c2|), then by the conditions of the
theorem and the expressions of g(z), g(z−c1), g(z−c2), we see that g(z) has poles at z0, z0−c1

and z0 − c2 of multiplicity m respectively. So,

n(r, g) � 3n(r − (|c1| + |c2|), f) = 3n(r, f) as r ∈ (FR ∩ JR)\ER. (4.5)

By (4.2) and the fact that g(z) and f ′(z) have no zero and pole on |z| = r ∈ (FR ∩ JR)\ER, we
have

|g(z) − (c1 + c2)f ′(z)| = |o(1)(c1 + c2)f ′(z)| < |g(z)| + |(c1 + c2)f ′(z)|. (4.6)
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Thus, g(z) and −(c1 +c2)f ′(z) satisfy the conditions of Rouché’s theorem. By (4.2), (4.3), (4.5)
and Rouché’s theorem, we deduce that

n

(
r,

1
g

)
= n

(
r,

1
f ′

)
− n(r, f ′) + n(r, g)

� n

(
r,

1
f ′

)
− n(r, f ′) + 3 n(r, f) + O(1)

� n

(
r,

1
f ′

)
+ n(r, f) + O(1) (4.7)

for |z| = r ∈ (FR ∩ JR)\ER. If λ(1/f) < σ(f), then λ(1/f ′) < σ(f), so that λ(f ′) = σ(f).
Hence λ(g) = σ(g) = σ(f). If λ(f ′) < σ(f ′) = σ(f), then λ(1/f ′) = σ(f ′) = σ(f), so that
λ(1/f) = σ(f). Hence λ(g) = σ(g) = σ(f).

Finally, using the same method as in the proof of Theorem 1.2, we can prove that if f(z) has
at most finitely many zeros aj satisfying f(aj + c1) + f(aj + c2) = 0, then G(z) has infinitely
many zeros and λ(G) = σ(G) = σ(f). Thus Theorem 1.3 is proved.

5 Proof of Theorem 1.4

The proof of Theorem 1.4 is different from that of Theorem 1.3. To estimate the exponent of
convergence of zeros of g2(z) more precisely, we need the following lemma.

Lemma 5.1. Let f be a transcendental and meromorphic function of the order of growth
σ(f) = σ < 1. Let a, b ∈ C\{0}. If λ(1/f) = λ(1/f), then max{λ(f ′), λ(af ′+bf)} = σ(f) = σ.

Proof. If we suppose that λ(f ′) < σ, then λ
(

1
f ′

)
= σ. So, by the condition of the lemma, we

have

λ

(
1
f ′

)
= λ

(
1
f

)
= λ

(
1
f

)
= σ(f) = σ. (5.1)

Set

f(z) =
p(z)
q(z)

, f ′(z) =
p1(z)
q1(z)

,

where p(z) (p1(z)) and q(z) (q1(z)) are canonical products (or polynomials) formed by the zeros
and poles of f(z) (f ′(z)) respectively, such that p(z) and q(z) (p1(z) and q1(z)) are irreducible.
By λ(f ′) < σ and (5.1), we have

σ(q) = σ(q1) = σ(f), λ(p1) = σ(p1) < σ(f).

Since a pole z0 of f(z) with multiplicity m must be the pole of f ′(z) with multiplicity m + 1,
we can assume q1(z) = q(z)d(z), where d(z) is canonical product formed by different poles of
f(z). By (5.1), we see that

σ(d) = λ(d) = λ

(
1
f

)
= σ(f) = σ. (5.2)

Since

af ′(z) + bf(z) =
ap1(z) + bp(z)d(z)

q1(z)
,
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we see that if z0 is a pole of f ′(z) (i.e., a zero of q1(z)), then d(z0) = 0, but p1(z0) �= 0. So,
z0 is not a zero of ap1(z) + bp(z)d(z). Hence ap1(z) + bp(z)d(z) and q1(z) are irreducible. By
(5.2), we get that

λ(af ′ + bf) = λ(ap1 + bpd) = σ(ap1 + bpd) � σ(d) = σ(f).

Thus, Lemma 5.1 is proved.

Proof of Theorem 1.4. Set

F (z) = f ′(z)[c1c2f
′(z) + (c1 + c2)f(z)]. (5.3)

By Lemma 3.2, we see that g2(z) is transcendental. Using the similar method to the proof of
Theorem 1.3, we can obtain that as |z| → ∞ and |z| = r ∈ JR, g2(z) = F (z)(1 + o(1)) and for
|z| = r ∈ (FR ∩ JR)\ER,

n

(
r,

1
g2

)
= n

(
r,

1
F

)
− n(r, F ) + n(r, g2), (5.4)

where FR, JR, E and ER are defined as in the proof of Theorem 1.3, E contains all zeros and
poles of g2, F, f, f(z + c1), f(z + c2) and f ′.

By the hypotheses, there exists r0 > 0, independent of R and r, such that if f(z) has a pole
of multiplicity m at z0 and r0 � |z0| � r − (|c1| + |c2|), then by the conditions of the theorem
and the expressions of g2(z), g2(z − c1), g2(z − c2), we see that g2(z) has poles at z0, z0 − c1

and z0 − c2 of multiplicity 2m, m, m respectively. So,

n(r, g2) � 4n(r − (|c1| + |c2|), f) + O(1) = 4n(r, f) + O(1). (5.5)

Since F (z) has a pole at z0 of multiplicity 2m + 2, we have

n(r, F ) = 2n(r, f) + 2n(r, f). (5.6)

By (5.3), we have

n

(
r,

1
F

)
= n

(
r,

1
f ′

)
+ n

(
r,

1
c1c2f ′ + (c1 + c2)f

)
. (5.7)

By (5.4)–(5.7), we deduce that

n

(
r,

1
g2

)
� n

(
r,

1
f ′

)
+ n

(
r,

1
c1c2f ′ + (c1 + c2)f

)
+ 2n(r, f) − 2n(r, f) + O(1). (5.8)

If λ
(

1
f

)
< λ

(
1
f

)
, then

n(r, f) = o(n(r, f)). (5.9)

And (5.8) and (5.9) give that

n

(
r,

1
g2

)
� n

(
r,

1
f ′

)
+ n(r, f) + O(1). (5.10)

Using the same method as in the proof of Theorem 1.3, by (5.10), we can get λ(g2) = σ(g2) =
σ(f).
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If λ
(

1
f

)
= λ

(
1
f

)
, then by (5.8), we get

n

(
r,

1
g2

)
� n

(
r,

1
f ′

)
+ n

(
r,

1
c1c2f ′ + (c1 + c2)f

)
+ O(1). (5.11)

By Lemma 5.1 and (5.11), we derive λ(g2) = σ(g2) = σ(f).
Finally, using the same method as in the proof of Theorem 1.3, we can prove λ(G2) = σ(f).
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