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Abstract The purpose of this paper is to provide a random duality theory for the further develop-

ment of the theory of random conjugate spaces for random normed modules. First, the complicated

stratification structure of a module over the algebra L(µ, K) frequently makes our investigations into

random duality theory considerably different from the corresponding ones into classical duality theory,

thus in this paper we have to first begin in overcoming several substantial obstacles to the study of

stratification structure on random locally convex modules. Then, we give the representation theorem

of weakly continuous canonical module homomorphisms, the theorem of existence of random Mackey

structure, and the random bipolar theorem with respect to a regular random duality pair together with

some important random compatible invariants.
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1 Introduction

In functional analysis, classical duality theory makes a locally convex space and its conjugate
(or dual) space enjoy a perfect symmetry (see [1, Chapter 13]). A random locally convex
module (also termed as a random seminormed module in [2–4]), as a random generalization of
a locally convex space, is playing the same role in random metric theory as a locally convex
space has played in functional analysis (see [5]), in particular the theory of random conjugate
spaces has played an important role in the development of random locally convex modules just
as the theory of classical conjugate spaces has done in the development of locally convex spaces.
Thus, only speaking logically, there should be a successful random duality theory to serve for
a random locally convex module and its random conjugate space. In the sequel of this section,
we will briefly elucidate why random duality theory can play a possibly important role in some
interplaying disciplines of functional analysis and probability theory.

Since the book [6] by Schweizer and Sklar was published in 1983, the subject on probabilistic
metric spaces has obtained great advances in all the directions (see [7]). Among the directions,
random metric theory has grown to a rapidly developed and deep whole. The original notions
of random metric spaces and random normed spaces were presented in order to provide a
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measure-theoretic approach to the development of probabilistic metric and normed spaces (see
[6, Chapters 9 and 15]); about 1995, the development of random metric and normed spaces in the
direction of functional analysis led Guo directly to the respective new versions of random metric
and normed spaces (see [8] for details). These new versions have made us successfully introduce
the crucial concepts of random normed modules and random inner product modules together
with the definitive concept of a random conjugate space of a random normed space[8,9]. Since the
theory of random conjugate spaces on random normed modules behaves extremely well as the
theory of classical conjugate spaces on normed spaces, it has obtained a profound development
in the past ten years[10−14] together with its applications to some topics in functional analysis
(see [11–13, 15, 16]) and random analysis (see [11, 16]). In particular the random weak topology
for a random normed module and the random weak star topology for a random conjugate
space of a random normed space were deeply studied by Guo in [14]. There is no doubt that
the further development of these topics strongly suggests that people should deeply study a
random locally convex module and its random conjugate space.

Let (Ω,A, μ) be a σ-finite measure space, K the scalar field of real numbers or complex
numbers and S a random locally convex module over K with base (Ω, A , μ) such that S has
full support (see the second section of this paper). Then we showed in [17] that S admits a
nontrivial continuous linear functional iff there exists a μ-atom in A, and that S admits enough
nontrivial continuous linear functionals iff A is essentially generated by at most countably
many disjoint μ-atoms, that is, A is essentially purely μ-atomic (see [14, 17] for the related
terminologies). In fact, the method of proof in [17] also implied that S is locally convex (or
has a proper convex open set) iff A is essentially purely μ-atomic (correspondingly, there exists
a μ-atom in A). So the theory of traditional conjugate spaces can not universally apply to
the development of random locally convex modules. Fortunately, the Hahn-Banach theorem
of random linear functionals guarantees that there always exist enough continuous canonical
module homomorphisms on a nontrivial random locally convex module (see [3], also the second
section of this paper), which leads to the theory of a random conjugate space for a random
locally convex module. The theory of a random conjugate space will, without doubt, occupy
a crucial place in the further development of a random locally convex module, which in turn
motivates us to develop a successful random duality theory.

The remainder of this paper is organized as follows: Section 2 will briefly list some known
basic facts about random locally convex modules together with some new lemmas, which are all
necessary preliminaries for the proofs of main results of this paper. Among them, important are
Proposition 2.7, Corollary 2.1, Lemma 2.2 and Proposition 2.8; Section 3 will present and prove
our main results, the most important of which are Theorem 3.1, Theorem 3.2 and Theorem 3.4.

2 Preliminaries

Throughout the sequel of this paper, (Ω, A , μ) always denotes a given σ-finite space and K the
scalar field R of real numbers or C of complex numbers unless stated otherwise.

Let us recall: if (B, ‖·‖) is a normed space over K, then a mapping from Ω to B is called a B-
valued μ-measurable function on (Ω,A , μ) if it is the μ-almost everywhere limit of a sequence
of B-valued simple A -measurable functions on (Ω, A , μ). The definition of a μ-measurable
function coincides with that given in [18] since μ is σ-finite. Denote by L(μ, B) the linear
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space of μ-equivalence classes of B-valued μ-measurable functions on (Ω, A , μ). Clearly when
B = K, L(μ, K) is an algebra over K under the ordinary addition, multiplication and scalar
multiplication operations on equivalence classes, the null and unit elements are still denoted by
0 and 1, respectively.

Denote by L̃(μ, R) the set of all μ-equivalence classes of extended real-valued μ-measurable
functions on (Ω, A , μ). Then ˜L(μ, R) is a lattice by the ordering �: ξ � η if ξ0(ω) � η0(ω), μ-
a.e. (namely for μ-almost all ω in Ω), where ξ0 and η0 are arbitrarily chosen representatives of
ξ and η, respectively. In particular every set A in L̃(μ, R) has a supremum

∨

A and an infimum
∧

A. Further, as a sublattice of L̃(μ, R), L(μ, R) is also a complete lattice, namely every set
having an upper bound (a lower bound) in it possesses a supremum (accordingly, an infimum).
The pleasant properties of L̃(μ, R) are summarized as follows:

Proposition 2.1[18]. For every subset A of L̃(μ, R) there exist countable subsets {an : n ∈ N}
and {bn : n ∈ N} of A such that

∨

A =
∨

n�1 an and
∧

A =
∧

n�1 bn, where N stands for the set
of positive integers. Further, if A is directed (dually directed) with respect to �, then the above
{an : n ∈ N} (accordingly, {bn : n ∈ N}) can be chosen as nondecreasing (correspondingly,
nonincreasing) with respect to �.

The lattice L(μ, R) has the similar properties as above (see [13, Proposition 2.1]). For the
sake of convenience and brevity, we introduce the following:

Definition 2.1. (1) Let ξ be an element of L(μ, K). For an arbitrarily chosen representative
ξ0 of ξ, define the two μ-measurable functions ξ−1

0 and |ξ0| by ξ−1
0 (ω) = 1/ξ0(ω) if ξ0(ω) �= 0,

and ξ−1
0 (ω) = 0 otherwise, and by |ξ0|(ω) = |ξ0(ω)|, ∀ ω ∈ Ω. Then the μ-equivalence class

Q(ξ) of ξ−1
0 is called the generalized inverse of ξ, clearly Q(ξ) · ξ = ξ · Q(ξ) = ĨA, where

A = {ω ∈ Ω : ξ0(ω) �= 0} and ĨA is the μ-equivalence class of the indicator function IA of A
(namely, IA(ω) = 1 if ω ∈ A, and 0 otherwise); the μ-equivalence class |ξ| of |ξ0| is called the
absolute value of ξ. (2) If ξ is an element of L(μ, C), set ξ = u + iv, where u, v ∈ L(μ, R),
then ξ̄ = u − iv is called the complex conjugate of ξ, and sgn(ξ) = (Q(|ξ|)) · ξ is called the sign
of ξ, clearly ξ · sgn(ξ̄) = |ξ|. (3) If ξ and η ∈ L(μ, R), let ξ0 and η0 be an arbitrarily chosen
representatives of ξ and η, respectively, and let A = {ω ∈ Ω : ξ0(ω) > η0(ω)}, then we always
use [ξ > η] for the μ-equivalence class of A, namely [ξ > η] = {B ∈ Âμ : μ(B � A) = 0},
where � denotes the symmetric difference operation and Âμ the Lebesgue completion of A with
respect to μ, that is, the σ-algebra of μ-measurable sets of Ω. In this paper, we also often write
I[ξ>η] for ĨA, one can also understand the implication of such notations as I[ξ�η], I[ξ �=η] and
I[ξ=η].

Finally, we specially denote by L̃+(μ) the set {ξ ∈ L̃(μ, R) : ξ � 0} and by L+(μ) the set
{ξ ∈ L(μ, R) : ξ � 0}.
Definition 2.2[5]. (1) Let S be a linear space over K, then a mapping f : S → L(μ, K) is
called a random linear functional on S if f is linear; if S is a linear space over R, then a mapping
f : S → L(μ, R) is called a random sublinear functional on S if f(αp) = α · f(p), ∀ α > 0 and
p ∈ S, and f(p + q) � f(p) + f(q), ∀ p, q ∈ S. (2) Let S be a linear space over K, then a
mapping f : S → L+(μ) is called a random seminorm on S if f(αp) = |α| · f(p), ∀ α ∈ K

and p ∈ S, and f(p + q) � f(p) + f(q), ∀ p, q ∈ S. (3) Let S be a left module over the
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algebra L(μ, K), then a mapping f : S → L+(μ) is called a module-absolutely homogeneous
random seminorm (briefly, an M -random seminorm) on S if f is a random seminorm on S

and f(ξ · p) = |ξ| · f(p), ∀ ξ ∈ L(μ, K) and p ∈ S.

Remark 2.1. One can easily see that a random sublinear functional f must satisfy f(θ) = 0
(θ is the null element in the domain of f). Let S be a left module over the algebra L(μ, K). For
each α ∈ K, let α̂ be the μ-equivalence class of the μ-measurable function with the constant
value α, that is, α̂ = α · 1 (note 1 is the unit element in L(μ, K)), then α̂ · p = (α · 1) · p =
α · (1 · p) = α · p, ∀p ∈ S, since S is a left module over the algebra L(μ, K). Thus the module
multiplication operation · : L(μ, K) × S → S can be naturally regarded as an extension of the
scalar multiplication operation: K × S → S, and hence it would not produce any confusion if
we use the same notation · for both the module multiplication and the scalar multiplication.

The following analytic forms of the Hahn-Banach theorems for random linear functionals are
due to Guo[8], who also gave the first rigorous proofs of them in [5].

Proposition 2.2[5,8]. Let S be a real linear space, M a linear subspace of S, f : M → L(μ, R)
a random linear functional and X : S → L(μ, R) a random sublinear functional such that
f(p) � Xp, ∀p ∈ M , where Xp denotes X (p). Then there exists a random linear functional
F : S → L(μ, R) such that F extends f and F (p) � Xp, ∀p ∈ S.

Proposition 2.3[5,8]. Let S be a linear space over K, M a linear subspace of S, f : M →
L(μ, K) a random linear functional and X : S → L+(μ) a random seminorm such that |f(p)| �
Xp, ∀ p ∈ M . Then there exists a random linear functional F : S → L(μ, K) such that F

extends f and |F (p)| � Xp, ∀p ∈ S.

Definition 2.3. An ordered pair (S, {X d}d∈D) is called a random locally convex space (also
termed a random seminormed space in [2–5]) over K with base (Ω,A, μ) if the following three
conditions are satisfied:

(1) S is a linear space over K;

(2) D is an indexing set and for each d ∈ D,X d : S → L+(μ) is a random seminorm on S;

(3)
∨{Xd

p : d ∈ D} = 0 if p = θ (the null in S).
Further more, if there exists another mapping ∗ : L(μ, K)× S → S such that the following two
conditions are also satisfied:

(4) (S, ∗) is a left module over the algebra L(μ, K);

(5) For each d ∈ D,X d is an M -random seminorm on (S, ∗) (see Definition 2.2 for an M -
random seminorm). Then the ordered triple (S, {X d}d∈D, ∗) is a random locally convex module
over K with base (Ω,A, μ).

Remark 2.2. In Definition 2.3, since ∗ is a natural extension of the scalar multiplication on
S (see Remark 2.1), from now on we will always briefly write (S, {X d}d∈D) for (S, {X d}d∈D, ∗),
and ξ · p for ξ ∗ p for any ξ ∈ L(μ, K) and p ∈ S, once ∗ is understood from the context.
Finally, let (S, {X d}d∈D) be a random locally convex space over K with base (Ω,A, μ), set
ξ =

∨{Xd
p : p ∈ S, and d ∈ D}. Since S is a linear space, μ{ω ∈ Ω : 0 < ξ(ω) < +∞} = 0, and

hence [ξ > 0] = [ξ = +∞]. An arbitrarily chosen representative of [ξ > 0] is called a support of
S. Further, if Ω is a support of S, then S is called having full support.

Example 2.1. Let (Ω,A, μ) be a trivial probability space, that is, A = {Ω, ∅} and μ(Ω) = 1,
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then a random locally convex module over K with base (Ω,A, μ) is exactly an ordinary locally
convex space (see [19] for details).

Example 2.2. Let (S, {X d}d∈D) be a random locally convex module over K with base
(Ω,A, μ), when D is a singleton, {X d}d∈D exactly degenerates to a single M -random norm X
on S, namely (S,X ) becomes a random normed module (see [13, Definition 2.1]). Both L(μ, B)
and L(μ, K) are typical random normed modules over K with base (Ω,A, μ), and hence also
random locally convex modules (see [13, Example 2.1] for details).

The following lemma is obvious.

Lemma 2.1. Let (Ω,A, μ) be a σ-finite measure space, and μ not finite. There must be a
countable A-measurable partition {An : n ∈ N} of Ω such that 0 < μ(An) < +∞, for each
n ∈ N. Define μ̃ : A → [0, 1] by: μ̃(A) =

∑

n�1
1
2n · μ(A

⋂

An)
μ(An) , ∀A ∈ A. Then μ̃ is a probability

measure and equivalent with μ. Further, one can easily see that a net {pα : α ∈ Γ} in L(μ, K)
converges locally in measure μ to p in L(μ, K), namely {pα : α ∈ Γ} converges in measure μ

to p on each A-measurable set with finite and positive measure, iff {pα : α ∈ Γ} converges in
probability μ̃ to p.

Proposition 2.4[5]. Let (S, {X d}d∈D) be a random locally convex space over K with base
(Ω,A, μ). Take μ̃ to be the same as one in Lemma 2.1 if μ is not finite, and μ̃(A) = μ(A)/μ(Ω)
if μ(Ω) < +∞, ∀A ∈ A. For the null element θ in S and for any positive ε and λ with 0 < λ < 1,
set Nθ(d, ε, λ) = {p ∈ S : μ̃{ω ∈ Ω : Xd

p (ω) < ε} > 1−λ}. Then (1) Nθ = {⋂n
i=1 Nθ(di, εi, λi) :

n ∈ N, di ∈ D, εi > 0, 0 < λi < 1 for any i such that 1 � i � n} forms a local base at θ of some
Hausdorff linear topology, called the (ε, λ)-linear topology generated by {X d}d∈D, denoted by the
{X d}d∈D-topology. (2) A net {pα : α ∈ Γ} in S converges in the {X d}d∈D-topology to p in S

iff for each d ∈ D, {Xd
pα−p : α ∈ Γ} converges locally in measure μ to 0. (3) As special random

locally convex spaces, the (ε, λ)-linear topologies for L(μ, B) and L(μ, K) are both the ordinary
topologies of convergence locally in measure μ, namely the ones of convergence in probability μ̃.
(4) Furthermore, if (S, {X d}d∈D) is a random locally convex module, then it is also a Hausdorff
topological module over the topological algebra L(μ, K) when S and L(μ, K) are both endowed
with their (ε, λ)-linear topologies, namely the multiplication · : L(μ, K) × S → S are jointly
continuous. Clearly L(μ, K) is a topological algebra endowed with its (ε, λ)-topology, namely
the algebraic multiplication · : L(μ, K) × L(μ, K) → L(μ, K) is jointly continuous.

Remark 2.3. From now on, we always denote by F(H) the family of all nonempty finite
subsets of a given set H . Let (S, {X d}d∈D) be the same as in Proposition 2.4, for each F ∈
F(D), define XF : S → L+(μ) by XF

p =
∑

d∈F Xd
p , ∀p ∈ S, then {XF }F∈F(D) is a family

of random seminorms, and each XF is also an M -random seminorm if each X d is an M -
random seminorm, and it is easy to see that {XF }F∈F(D)-topology coincides with {X d}d∈D-
topology. An advantage of {XF }F∈F(D) over {X d}d∈D is that {XF }F∈F(D) is directed: for
any F1, F2 ∈ F(D), set F3 = F1 ∪ F2, then XF3

p � XF1
p ∨ XF2

p , ∀p ∈ S. So we often suppose D

is a directed set and Xd1
p � Xd2

p , ∀p ∈ S, when d1 � d2, for example, in the papers [2, 3] we
just adopted such a way of definition. From now on, when we speak of a topology for a random
locally convex space, this topology always means its (ε, λ)-topology.

Definition 2.4[5]. Let (S, {X d}d∈D) be a random locally convex space over K with base



Random duality 2089

(Ω,A, μ). A random linear functional f : S → L(μ, K) is called μ-a.e. bounded if there exist a
countable A-measurable partition {An : n ∈ N} of Ω (namely An ∈ A, An ∩ Am = ∅ (n �= m)
and Ω =

∑

n�1 An), a sequence {ξn : n ∈ N} in L+(μ) and a countable subfamily {Fn : n ∈ N}
of F(D) such that |f(p)| �

∑

n�1 ĨAn · ξn · XFn
p , ∀p ∈ S.

Remark 2.4. In [2], a random linear functional f : S → L(μ, K) was called μ-a.e. bounded if
there exist ξ ∈ L+(μ) and F ∈ F(D) such that |f(p)| � ξ ·XF

p , ∀p ∈ S. Thus [2] only considered
a special case, which in turn caused that the theory of random duality given in [20] was seriously
limited. The following Proposition 2.5 shows that Definition 2.4 is proper. Usually, we called
the linear space of μ-a.e. bounded random linear functionals on (S, {X d}d∈D), denoted by
S∗, the random conjugate space of S. Clearly S∗ is also left module over the algebra L(μ, K)
endowed with the module multiplication · : L(μ, K)×S∗ → S∗ by (ξ ·f)(p) = ξ ·(f(p)), ∀(ξ, f) ∈
L(μ, K)× S∗ and p ∈ S. When (S, {X d}d∈D) is an RN-module (S,X ), S∗ can also be endowed
with a random norm X ∗ so that (S∗,X ∗) becomes an RN-modules (see [13, Definition 2.2] for
details).

Proposition 2.5[4,5]. Let (S, {X d}d∈D) be a random locally convex module over K with base
(Ω,A, μ). Then a random linear functional f : S → L(μ, K) is μ-a.e. bounded if f is a
continuous module homomorphism. When f : S → L+(μ) is an M -random seminorm on S,
then the process of proof in [4] also implies that f is μ-a.e. bounded (the definition of f being
μ-a.e. bounded is completely similar to Definition 2.4) iff f is continuous.

The second part of Proposition 2.5 motivates the following Definition 2.5 and Proposition 2.6,
which deepen the understanding of the (ε, λ)-topologies.

Definition 2.5. Let S be a left module over the algebra L(μ, K). A family {X d}d∈D of M -
random seminorms on S is called saturated if the family also includes any M -random seminorm
X on S with the following property (B): there exist a countable A-measurable partition {An :
n ∈ N} of Ω, a sequence {ξn : n ∈ N} in L+(μ) and a countable subfamily {Fn : n ∈ N} of
F(D) such that Xp �

∑

n�1 ĨAn · ξn · XFn
p , ∀p ∈ S. For any family {X d}d∈D of M -random

seminorms on S, denote by s({X d}d∈D) the family of all the M -random seminorms having the
above property (B). Then s({X d}d∈D) is called the saturation of {X d}d∈D, which is the smallest
of all the saturated families containing {X d}d∈D.

Proposition 2.6. Let S be a left module over the algebra L(μ, K), and {X d}d∈D and {X e}e∈Γ

the two families of M -random seminorms on S. Then {X d}d∈D and {X e}e∈Γ generate the same
(ε, λ)-topology iff s({X d}d∈D) = s({X e}e∈Γ).

Proof. It immediately follows from the second part of Proposition 2.5.
It is well known from Proposition 2.3 that for a nontrivial random locally convex space

(S, {X d}d∈D) over K with base (Ω,A, μ) there always exist enough μ-a.e. bounded random
linear functionals on S, further, if (S, {X d}d∈D) is a random locally convex module, then S

admits enough continuous module homomorphisms from S to L(μ, K). As another interesting
application of Proposition 2.3, we obtain the following Proposition 2.7 and Corollary 2.1, which
are crucial in this paper.

Proposition 2.7. Let S be a linear space over K, {X (n)}n∈N a sequence of random semi-
norms on S such that the series

∑

n�1 X
(n)
p converges locally in measure μ for each p in S, and
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f : S → L(μ, K) a random linear functional such that |f(p)| �
∑

n�1 X
(n)
p , ∀p ∈ S. Then there

exists a sequence {fn : n ∈ N} of random linear functionals on S such that the following two
conditions are satisfied:

(1) |fn(p)| � X
(n)
p , ∀ p ∈ S;

(2) f(p) =
∑

n�1 fn(p), ∀ p ∈ S.

Proof. Denote by S∞ the self-product space of countably many copies of S, by M the linear
space of such elements q in S∞ that

∑

n�1 X
(n)
qn converges locally in measure μ, where qn is the

n-th coordinate of q for each n � 1, by � the linear space of diagonal elements in S∞ and by
⊕

n�1 S the linear space of such elements q in S∞ that all but finitely many coordinates of q

are the null θ in S. It is clear that M ⊃ �∪ (
⊕

n�1 S).

Define g : � → L(μ, K) by g(q(p)) = f(p), ∀p ∈ S, where q(p) is the element in � such
that each coordinate of q(p) is p. Then g is a random linear functional on �. Again define
X : M → L+(μ) by Xq =

∑

n�1 X
(n)
qn , ∀q = (qn, n � 1) ∈ M , then one can easily see that

|g(q(p))| = |f(p)| �
∑

n�1 X
(n)
p = Xq(p), ∀p ∈ S. Thus by Proposition 2.3 there exists a

random linear functional G : M → L(μ, K) such that G extends g and |G(q)| � Xq, ∀q ∈ M .

Since M ⊃ ⊕

n�1 S, and for each p ∈ S and each n � 1 it is also clear that p(n) belongs to
⊕

n�1 S, where p(n) is the element whose all but the n-th coordinate are the null in S and whose
n-th coordinate is p. Define a sequence {fn : n � 1} of random linear functionals on S as follows:
fn(p) = G(p(n)), ∀n � 1 and p ∈ S. Then it is very easy to verify that {fn : n � 1} are just
desired: in fact, first, it immediately follows from

∑

n�1 |G(pn)| �
∑

n�1 X
(n)
p , ∀p ∈ S that the

series
∑

n�1 G(pn) is absolutely convergent locally in measure μ; second, |f(p)−∑n
k=1 fk(p)| =

|G(q(p)) − ∑n
k=1 G(p(k))| = |G(q(p) − ∑n

k=1 p(k))| = |G(Rn(p))| �
∑

k�n+1 X
(k)
p implies that

{f(p) − ∑n
k=1 fk(p) : n ∈ N} converges to 0 locally in measure μ,where the i-th coordinate of

Rn(p) is θ when 1 � i � n, and p when i � n + 1, so f(p) =
∑

n�1 fn(p), ∀p ∈ S.

Corollary 2.1. Let S be a linear space over K, f : S → L(μ, K) a random linear functional,
{An : n ∈ N} a countable A-measurable partition of Ω, and each X (n) : S → L+(μ) a random
seminorm on S for each n � 1 such that |f(p)| �

∑

n�1 ĨAn · X(n)
p , ∀p ∈ S. Then there exists a

sequence {fn : n � 1} of random linear functionals on S such that the following two conditions
are satisfied:

(1) |fn(p)| � X
(n)
p , ∀ p ∈ S;

(2) f(p) =
∑

n�1 ĨAn · fn(p), ∀ p ∈ S.

Proof. For each n � 1, define the random seminorm X̃ (n) : S → L+(μ) by X̃
(n)
p = ĨAn ·

X
(n)
p , ∀p ∈ S. Notice such series as

∑

n�1 X̃
(n)
p always converge locally in measure μ for each p

in S, one can obtain by Proposition 2.7 a sequence {fn : n � 1} of random linear functionals
on S such that the following are satisfied:

(1)′ |fn(p)| � X̃
(n)
p , ∀ p ∈ S and n � 1;

(2)′ f(p) =
∑

n�1 fn(p), ∀ p ∈ S.

(1)′ also implies that |fn(p)| � ĨAn · X(n)
p � X

(n)
p , ∀p ∈ S, and that ĨAc

n
· fn(p) = 0, where

Ac
n = Ω \An. So fn(p) = ĨAn · fn(p) + ĨAc

n
· fn(p) = ĨAn · fn(p), ∀p ∈ S and n � 1. To sum up,

{fn : n � 1} are just desired.

The following Proposition 2.8 plays a crucial role in the proof of main results in this paper,
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whereas the following Lemma 2.2 provides a key step in the proof of Proposition 2.8.

Lemma 2.2. Let S be a left module over the algebra L(μ, K), f and g : S → L(μ, K) two
module homomorphisms such that N(f) ⊂ N(g), where N(f) and N(g) are the null spaces of
f and g, respectively, namely N(f) = {p ∈ S : f(p) = 0} and N(g) = {p ∈ S : g(p) = 0}. Then
there exists ξ ∈ L(μ, K) such that g = ξ · f . That is, g(p) = ξ · (f(p)), ∀ p ∈ S.

Proof. We can, without loss of generality, suppose μ(Ω) = 1 (or we employ μ̃ in place of
μ). Since S is an L(μ, K)-module, then {|f(p)| : p ∈ S} is directed with respect to �: in fact,
∀p1, p2 ∈ S, let A = [|f(p1)| � |f(p2)|] and p3 = IA · p1 + (1 − IA) · p2, then it is easy to
see that |f(p3)| = IA · |f(p1)| + (1 − IA) · |f(p2)| = |f(p1)| ∨ |f(p2)|, which, of course, implies
{|f(p)| : p ∈ S} is directed. So, by Proposition 2.1 there exists a sequence {pn} in S such that
{|f(pn)| : n ∈ N} ↗ ξ := ∨{|f(p)| : p ∈ S}.

Denote [ξ > 0] by B, and [|f(pn)| > 0] by Bn for each n � 1. We can, without loss of
generality, choose a representative C of B, and a representative Cn of Bn for each n � 1 such
that C =

⋃∞
n=1 Cn and Cn ⊂ Cn+1 for each n � 1. Putting C0 = ∅, An = Cn\Cn−1, n � 1, then

one can have C =
∑

n�1 An, An∩Am = ∅ (n �= m). Again letting qi = ĨAi ·Q(f(pi)) ·pi, ∀i � 1,
yields f(qi) = ĨAi · Q(f(pi)) · f(pi) = ĨAi · IBi = ĨAi · ĨCi = ĨAi (note Ai ⊂ Ci), ∀ i � 1.

Clearly, f(ĨAi · p − f(p) · qi) = ĨAi · f(p) − ĨAi · f(p) = 0, ∀p ∈ S, and hence also g(ĨAi · p −
f(p) · qi) = 0, ∀ p ∈ S by N(f) ⊂ N(g), namely,

ĨAi · g(p) = g(qi) · f(p), ∀ i � 1 and p ∈ S. (1)

By the definition of B, one can easily observe that f((1− IB) ·p) = (1− IB)f(p) = 0, ∀p ∈ S,
again by N(f) ⊂ N(g) one can have g((1 − IB) · p) = 0, ∀p ∈ S, namely,

g(p) = IB · g(p), ∀ p ∈ S. (2)

By putting ξn =
∑n

i=1 g(qi), ∀n � 1, and observing g(qi) = ĨAi · Q(f(pi)) · g(pi), ∀i � 1,
one can have that {ξn : n ∈ N} is a Cauchy sequence in L(μ, K) in convergence in measure μ,
since

∑∞
i=1 μ(Ai) = μ(C) < +∞. Completeness of L(μ, K) produces a ξ in L(μ, K) such that

{ξn : n ∈ N} converges in measure μ to ξ.
Furthermore, Combining (1) and (2) above yields

g(p) = IB · g(p) = ĨC · g(p) =
(

∑

i�1

ĨAi

)

· g(p)

=
(

μ − lim
n→∞

( n
∑

i=1

ĨAi

))

· g(p) = μ − lim
n→∞

( n
∑

i=1

ĨAi · g(p)
)

= μ − lim
n→∞

( n
∑

i=1

g(qi)
)

· f(p) = ξ · f(p), ∀p ∈ S.

Proposition 2.8. Let S be a left module over the L(μ, K), and f1, f2, . . . , fn and g module
homomorphisms from S to L(μ, K) such that ∩n

i=1N(fi) ⊂ N(g). Then there exist ξ1, ξ2, . . . , ξn

in L(μ, K) such that g =
∑n

i=1 ξi · fi, i.e., g(p) =
∑n

i=1 ξi · (fi(p)), ∀p ∈ S.

Proof. We proceed by induction as follows.
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When n = 1, this proposition is exactly Lemma 2.2.
When n = k, this proposition is assumed to be valid, we will prove it also valid for n = k +1.

Assume
⋂k+1

i=1 N(fi) ⊂ N(g), and denote by ĝ the restriction of g to N(fk+1), and by f̂i the
restriction of fi to N(fk+1) for each 1 � i � k. Since N(f̂i) = N(fk+1) ∩ N(fi), ∀ 1 � i � k,
and N(ĝ) = N(fk+1) ∩ N(g), clearly

⋂k+1
i=1 N(fi) ⊂ N(g) implies

⋂k
i=1 N(f̂i) =

⋂k+1
i=1 N(fi) ⊂

N(fk+1) ∩ N(g) = N(ĝ), then there exist ξ1, ξ2, . . . , ξk in L(μ, K) such that ĝ =
∑k

i=1 ξi · f̂i.
Namely,

g(p) = ĝ(p) =
k

∑

i=1

ξi · f̂i(p) =
k

∑

i=1

ξi · fi(p), ∀p ∈ N(fk+1),

which is equivalent to saying N(fk+1) ⊂ N
(

g − ∑k
i=1 ξi · fi

)

. So by Lemma 2.2 there exists
ξk+1 in L(μ, K) such that g−∑k

i=1 ξi · fi = ξk+1 ·fk+1, that is, g(p) =
∑k+1

i=1 ξi · (fi(p)), ∀p ∈ S.

Remark 2.5. When (Ω,A, μ) is a trivial probability space, Proposition 2.8 is exactly a known
and quite simple fact: Let S be a linear space over K, f1, f2, . . . , fn and g linear functionals on
S such that

⋂n
i=1 N(fi) ⊂ N(g), then there exist α1, α2, . . . , αn in K such that g =

∑n
i=1 αi · fi

(see [1, Chapter 2]). Readers will find that the substantive difficulty in generalizing this result
to the random setting of Proposition 2.8 occurs in Lemma 2.2 where we are forced to construct a
Cauchy sequence to produce our desired ξ! this idea is just motivated by the work [10] where we
arrived at our aim by constructing a Cauchy sequence and making full use of the completeness
of a complete random inner product module, such complications in the study of random setting
are involved completely because of the arbitrariness of the σ-algebra A of (Ω,A, μ), which has
been further elucidated in detail in [14] from the point of view on the stratification structure
of modules over the algebra L(μ, K). Let S be a left module over the algebra L(μ, K), as
interpreted in [14], pA = ĨA · p is called the A-stratification of p for each μ-measurable set A of
Ω and p in S. Clearly, pA = θ when μ(A) = 0, and pA = p when μ(Ω\A) = 0, so θ and p are just
the two trivial stratifications of p. When (Ω,A, μ) is a trivial probability space, every element
in S possesses merely the above two trivial stratifications since A = {Ω, ∅}, but when (Ω,A, μ)
is arbitrary, every element in S may have many nontrivial intermediate stratifications. The
essence of Proposition 2.8 together with much of our work in this paper is just to overcome the
difficulty with the kind of complicated stratification structure. Lemma 2.2 and Proposition 2.8
were mentioned with a sketch proof of them in [5, 20]. The proofs of them given in this paper
are an improvement of those in [5, 20].

3 Random duality together with some basic theorems on it

Definition 3.1. The left modules S1 and S2 over the algebra L(μ, K) are called a pair
in random duality over K with base (Ω,A, μ) with respect to the bi-module homomorphism
〈·, ·〉 : S1 × S2 → L(μ, K) (namely both 〈·, q〉 : S1 → L(μ, K) and 〈p, ·〉 : S2 → L(μ, K) are
module homomorphisms for each given p ∈ S1 and q ∈ S2) if the following two conditions are
satisfied:

(1) 〈p, q〉 = 0, ∀p ∈ S1 implies q = θ (the null in S2);
(2) 〈p, q〉 = 0, ∀q ∈ S2 implies p = θ (the null in S1).

From now on, for the sake of brevity we only say 〈S1, S2〉 is a random duality pair over K

with base (Ω,A, μ) if S1, S2 and 〈·, ·〉 satisfy Definition 3.1.
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Definition 3.2. Let 〈S1, S2〉 be a random duality pair over K with base (Ω,A, μ). S2 is
called regular (standard in terms of [5]) with respect to 〈·, ·〉 and S1, at this time 〈S1, S2〉 is
also called right regular, if there always exists q in S2 for any given countable set {qn : n ∈ N}
in S2 and any given countable A-measurable partition {An : n ∈ N} of Ω such that 〈p, q〉 =
∑

n�1 ĨAn · 〈p, qn〉, ∀p ∈ S1(notice: the series on the right side always converges both μ-almost
everywhere and locally in measure μ in L(μ, K)). In a complete symmetry one can speak of the
regularity of S1 with respect to S2 and 〈·, ·〉. Further if S1 and S2 are both regular with respect
to each other and 〈·, ·〉, then we say 〈S1, S2〉 is regular random duality pair.

Definition 3.3. Let 〈S1, S2〉 be a random duality pair over K with base (Ω,A, μ). For each
given q in S2, q̂ denotes the module homomorphism 〈·, q〉 from S1 to L(μ, K) and X q : S1 →
L+(μ) the random seminorm defined by Xq

p = |〈p, q〉|, ∀p ∈ S1. Denote by σ(S1, S2) the family
{X q : q ∈ S2}, then the σ(S1, S2)-topology, namely the (ε, λ)-topology generated by σ(S1, S2) is
called the random weak topology for S1 with respect to S2 and 〈·, ·〉. One can easily understand
the notation σ(S2, S1) and the terminology “the σ(S2, S1)-topology”.

Remark 3.1. It follows immediately from Proposition 2.4 that σ(S1, S2) makes S1 a Haus-
dorff topological module over the Hausdorff topological algebra L(μ, K), and it is easy to see
that σ(S1, S2)-topology is the smallest linear topology for S1 such that q̂ is a continuous module
homomorphism for each q in S2.

Example 3.1. Let 〈S1, S2〉 be a duality pair over K in the sense of classical duality theory
(see [1, Chapter 13]). Then 〈S1, S2〉 is a regular random duality pair over K with base a trivial
probability space.

Example 3.2. Let (S, {X d}d∈D) be a random locally convex module over K with base
(Ω,A, μ) and S∗ the left module over the algebra L(μ, K) of continuous module homomorphisms
from S to L(μ, K) (namely S∗ is the random conjugate space of (S, {X d}d∈D)). Define 〈·, ·〉 :
S × S∗ → L(μ, K) by 〈p, f〉 = f(p), ∀p ∈ S and f ∈ S∗, then 〈S, S∗〉 is a random duality pair
over K with base (Ω,A, μ), called a canonical random duality pair. In fact, S∗ is also regular
with respect to S and the canonical random duality relation 〈·, ·〉, which can be seen from the
following observation: for a given countable set {fn : n ∈ N} in S∗ and a given countable A-
measurable partition {An : n ∈ N} of Ω, define f : S → L(μ, K) by f(p) =

∑

n�1 ĨAn · fn(p) =
μ̃-limit of {∑k

n=1 ĨAn · fn(p) : k ∈ N} (the limit of convergence in probability μ̃ must exist by
∑∞

n=1 μ̃(An) = 1 < +∞), where μ̃ is defined as in Lemma 2.1. f is also continuous according
to

∑∞
n=1 μ̃(An) = 1 < +∞, so f is in S∗ such that f(p) =

∑∞
n=1 ĨAn · fn(p), ∀p ∈ S.

Example 3.3. Let 〈S1, S2〉 be a random duality pair over K with base (Ω,A, μ). Denote by
Ŝ2 the set of all such module homomorphisms as q̂, q ∈ S2, where q̂ is the same as in Definition
3.3, again denote by Sr

2 the set of all such module homomorphisms f from S1 to L(μ, K) that
f(p) =

∑∞
n=1 ĨAn · q̂n(p) =

∑∞
n=1 ĨAn · 〈p, qn〉, ∀p ∈ S1, for some given countable set {qn : n ∈

N} of S2 and some given countable A-measurable partition {An : n ∈ N} of Ω. Similarly, one
can understand such notations as Ŝ1 and Sr

1 . Clearly, when S1 and S2 are identified with Ŝ1 and
Ŝ2, respectively, they can be regarded as the L(μ, K)-submodules of Sr

1 and Sr
2 , respectively.

Since for any given f ∈ Sr
1 and g ∈ Sr

2 there always exist countable sets {pn : n ∈ N} in S1,
{qn : n ∈ N} in S2 and some common countable A-measurable partition {An : n ∈ N} of Ω
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such that f(q) =
∑

n�1 ĨAn · 〈pn, q〉, ∀q ∈ S2, while g(p) =
∑

n�1 ĨAn · 〈p, qn〉, ∀p ∈ S1, now
define 〈〈f, g〉〉 =

∑

n�1 ĨAn · 〈pn, qn〉. Then 〈〈·, ·〉〉 : Sr
1 × Sr

2 → L(μ, K) is a natural extension
of 〈·, ·〉 from S1 × S2 to Sr

1 × Sr
2 , and 〈〈Sr

1 , Sr
2〉〉 is a regular random duality pair, called the

regularization of 〈S1, S2〉, still denoted by 〈Sr
1 , Sr

2〉 for brevity. By the way, 〈〈S1, S
r
2〉〉 is right

regular and 〈〈Sr
1 , S2〉〉 is left regular when 〈〈·, ·〉〉 is restricted to S1 × Sr

2 or Sr
1 × S2.

Example 3.4. In Example 3.2, if (S, {X d}d∈D) is sequentially complete, 〈S, S∗〉 is a regular
random duality pair. Finally when S is this form of L(μ, B) for some normed space B over
K, it is easy to see that 〈S, S∗〉 is always regular (see [13] for the RN -module L(μ, B)). This
form of canonical random duality pair 〈S, S∗〉 for the case when S is an RN -module was deeply
studied in [14].

Theorem 3.1. Let 〈S1, S2〉 be a random duality pair over K with base (Ω,A, μ). Then
any f ∈ (S1, σ(S1, S2))∗ can be represented in the following way: there exist a countable set
{qn : n ∈ N} in S2 and a countable A-measurable partition {An : n ∈ N} of Ω such that
f(p) =

∑

n�1 ĨAn · 〈p, qn〉, ∀p ∈ S1.

Proof. According to Definition 2.4, there exist a countable A-measurable partition {An : n ∈
N} of Ω, a sequence {ξn : n ∈ N} in L+(μ) and a countable subfamily {Fn : n ∈ N} of F(S2)
such that |f(p)| �

∑∞
n=1 ĨAn · ξn · (∑q∈Fn

|〈p, q〉|), ∀p ∈ S1. Let F ′
n = {ξn · q : q ∈ Fn}, ∀n � 1,

then F ′
n still belongs to F(S2), so we have that |f(p)| �

∑∞
n=1 ĨAn · ( ∑

q∈F ′
n
|〈p, q〉|), ∀p ∈ S1.

By Corollary 2.1 there exists a sequence {fn : n ∈ N} of random linear functionals on S1

such that the following two conditions are satisfied:
(1) |fn(p)| �

∑

q∈F ′
n
|〈p, q〉|, ∀ p ∈ S1;

(2) f(p) =
∑

n�1 ĨAn · fn(p), ∀ p ∈ S1.
(1) clearly implies fn ∈ (S1, σ(S1, S2))∗ and

⋂

q∈F ′
n

N(q̂) ⊂ N(fn), so by Proposition 2.8 there

exist ξ
(n)
1 , ξ

(n)
2 , . . . , ξ

(n)
kn

such that fn(p) =
∑kn

i=1 ξ
(n)
i · 〈p, q

(n)
i 〉 = 〈p,

∑kn

i=1 ξ
(n)
i · q(n)

i 〉, ∀p ∈ S1,
where F ′

n = {q(n)
1 , q

(n)
2 , . . . , q

(n)
kn

} for each n � 1.
Finally, taking qn =

∑kn

i=1 ξ
(n)
i · q(n)

i and considering (2) end the proof of Theorem 3.1.

Remark 3.2. Theorem 3.1 generalizes the main result of [20] where f was required as
follows: |f(p)| � ξ · (∑q∈F |〈p, q〉|) for some ξ in L+(μ) and some F ∈ F(S2). Theorem 3.1 was
given in [5] without a complete proof except a very short sketch proof.

Corollary 3.1. Let 〈S1, S2〉 be the same as in Theorem 3.1. Then we have the following
statements:

(1) If 〈S1, S2〉 is right regular, then (S1, σ(S1, S2))∗ = S2, where S2 is identified with Ŝ2(see
Example 3.3 for Ŝ2);

(2) If 〈S1, S2〉 is left regular, then (S2, σ(S2, S1))∗ = S1;
(3) If 〈S1, S2〉 is regular, then the conclusions of both (1) and (2) hold.

Definition 3.4. Let 〈S1, S2〉 be a right regular random duality pair over K with base (Ω,A, μ).
A family {X d}d∈D of M -random seminorms on S1 is called a random compatible structure with
S2 (such a random compatible structure is called a right random compatible structure of 〈S1, S2〉)
if (S1, {X d}d∈D)∗ = S2. A property of S1 is called a right random compatible invariant (or called
a right random duality invariant) if it also holds for any other right random compatible structure
on S1 whenever it does for any given right random compatible structure. One can also define
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a left random compatible structure and a left random compatible invariant in a similar way if
〈S1, S2〉 is left regular.

Remark 3.3. In functional analysis, the device “Minkowski functionals” makes any locally
convex topology for a linear space be generated by some family of seminorms on the space,
and any linear topology generated by a family of seminorms is always locally convex (see
[19, Section 37] for details). But at the present time there exist no random counterparts to
Minkowski functionals and locally convex topologies except that the random seminorms are a
random correspondence to ordinary seminorms. Thus we are forced to work with only random
seminorms.

Theorem 3.2. There is a greatest one in all right random compatible structures for a given
right regular random duality pair. Dually, a statement about a left random compatible structure
is also valid.

Proof. We only need to give the proof for a right random compatible structure.

Let 〈S1, S2〉 be a right regular random duality pair over K with base (Ω,A, μ) and {{X d}d∈Dα

: α ∈ Λ} all the family of right random compatible structures on S1. Denote D = ∪{Dα : α ∈
Λ}, then we will verify that {X d}d∈D is a right random compatible structure on S1 as follows.

Clearly, S2 = (S1, {X d}d∈Dα)∗ ⊂ (S1, {X d}d∈D)∗ for any given α ∈ Λ, we will prove that
(S1, {X d}d∈D)∗ ⊂ S2 also holds. Let f be in (S1, {X d}d∈D)∗. Then according to Defini-
tion 2.4 there exist a countable A-measurable partition {An : n ∈ N} of Ω, a countable
set {ξn : n ∈ N} in L+(μ) and a countable subfamily {Fn : n ∈ N} of F(D) such that
|f(p)| �

∑

n�1 ĨAn · ξn · XFn
p , ∀p ∈ S1.

Again by Corollary 2.1 there exists a sequence {fn : n ∈ N} of random linear functionals on
S1 such that the following two conditions are satisfied:

(1) |fn(p)| � ξn · XFn
p , ∀ p ∈ S1;

(2) f(p) =
∑

n�1 ĨAn · fn(p), ∀ p ∈ S1.

We can easily see from (1) that each fn ∈ (S1, {X d}d∈D)∗, we will prove that there exists
qn ∈ S2 such that fn(p) = 〈p, qn〉, ∀ p ∈ S1 and n � 1.

Now, let us fix n. Since Fn ∈ F(D) and D = ∪{Dα : α ∈ Λ}, then there must exist finitely
many indexes α1, α2, . . . , αk in Λ such that Fn = ∪k

i=1F
′
i , where F ′

i ∈ F(Dαi), ∀1 � i � k.
Since XFn

p =
∑

d∈Fn
Xd

p =
∑k

i=1 (
∑

d∈F ′
i
Xd

p ), ∀ p ∈ S1 (we can, without any, assume that
{F ′

i : i = 1, . . . , k} are pairwise disjoint). Then again by Proposition 2.7 there exist random
linear functionals f ′

1, f
′
2, . . . , f

′
k on S1 such that |f ′

i(p)| � ξn·(
∑

d∈F ′
i
Xd

p ), ∀ p ∈ S1 and 1 � i � k,

and such that fn(p) =
∑k

i=1 f ′
i(p), ∀ p ∈ S1. Clearly, each f ′

i ∈ (S1, {X d}d∈Dαi
)∗ = S2 means

that there exists a q′i in S2 such that f ′
i(p) = 〈p, q′i〉, ∀ p ∈ S1 and 1 � i � k. To sum up,

fn(p) =
∑k

i=1 f ′
i(p) =

∑k
i=1 〈p, q′i〉 = 〈p,

∑k
i=1 q′i〉 = 〈p, qn〉, for any p in S1, where qn =

∑k
i=1 q′i.

Finally, the above (2) shows that f(p) =
∑

n�1 ĨAn · 〈p, qn〉, ∀ p ∈ S1. Thus the regularity of
S2 implies the existence of a point q in S2 satisfying f(p) = 〈p, q〉, ∀ p ∈ S1. Since f is arbitrary,
one can have (S1, {X d}d∈D)∗ ⊂ S2.

Remark 3.4. {X d}d∈D obtained in the proof of Theorem 3.2 is called the random Mackey
structure on S1 with respect to S2, which must be saturated. This family also generates exactly
the ordinary Mackey topology on S1 when (Ω,A, μ) is a trivial probability space.
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Besides the usual geometric notions such as convex sets, balanced sets and absorbent sets in
linear spaces, the following strengthened forms or similar variants of them in a left module over
the algebra L(μ, K) will also be used in random metric theory and play a crucial role at some
time.

Definition 3.5. Let S be a left module over the algebra L(μ, K). A set A of S is called
M -convex (namely convex in the sense of module) if ξ · p + η · q still belongs to A whenever p

and q are in A and whenever ξ and η are in L+(μ) such that ξ + η = 1; A is called M -balanced
if ξ · p is still in A whenever ξ is in L(μ, K) such that |ξ| � 1 and p in A; A is M -absorbed by
a subset B of S if there exists a ξ ∈ L+(μ) such that ξ(ω) > 0 μ-a.e. and η · p ∈ B whenever p

is in A and η ∈ L(μ, K) such that |η| � ξ; further A is called M -absorbent if it M -absorbs any
point of S.

Remark 3.5. Since the module multiplication naturally extends the scalar multiplication,
then one can easily see that if a set is M -convex (M -balanced) then it is also convex (accordingly,
balanced), Obviously the converse does not generally hold. Furthermore, neither of the two
concepts “M -absorbent” and “absorbent” implies each other, they will play their respective
roles in random metric theory.

Definition 3.6. Let (S, {X d}d∈D) be a random locally convex space over K with base (Ω,A,

μ). A set A of S is called bounded if it is bounded with respect to the {X d}d∈D-linear topology
(if (Ω,A, μ) is a probability space, such a terminology is equivalent with the one “stochasti-
cally bounded” in probability theory in Banach spaces, and also with the one “probabilistically
bounded” in the theory of probabilistic metric spaces); A subset A is called μ-a.e. bounded if
∨{Xd

p : p ∈ A} is in L+(μ) for each d ∈ D.

Remark 3.6. It is obvious that A is μ-a.e. bounded iff
∨{Xp : p ∈ A} is in L+(μ) for each

X in s({X d}d∈D), the saturation of {X d}d∈D. By Proposition 2.1 one can further see that an
M -convex set in a random locally convex module is μ-a.e. bounded iff it is bounded. Generally,
a μ-a.e. bounded set must be bounded, but not conversely.

Lemma 3.1. Let (S, {X d}d∈D) be the same as in Definition 3.6, and A a subset of S. Then
we have the following statements:

(1) A is bounded iff f(A) is bounded in L(μ, K) for each f in S∗;
(2) A is μ-a.e. bounded iff f(A) is μ-a.e. bounded in L(μ, K) for each f in S∗.

Proof. Denote S∗
0 = {f ∈ S∗ : there exist ξ ∈ L+(μ) and F ∈ F(D) such that |f(p)| �

ξ ·XF
p ≡ ξ · (∑d∈F Xd

p ), ∀p ∈ S}. The paper [2] already proved that (1) and (2) are both valid
if S∗ is replaced by S∗

0 .
(1) If A is bounded, then f(A) is bounded since each f in S∗ is continuous; the converse

implies, of course, that f(A) is bounded for each f in S∗
0 , and hence A also bounded.

(2) Its proof is similar to that of the above (1), and one only needs to make use of Defini-
tion 2.4.

Theorem 3.3. Let 〈S1, S2〉 be a right regular random duality pair over K with base (Ω,A, μ),
{X d}d∈D and {X e}e∈Γ the two right random compatible structures on S1, and A ⊂ S1 a subset
of S1. Then we have the following statements:

(1) A is bounded in (S1, {X d}d∈D) iff it is bounded in (S1, {X e}e∈Γ);
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(2) A is μ-a.e. bounded in (S1, {X d}d∈D) iff it is μ-a.e. bounded in (S1, {X e}e∈Γ).

Proof. It follows immediately from Lemma 3.1 and the fact that (S1, {X d}d∈D)∗ = S2 =
(S1, {X e}e∈Γ)∗.

Definition 3.7. Let 〈S1, S2〉 be a random duality pair over K with base (Ω,A, μ), and A and
B subsets of S1 and S2, respectively. The set A0 = {q : q ∈ S2 and

∨{|〈p, q〉| : p ∈ A} � 1} is
called the polar of A, and the set B0 = {p : p ∈ S1 and

∨{|〈p, q〉| : q ∈ B} � 1} is called the
polar of B.

Lemma 3.2[21]. Let (S, {X d}d∈D) be a random locally convex module over K with base
(Ω,A, μ),p ∈ S, A ⊂ S a closed M -convex set, and p �∈ A. Then there exists an f in S∗ such
that Re(f(p)) >

∨{Re(f(q)) : q ∈ A}, where Re stands for “the real part”, “>” means “�” but
“ �=”. Furthermore, if A is also M -balanced, we can require that |f(p)| >

∨{|f(q)| : q ∈ A}.
Theorem 3.4. Let 〈S1, S2〉 be a random duality pair over K with base (Ω,A, μ), and A a
subset of S1. Then we have the following statements:

(1) A0 is M -convex, M -balanced and σ(S2, S1)-closed;

(2) If A is μ-a.e. bounded in (S1, σ(S1, S2)), then A0 is M -absorbent;

(3) If 〈S1, S2〉 is right regular, then A has the same closed M -convex hull and the same closed
M -convex and M -balanced hull for all the random compatible structures on S1;

(4) If 〈S1, S2〉 is right regular, and B is the closed M -convex and M -balanced hull of A with
respect to any given random compatible structure on S1, then B = A00.

Proof. (1) It is a straightforward verification.

(2) Since A is μ-a.e. bounded with respect to σ(S1, S2), then
∨{|〈p, q〉| : p ∈ A} ∈ L+(μ)

for any given q in S2. Now fix q in S2 and denote ξ =
∨{|〈p, q〉| : p ∈ A} and ξq = 1

ξ+1 , then
ξq(ω) > 0 μ-a.e. Let η ∈ L(μ, K) be such that |η| � ξq, then

∨{|〈p, η · q〉| : p ∈ A} = |η| · ξ �
ξq · ξ � 1, this means η · q ∈ A0, namely A0 M -absorbs q.

(3) Let (S, {X d}d∈D) be the same as in Lemma 3.2, then Lemma 3.2 implies an M -convex
set of S is closed in {X d}d∈D-topology if it is closed in σ(S, S∗)-topology. Now if 〈S1, S2〉 is
right regular, take the above S = S1, {X d}d∈D is a given random compatible structure on S1

with respect to S2, then S∗ = S2, so our desired conclusions follow.

(4) Since A00 includes A and is σ(S1, S2)-closed, M -convex and M -balanced, then A00 in-
cludes B by the above (3). If there exists p ∈ A00 \ B, then by Lemma 3.2 there exists a q in
S2 such that |〈p, q〉| >

∨{|〈b, q〉| : b ∈ B} =
∨{|〈a, q〉| : a ∈ A}, the lastest equality follows

from the fact that B is the σ(S1, S2)-closed M -convex and M -balanced hull of A (one can
easily verify it by Proposition 2.1 and by noticing {|〈h, q〉| : h ∈ H} is directed, where H is the
M -convex hull of A).

Denote |〈p, q〉| by ξ, and
∨{|〈a, q〉| : a ∈ A} by η, and let ξ0 and η0 be arbitrarily chosen

representatives of ξ and η, respectively, and E = {ω ∈ Ω : ξ0(ω) > η0(ω)}, then μ(E) > 0 since
ξ > η. We will divide the remainder of our proof into the following two cases.

Case 1. Let F = {ω ∈ Ω : η0(ω) > 0} and G = E ∩F . If μ(G) > 0, let q∗ = ĨG ·Q(η) · q,where
Q(η) is the generalized inverse of η (see Definition 2.1), then |〈p, q∗〉| = ĨG · Q(η) · |〈p, q〉| =
ĨG · Q(η) · ξ, and

∨{|〈a, q∗〉| : a ∈ A} = ĨG · Q(η) · η = ĨG · ĨF = ĨG. ĨG � 1 implies q∗ ∈ A0.
But since ξ0(ω) · (η0(ω))−1 > 1 for all ω in G, and IG · (η0)−1 · ξ0 is a representative of |〈p, q∗〉|.
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μ(G) > 0 means |〈p, q∗〉| �≤ 1, namely p �∈ A00, which contradicts the assumption on p.
Case 2. If μ(G) = 0, namely η0(ω) = 0 μ-a.e. on E, so ĨE · η = 0, which implies

∨{|〈a, q∗〉| :
a ∈ A} = 0, where q∗ = ĨE · q. Since |〈p, q∗〉| = ĨE · ξ and ξ0(ω) > η0(ω) = 0 μ-a.e. on E.
Choosing a positive integer n so large that μ{ω ∈ E : n · ξ0(ω) > 1} > 0, and putting q̃ = n · q∗,
then |〈p, q̃〉| = ĨE · n · ξ �≤ 1. But

∨{|〈a, q̃〉| : a ∈ A} = 0 still holds, this means q̃ ∈ A0, again
p �∈ A00 contradicts the assumption on p.

Remark 3.7. Theorem 3.4 (2) shows the concept of the μ-a.e. boundedness is more important
than that of the boundedness; Theorem 3.4 (4), namely the random bipolar theorem, shows
the concept of polar and that of the μ-a.e. boundedness will help us develop a kind of theory
of random uniform convergence structure and random admissible structure with respect to a
random duality pair. This will be the subject of the forthcoming paper.

Acknowledgements The authors cordially thank referees for their valuable comments which
lead to the improvement of this paper.

References

1 Wilansky A. Functional Analysis. New York: Blaisdell, 1964

2 Guo T X. Module homomorphisms on random normed modules. Chin Northeast Math J, 12(1): 102–114

(1996)

3 Guo T X, Peng S L. A characterization for an L(µ, K)-topological module to admit enough canonical

module homomorphisms. J Math Anal Appl, 263(2): 580–599 (2001)

4 Guo T X, Zhu L H. A characterization of continuous module homomorphisms on random seminormed

modules and its applications. Acta Math Sinica, English Series, 19(1): 201–208 (2003)

5 Guo T X. Survey of recent developments of random metric theory and its applications in China (I) and

(II). Acta Anal Funct Appl, 3(2): 129–158 (2001); 3(3): 208–230 (2001)

6 Schweizer B, Sklar A. Probabilistic Metric Spaces. North Holland-New York: Elsevier, 1983

7 Schweizer B, Sklar A. Probabilistic Metric Spaces. Mineola-New York: Dover Publications, 2005

8 Guo T X. Some basic theories of random normed linear spaces and random inner product spaces. Acta

Anal Funct Appl, 1(2): 160–184 (1999)

9 Guo T X, Ma R P. Some reviews on various definitions of a random conjugate space together with various

kinds of boundedness of a random linear functional. Acta Anal Funct Appl, 6(1): 16–38 (2004)

10 Guo T X, You Z Y. Riesz representation theorem in complete random inner product modules and its

applications (in Chinese). Chin Ann Math Ser A, 17(3): 361–364 (1996)

11 Guo T X. The Random-Nikodým property of conjugate spaces and the w∗-equivalence theorem on the

w∗-measurable functions. Sci China Ser A, 39(10): 1034–1041 (1996)

12 Guo T X. Representation theorems of the dual of Lebesgue-Bochner function spaces. Sci China Ser A,

43(3): 234–243 (2000)

13 Guo T X, Li S B. The James theorem in complete random normed modules. J Math Anal Appl, 308(1):

257–265 (2005)

14 Guo T X. The relation of Banach-Alaoglu theorem and Banach-Bourbaki-Kakutani-Šmulian theorem in
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