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Abstract We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a

class of symmetric jump processes (or equivalently, a class of symmetric integro-differential operators).

We focus on the sharp two-sided estimates for the transition density functions (or heat kernels) of the

processes, a priori Hölder estimate and parabolic Harnack inequalities for their parabolic functions. In

contrast to the second order elliptic differential operator case, the methods to establish these properties

for symmetric integro-differential operators are mainly probabilistic.

Keywords: symmetric jump process, diffusion with jumps, pseudo-differential operator, Dirich-
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1 Introduction

Second order elliptic differential operators and diffusion processes take up, respectively, an
central place in the theory of partial differential equations (PDE) and the theory of probability.
There are close relationships between these two subjects. For a large class of second order
elliptic differential operators L on R

n, there is a diffusion process X on R
n associated with it so

that L is the infinitesimal generator of X , and vice versa. The connection between L and X can
also be seen as follows. The fundamental solution (also called heat kernel) for L is the transition
density function of X . For example, when L = 1

2

∑n
i,j=1

∂
∂xi

(aij(x) ∂
∂xj

), where (aij(x))1�i,j�n

is a measurable n × n matrix-valued function on R
n that is uniformly elliptic and bounded,

there is a symmetric diffusion X having L as its L2-infinitesimal generator. The celebrated
DeGiorgi-Nash-Moser-Aronson theory tells us that every bounded parabolic function of L (or
equivalently, of X) is locally Hölder continuous and the parabolic Harnack inequality holds for
non-negative parabolic functions of L. Moreover, L has a jointly continuous heat kernel p(t, x, y)
with respect to the Lebesgue measure on R

n that enjoys the following Aronson’s estimate: there
are constants ck > 0, k = 1, . . . , 4, so that

c1 p
c(t, c2|x− y|) � p(t, x, y) � c3 p

c(t, c4|x− y|) for t > 0 and x, y ∈ R
n. (1.1)
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Here

pc(t, r) := t−n/2 exp(−r2/t). (1.2)

See [1] for some history and a survey on this subject, where a mixture of analytic and proba-
bilistic methods is presented.

Recently there has been intense interest in studying discontinuous Markov processes, due
to their importance both in theory and in applications. Many physical and economic systems
should be and in fact have been successfully modeled by non-Gaussian jump processes; see for
example, [2–5] and the references therein. The infinitesimal generator of a discontinuous Markov
process in R

n is no longer a differential operator but rather a non-local (or, integro-differential)
operator. For instance, the infinitesimal generator of an isotropically symmetric α-stable process
in R

n with α ∈ (0, 2) is a fractional Laplacian operator cΔα/2 := −c (−Δ)α/2. During the past
several years there is also much interest from the theory of PDE (such as singular obstacle
problems) to study non-local operators; see, for example, [6, 7] and the references therein.

In this paper, we survey recent development of the DeGiorgi-Nash-Moser-Aronson type theory
for the following type of non-local (integro-differential) operators L on R

n:

Lu(x) =
1
2

n∑

i,j=1

∂

∂xi

(

aij(x)
∂u(x)
∂xj

)

+ lim
ε↓0

∫

{y∈Rn: |y−x|>ε}
(u(y) − u(x))J(x, y)dy, (1.3)

where either (aij(x))1�i,j�n is identically zero or (aij(x))1�i,j�n is a measurable n× n matrix-
valued measurable function on R

n that is uniformly elliptic and bounded, and J is a measurable
non-negative symmetric kernel satisfying certain conditions. Associated with such a non-local
operator L is an R

n-valued symmetric jump process X with jumping kernel J(x, y) and with
possible diffusive components when (aij(x))1�i,j�n is non-degenerate. Note that the jumping
kernel J determines a Lévy system for X , which describes the jumps of the process X : for any
non-negative measurable function f on R+×R

n×R
n, t � 0, x ∈ R

n and stopping time T (with
respect to the minimal admissible filtration of X),

Ex

[ ∑

s�T

f(s,Xs−, Xs)
]

= Ex

[ ∫ T

0

( ∫

Rn

f(s,Xs, y)J(Xs, y)dy
)

ds

]

. (1.4)

Our focus will be on sharp two-sided heat kernel estimates for L (or equivalently, transition
density function estimates for X), as well as parabolic Harnack inequality and a priori joint
Hölder continuity estimate for parabolic functions of L. When (aij(x))1�i,j�n ≡ 0 and J(x, y) =
c|x − y|−n−α for some α ∈ (0, 2) in (1.3), L is a fractional Laplacian c1Δα/2 on R

n and its
associated process X is a rotationally symmetric α-stable process on R

n. Unlike the Brownian
motion case, the explicit formula for the density function p(t, x, y) of X with respect to the
Lebesgue measure is only known for a few special α, such as α = 1. However due to the scaling
property of X , one has

p(t, x, y) = t−n/α p(1, t−1/αx, t−1/αy) = t−n/α f(t−1/α(x − y)) for t > 0 and x, y ∈ R
n,

where f(z) is the density function of the symmetric α-stable random variable X1 −X0 in R
n.

Using Fourier transform, it is not difficult to show (see [8,Theorem 2.1]) that f(z) is a continuous
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strictly positive function on R
n depending on z only through |z| and that f(z) � |z|−n−α at

infinity. Consequently

p(t, x, y) � t−n/α

(

1 ∧ t1/α

|x− y|
)n+α

on R+ × R
n × R

n. (1.5)

In this paper, for two non-negative functions f and g, the notation f � g means that there
are positive constants c1 and c2 so that c1g(x) � f(x) � c2g(x) in the common domain of
definition for f and g. For a, b ∈ R, a ∧ b := min{a, b} and a ∨ b := max{a, b}. However such
kind of simple argument for (1.5) breaks down for the symmetric α-stable-like processes on R

n

when (aij(x))1�i,j�n ≡ 0 and J(x, y) = c(x, y)|x− y|−n−α for some α ∈ (0, 2) and a symmetric
function c(x, y) that is bounded between two positive constants in (1.3), as in this case, X is
no longer a Lévy process.

Two-sided heat kernel estimates for jump processes in R
n have only been studied recently.

In [9], Kolokoltsov obtained two-sided heat kernel estimates for certain stable-like processes in
R

n, whose infinitesimal generators are a class of pseudo-differential operators having smooth
symbols. Bass and Levin[10] used a completely different approach to obtain similar estimates
for discrete time Markov chain on Z

n where the conductance between x and y is comparable to
|x−y|−n−α for α ∈ (0, 2). In [11], two-sided heat kernel estimates and a scale-invariant parabolic
Harnack inequality (PHI in abbreviation) for symmetric α-stable-like processes on d-sets are
obtained. Recently in [12], PHI and two-sided heat kernel estimates are even established for
non-local operators of variable order. Finite range stable-like processes on R

n are studied in
[13]. This class of processes is very natural in applications where jumps only up to a certain size
are allowed. The heat kernel estimates obtained in [13] shows finite range stable-like processes
behave like discontinuous stable-like processes in small scale and behave like Brownian motion
in large scale. Processes having such properties may be useful in applications. For example,
in mathematical finance, it has been observed that even though discontinuous stable processes
provide better representations of financial data than Gaussian processes[14], financial data tend
to become more Gaussian over a longer time-scale (see [15] and the references therein). Our heat
kernel estimates in [13] show that finite range stable-like processes have this type of property.
Moreover, finite range stable-like processes avoid large sizes of jumps which can be considered
as impossibly huge changes of financial data in short time. See [16] for some results on parabolic
Harnack inequality and heat kernel estimate for more general non-local operators of variable
order on R

n, whose jumping kernel is supported on jump size less than or equal to 1. The
DeGiorgi-Nash-Moser-Aronson type theory is studied very recently in [17] for diffusions with
jumps whose infinitesimal generator is of type (1.3) with uniformly elliptic and bounded diffusion
matrix (aij(x))1�i,j�n and non-degenerate measurable jumping kernel J .

Quite often we need to consider part process XD of X killed upon exit an open set D ⊂ R
n.

When X is a Brownian motion, the infinitesimal generator of XD is the Dirichlet Laplacian
1
2ΔD. When X is a rotationally symmetric α-stable process in R

n, the infinitesimal generator
of XD is a Dirichlet fractional Laplacian cΔα/2|D that satisfies zero exterior condition on Dc.
Though the transition density function of Brownian motion has been known for quite a long
time, due to the complication near the boundary, a complete sharp two-sided estimates on the
transition density of killed Brownian motion in bounded C1,1 domains D (equivalently, the
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Dirichlet heat kernel) have been established only recently in 2002, see [18] and the references
therein. Very recently in [19], we have obtained sharp two-sided heat kernel estimates for
Dirichlet fractional Laplacian operator in C1,1 open sets, while in [20, 21], we derived sharp two-
sided estimates for transition density functions of censored stable processes and of relativistic
α-stable processes in C1,1 open sets, respectively.

The rest of the paper is organized as follows. Heat kernel estimates, PHI and a priori Hölder
estimates for stable-like processes and mixed stable-like processes on n-sets in R

n are discussed
in Sections 2 and 3, respectively. In Section 4, we deal with finite range stable-like processes
on R

n, while results for diffusions with jumps are surveyed in Section 5. Sections 6 and 7
are devoted to sharp heat kernel estimates for symmetric stable processes and censored stable
processes in C1,1-open sets. To give a glimpse of our approach to the DeGiorgi-Nash-Moser-
Aronson type theory for non-local operators using probabilistic means, we give an outline of the
main ideas in our investigation for the following three classes of processes: symmetric stable-
like processes on open n-sets in R

n in Section 2, diffusions with jumps on R
n in Section 5 and

symmetric stable processes in open subsets of R
n in Section 6. This paper surveys some recent

research that the author is involved. See [22] for a survey for related topics on SDEs with jumps,
Harnack inequalities and Hölder continuity of harmonic functions for non-local operators, and
[23] for a survey (prior to 2000) on potential theory of symmetric stable processes in open sets.

Throughout this paper, n � 1 is an integer. We denote by m or dx the n-dimensional
Lebesgue measure in R

n, and C1
c (Rn) the space of C1-functions on R

n with compact support.
For a closed subset F of R

n, Cc(F ) denotes the space of continuous functions with compact
support in F . For a Markov process X on a state space E and a subset K ⊂ E, we let
σK := inf{t � 0 : Xt ∈ K} and τK := inf{t � 0 : Xt /∈ K} to denote the first entering and
exiting time of K by X .

2 Stable-like processes

A Borel subset F in R
n with n � 1 is said to be an n-set if there exist constants r0 > 0,

C2 > C1 > 0 so that

C1 r
n � m(B(x, r)) � C2 r

n for all x ∈ F, 0 < r � r0. (2.1)

In this section and the next, B(x, r) := {y ∈ F : |x − y| < r} and | · | is the Euclidean metric
in R

n. Every uniformly Lipschitz domain in R
n is an n-set, so is its Euclidean closure. It is

easy to check that the classical von Koch snowflake domain in R
2 is an open 2-set. An n-set

can have very rough boundary since every n-set with a subset having zero Lebesgue measure
removed is still an n-set.

For a closed n-set F ⊂ R
n and 0 < α < 2, define

F =
{

u ∈ L2(F,m) :
∫

F×F

(u(x) − u(y))2

|x− y|n+α
m(dx)m(dy) <∞

}

, (2.2)

E(u, v) =
1
2

∫

F×F

(u(x) − u(y))(v(x) − v(y))
c(x, y)

|x − y|n+α
m(dx)m(dy) (2.3)

for u, v ∈ F , where c(x, y) is a symmetric function on F × F that is bounded between two
strictly positive constants C4 > C3 > 0, that is,

C3 � c(x, y) � C4 for m-a.e. x, y ∈ F. (2.4)
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It is easy to check that (E ,F) is a regular Dirichlet form on L2(F,m) and therefore there is
an associated m-symmetric Hunt process X on F starting from every point in F except for
an exceptional set that has zero capacity. We call such kind of process a α-stable-like process
on F . Note that when F = R

n and c(x, y) is a constant function, then X is nothing but a
rotationally symmetric α-stable process on R

n.

Theorem 2.1 ([11, Theorem 1.1]). Suppose that F ⊂ R
n is a closed n-set and 0 < α < 2.

Then X has a Hölder continuous transition density function p(t, x, y) with respect to m. This
in particular implies that X can be modified to start from every point in F as a Feller process.
Moreover, there are constants c2 > c1 > 0 that depend only on n, α, and the constants Ck,
k = 1, . . . , 4 in (2.1) and (2.4), respectively, such that

c1 min
{

t−n/α,
t

|x− y|n+α

}

� p(t, x, y) � c2 min
{

t−n/α,
t

|x− y|n+α

}

, (2.5)

for all x, y ∈ F and 0 < t � 1.

If F is a global n-set in the sense that (2.1) holds for every 0 < t � 0, then the heat kernel
estimates in (2.5) holds for every t > 0.

Note that in [11,Theorem 1.1], the dependence of c1, c2 on (C1, . . . , C4) in Theorem 2.1 is
stated for every α except for the case of 0 < α = n < 2. The reason is that in [11], the
n-diagonal estimate (Nash’s inequality) for the case of α = n < 2 was established by using
an interpolation method. This restriction can be removed by an alternative way to establish
Nash’s inequality, see [13,Theorem 3.1].

The detailed heat kernel estimates such as those in (2.5) are very useful in the study of
sample path properties of the processes. For example, the following is proved in [11].

Theorem 2.2 ([11,Theorem 1.2]). Under the assumption of Theorem 2.1, for every x ∈ F ,
Px-a.s., the Hausdorff dimension of X [0, 1] := {Xt : 0 � t � 1} is α ∧ n.

In fact, a much stronger result can be derived from Theorem 2.1. The following uniform
Hausdorff dimensional result and boundary trace result are established in Remarks 3.10 and
4.4 of [24], respectively.

Theorem 2.3. Let D be an open n-set in R
n with n � 2 and X be an α-stable-like process

on D. Then for every x ∈ D,

Px(dimH X(E) = α dimH E for all Borel sets E ⊂ R+) = 1

and Px-a.s.

dimH(X [0,∞) ∩ ∂D) = max
{

1 − n− dimH ∂D

α
, 0

}

.

Here for a time set E ⊂ R+, X(E) := {Xt : t ∈ E} and dimH(A) is the Hausdorff dimension
of a set A.

The approach to Theorem 2.1 in [11] is probabilistic in nature and is motivated by the
work of Bass and Levin[10, 25] on stable-like processes on Z

n and on R
n. However there are

new challenges for stable-like processes on n-sets, as [25] deals with (possibly non-symmetric)
semimartingale stable-like processes on R

n, when restricted to the symmetric processes case,
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requiring c(x, y) = f(x, y − x) and f(x, h) be an even function in h, while [10] is concerned
about the transition density function estimates for discrete time stable-like Markov chains on
Z

n.
By Nash’s inequality and [16,Theorems 3.1 and 3.2], there is a properly exceptional set

N ⊂ F and a positive symmetric function p(t, x, y) defined on (0,∞) × (F \ N ) × (F ×N ) so
that p(t, x, y) is the density function for Xt under Px for every x ∈ F \ N ,

p(t+ s, x, y) =
∫

F

p(s, x, z)p(t, z, y)m(dz) for every x, y ∈ F \ N and t > 0,

and

p(t, x, y) � ct−n/α for every t > 0 and x, y ∈ F \ N .

Moreover, there is an E-nest {Fk, k � 1} of compact sets so that N = E \⋃
k�1 Fk and that for

every t > 0 and y ∈ F \ N , x 
→ p(t, x, y) is continuous on each Fk. The proof of Theorem 2.1
given in [11] relies on the following three key propositions. The first proposition is a tightness
result for X .

Proposition 2.4 ([11, Proposition 4.1]). For each r0 > 0, A > 0 and 0 < B < 1, there exists
0 < γ < 1 such that for every 0 < r � r0,

Px(τB(x, Ar) < γ rα) � B for every x ∈ F \ N .

Moreover, the constant γ can be chosen to depend only on (r0, A,B, n, α) and the constants
(C1, C2, C3, C4) in (2.1) and (2.4) respectively.

Proposition 2.5 ([11, Proposition 4.2]). (i) For each a > 0, there exists c1 > 0 such that for
every x ∈ F \ N ,

Px(σB(y, ar) < rα) � c1

(
r

|x− y|
)d+α

for every r ∈ (0, 21/α]. (2.6)

Moreover, the constant c1 above can be chosen to depend only on (a, n, α) and on the constants
(C1, C2, C3, C4) in (2.1) and (2.4), respectively.

(ii) For each a, b > 0, there exists c2 > 0 such that

Px(σB(y, ar) < rα) � c2

(
r

|x− y|
)d+α

, (2.7)

for every r ∈ (0, 21/α] and such that |x − y| � b r. Moreover, the constant c2 above can be
chosen to depend only on (a, b, n, α) and on the constants (C1, C2, C3, C4) in (2.1) and (2.4),
respectively.

The last key proposition is a parabolic Harnack inequality. For this we need to introduce
space-time process Zs := (Vs, Xs), where Vs = V0 + s. The filtration generated by Z satisfying
the usual condition will be denoted as {F̃s; s � 0}. The law of the space-time process s 
→ Zs

starting from (t, x) will be denoted as P
(t,x). We say that a non-negative Borel measurable

function q(t, x) on [0,∞) × F is parabolic in a relatively open subset D of (0,∞) × F if for
every relatively compact open subset D1 of D, q(t, x) = E

(t,x)[q(ZτD1
)] for every (t, x) ∈ D1 ∩
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(0,∞) × (F \ N ), where τD1 = inf{s > 0 : Zs /∈ D1}. It is easy to see that for each t0 > 0 and
x0 ∈ F \ N , q(t, x) := p(t0 − t, x, x0) is parabolic on [0, t0) × F .

For each R0 > 0, we denote γR0 := γ(R0, 1/2, 1/2) < 1 the constant in Proposition 2.4
corresponding to r0 = R0 and A = B = 1/2. For t � 1 and r � R0, we define

QR0(t, x, r) := [t, t+ γR0r
α] × (B(x, r) ∩ F \ N ).

Proposition 2.6 ([11,Proposition 4.3]). For every R0 > 0, 0 < δ � γR0 , there exists c > 0
such that for every z ∈ F , 0 < R � R0 and every non-negative function q on [0,∞)×F that is
parabolic and bounded on [0, 3γR0R

α] ×B(z,R),

sup
(t,y)∈QR0(δRα,z,R/3)

q(t, y) � c inf
y∈B(z,R/3)

q(0, y).

Moreover, the constant c above can be chosen to depend only on (R0, δ, n, α) and on the constants
(C1, C2, C3, C4) in (2.1) and (2.4) respectively.

Note that the parabolic Harnack inequality implies the elliptic Harnack inequality.
With the above three propositions, the heat kernel estimates for p(t, x, y) in Theorem 2.1 can

be established for every 0 < t � 1 and x, y ∈ F \ N . That p(t, x, y) is jointly continuous and
hence the heat kernel estimates hold for every 0 < t � 0 and x, y ∈ F comes from the following
theorem.

Theorem 2.7 ([11,Theorem 4.14]). For every R0 > 0, there is a constant c = c(R0) > 0 such
that for every 0 < R � R0 and every bounded parabolic function q in QR0(0, x0,max{4, 41/α}
R),

|q(s, x) − q(t, y)| � c ‖q‖∞,RR
−β (|t− s|1/α + |x− y|)β

holds for (s, x), (t, y) ∈ QR0(0, x0, R), where ‖q‖∞,R := sup(t,y)∈[0, γR0 max{4, 4α}Rα]×(F\N )

|q(t, y)|. In particular, for the transition density function p(t, x, y) of X, there are constants
c > 0 and β > 0 such that for any 0 < t0 < 1, t, s ∈ [t0, 2] and (xi, yi) ∈ (F \ N ) × (F \ N )
with i = 1, 2,

|p(s, x1, y1) − p(t, x2, y2)| � c t
−(d+β)/α
0 (|t− s|1/α + |x1 − x2| + |y1 − y2|)β .

Moreover, the constant c above can be chosen to depend only on (R0, t0, n, α) and on the con-
stants (C1, C2, C3, C4) in (2.1) and (2.4).

3 Mixed stable-like processes

In applications, the stochastic model may have more than one type of noises. So it is natural
to consider mixed stable-like processes and a mixture of diffusion and jump-type processes.

Let F be a closed global n-set in R
n. Let φ = φ1ψ be a strictly increasing continuous

functions on R+, where ψ is non-decreasing function on [0,∞) with ψ(r) = 1 for 0 < r � 1
that is either the constant function 1 on R+ or there are constants c0 > 0, c2 � c1 > 0 and
γ2 � γ1 > 0 so that

c1e
γ1r � ψ(r) � c2e

γ2r for every 1 < r <∞, (3.1)

with
ψ(r + 1) � c0ψ(r) for every r � 1, (3.2)
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and φ1 is a strictly increasing function on [0,∞) with φ1(0) = 0, φ1(1) = 1 and satisfies the
following: there exist constants c2 > c1 > 0, c3 > 0, and β2 � β1 > 0 such that

c1

(
R

r

)β1

� φ1(R)
φ1(r)

� c2

(
R

r

)β2

for every 0 < r < R <∞, (3.3)
∫ r

0

s

φ1(s)
ds � c3

r2

φ1(r)
for every r > 0. (3.4)

Remark 3.1. Note that condition (3.3) is equivalent to the existence of constants c4, c5 > 1
and L0 > 1 such that for every r > 0,

c4φ1(r) � φ1(L0r) � c5 φ1(r).

Denote by d the diagonal of F × F and J be a symmetric measurable function on F × F \ d
such that for every (x, y) ∈ F × F \ d,

c1
|x− y|n φ(c2|x− y|) � J(x, y) � c3

|x− y|n φ(c4|x− y|) . (3.5)

For u ∈ L2(F,m), define F := {u ∈ L2(F ;m) :
∫

F×F
(u(x)−u(y))2J(x, y)m(dx)m(dy) <∞}

and

E(u, u) :=
∫

F×F

(u(x) − u(y))(v(x) − v(y))J(x, y)m(dx)m(dy) for u, v ∈ F . (3.6)

For β > 0,

Eβ(u, u) := E(u, u) + β

∫

F

u(x)2m(dx).

It is not difficult to show that (E ,F) is a regular Dirichlet form on L2(F,m) (see [12, Propo-
sition 2.2 and Remark 4.10 (ii)]. So there is a symmetric Hunt process Y associated with it,
starting from quasi-every point in F . However the next theorem, which is a special case of [12,
Theorem 1.2] (cf. [13, Remark 4.4 (iv)]), says that X can be refined to start from every point
in F . Moreover, it has a jointly continuous transition density function p(t, x, y) with respect to
the Lebesgue measure on F . The inverse function of the strictly increasing function t 
→ φ(t)
is denoted by φ−1(t).

Theorem 3.2 ([12,Theorem 1.2]). Under the above conditions, there is a conservative Feller
process Y associated with (E ,F) that starts from every point in F . Moreover the process Y has
a continuous transition density function on (0,∞)×F×F with respect to the measure m, which
has the following estimates. There are positive constants c1 > 0, c2 > 0 and C � 1 such that

C−1

(
1

φ−1(t)n
∧ t

|x− y|n φ(c1|x− y|)
)

� p(t, x, y) � C

(
1

φ−1(t)n
∧ t

|x− y|nφ(c2|x− y|)
)

for every t ∈ (0, 1] and x, y ∈ F . Moreover, when ψ ≡ 1, the above heat kernel estimates hold
for every t > 0 and x, y ∈ F .

We now give some examples such that Theorem 3.2 applies.

Example 3.3. If there is 0 < α1 < α2 < 2 and a probability measure ν on [α1, α2] such that

φ(r) :=
( ∫ α2

α1

r−α ν(dα)
)−1

,
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then conditions (3.3)–(3.4) are satisfied with ψ ≡ 1. Clearly, φ is a continuous strictly increasing
function with φ(0) = 0 and φ(1) = 1. The condition (3.3) is satisfied with γ ≡ 1 because

1
2α1

� φ(r)
φ(2r)

� 1
2α2

for any r > 0.

For r > 0, by Fubini’s theorem,
∫ r

0

s

φ(s)
ds =

∫ r

0

∫ α2

α1

r1−αν(dα)ds =
∫ α2

α1

1
2 − α

r2−αν(dα) � 1
2 − α2

r2

φ(r)
,

and so condition (3.4) is satisfied. In this case,

J(x, y) �
∫ α2

α1

1
|x− y|n+α

ν(dα).

A particular case is when ν is a discrete measure. For example, ν is a discrete measure con-
centrate on α, β ∈ (0, 2). In this case, J(x, y) = c1(x,y)

|x−y|n+α + c2(x,y)
|x−y|n+β , where ci(x, y) are two

symmetric functions that are bounded between two positive constants, and

φ(r) � min{rα, rβ}, φ−1(r) � max{r1/α, r1/β}.

Theorem 3.2 gives the precise heat kernel estimates for mixed stable-like processes on F . When
F = R

n, Theorem 3.2 in particular gives the heat kernel estimate for Lévy processes on R
n which

are linear combinations of independent symmetric α-stable processes. Of course, Theorem 3.2
holds much more generally, even in the case of F = R

n.

Example 3.4. Let Y = {Yt, t � 0} be the relativistic α-stable processes on R
n with mass

m0 > 0. That is, {Yt, t � 0} is a Lévy process on R
n with

E[exp(i〈ξ, Yt − Y0〉)] = exp(t(mα
0 − (|ξ|2 +m2

0)
α/2)).

where α ∈ (0, 2). It is shown in [26] that the corresponding jumping intensity satisfies

J(x, y) � Ψ(m0|x− y|)
|x− y|n+α

,

where Ψ(r) � e−r(1 + r(n+α−1)/2) near r = ∞, and Ψ(r) = 1 + Ψ′′(0)r2/2 + o(r4) near r = 0.
So the conditions (3.1)–(3.4) are satisfied with γ1 > 0 for the jumping intensity kernel for every
relativistic α-stable processes on R

n.
When α = 1, the process is called a relativistic Hamiltonian process. In this case, the heat

kernel can be written as

p(t, x, y) =
t

(2π)n
√|x− y|2 + t2

∫

Rn

em0te−
√

(|x−y|2+t2)(|z|2+m2
0)dz,

see [27]. For simplicity, take m0 = 1. It can be shown that for every t > 0 and (x, y) ∈ R
n×R

n,

c1t

(|x − y| + t)n+1
(1 ∨ (|x − y| + t)d/2)e

−c2
|x−y|2√

|x−y|2+t2

� p(t, x, y) � c3t

(|x− y| + t)n+1
(1 ∨ (|x− y| + t)d/2)e

−c4
|x−y|2√

|x−y|2+t2 .
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This in particular implies that for every fixed t0 > 0, there exist c1, . . . , c4 > 0 which depend
on t0 such that

c1

(

t−n ∧ t

|x− y|n+1

)

e−c2|x−y| � p(t, x, y) � c3

(

t−n ∧ t

|x− y|n+1

)

e−c4|x−y|

for every t ∈ (0, t0] and x, y ∈ R
n, which is a special case of Theorem 3.2.

The following construction of Meyer[28] for jump processes played an important role in our
approach in [12]. Suppose we have two jump intensity kernels J(x, y) and J0(x, y) on F×F such
that their corresponding pure jump Dirichlet forms given in terms of (3.6) with F = D(E)

E1
are

regular on F . Let Y = {Yt, t � 0, Px, x ∈ F \N} and Y (0) = {Y (0)
t , t � 0, Px, x ∈ F \N0} be the

processes corresponding to the Dirichlet forms whose Lévy densities are J(x, y) and J0(x, y),
respectively. Here N and N0 are the properly exceptional sets of Y and Y (0), respectively.
Suppose that J0(x, y) � J(x, y) and

J (x) :=
∫

F

(J(x, y) − J0(x, y))m(dy) � c,

for all x ∈ F . Let

J1(x, y) := J(x, y) − J0(x, y) and q(x, y) =
J1(x, y)
J (x)

. (3.7)

Then we can construct a process Y corresponding to the jump kernel J from Y (0) as fol-
lows. Let S1 be an exponential random variable of parameter 1 independent of Y (0), let
Ct =

∫ t

0 J (Y (0)
s ) ds, and let U1 be the first time that Ct exceeds S1. We let Ys = Y

(0)
s for

0 � s < U1.
At time U1 we introduce a jump from YU1− to Z1, where Z1 is chosen at random according to

the distribution q(YU1−, y). We set YU1 = Z1, and repeat, using an independent exponential S2,
etc. Since J (x) is bounded, only finitely many new jumps are introduced in any bounded time
interval. In [28] it is proved that the resulting process corresponds to the kernel J . See also [29].
Note that if N0 is the properly exceptional set corresponding to Y (0), then this construction
gives that the properly exceptional set N for Y can be chosen to be a subset of N0.

Conversely, we can also remove a finite number of jumps from a process Y to obtain a new
process Y (0). For simplicity, assume that J0(x, y)J1(x, y) = 0. Suppose one starts with the
process Y (associated with J), runs it until the stopping time S1 = inf{t : J1(Yt−, Yt) > 0},
and at that time restarts Y at the point YS1−. Suppose one then repeats this procedure over
and over. Meyer[28] proves that the resulting process Y (0) will correspond to the jump kernel
J0. In this case N0 ⊂ N .

Assume that the processes Y and Y (0) have transition density functions p(t, x, y) and
p(0)(t, x, y), respectively. Let {Ft}t�0 be the filtration generated by the process Y (0). The
following lemma is shown in [16, Lemma 2.4] and in [30, Lemma 3.2].

Lemma 3.5. (i) For any A ∈ Ft,

Px({Ys = Y (0)
s for all 0 � s � t} ∩A) � e−t‖J‖∞ Px(A).

(ii) If ‖J1‖∞ <∞, then

p(t, x, y) � p(0)(t, x, y) + t‖J1‖∞.
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The use of Lemma 3.5 can also significantly simplify the proofs in [11] for results in the last
section. The relation between Y and Y0 can be viewed as the probabilistic counterpart of the
Trotter’s semigroup perturbation method. For example, the proof for Propositions 2.5 and 2.6
can be simplified by using Lemma 3.5. See the proof of Propositions 4.9 and 4.11 of [12] in this
regard.

Comparing with Theorem 2.1, Theorem 3.2 says that the rate function for stable processes
of mixed type associated with (3.5)–(3.6) is φ. Parabolic Harnack inequality and a prior Hölder
estimate also hold for parabolic functions of X , with this rate function φ. For each r, t > 0, we
define

Q(t, x, r) := [t, t+ γφ(r)] × (B(x, r) ∩ F ).

Theorem 3.6 ([12, Theorem 4.12]). For every 0 < δ � γ, there exists c1 > 0 such that for
every z ∈ F , R ∈ (0, 1] (resp. R > 0 when γ1 = γ2 = 0) and every non-negative function h on
[0,∞) × F that is parabolic and bounded on [0, γφ(2R)]×B(z, 2R),

sup
(t,y)∈Q(δφ(R),z,R)

h(t, y) � c1 inf
y∈B(z,R)

h(0, y).

In particular, the following holds for t � 1 (resp. t > 0 when γ1 = γ2 = 0).

sup
(s,y)∈Q((1−γ)t,z,φ−1(t))

p(s, x, y) � c inf
y∈B(z,φ−1(t))

p((1 + γ)t, x, y). (3.8)

Proposition 3.7 ([12,Proposition 4.14]). For every R0 ∈ (0, 1] (resp. R0 > 0 when γ1 =
γ2 = 0), there are constants c = c(R0) > 0 and κ > 0 such that for every 0 < R � R0 and
every bounded parabolic function h in Q(0, x0, 2R),

|h(s, x) − h(t, y)| � c ‖h‖∞,F R
−κ (φ−1(|t− s|) + ρ(x, y))κ

holds for (s, x), (t, y) ∈ Q(0, x0, R), where ‖h‖∞,F := sup(t,y)∈[0, γφ(2R)]×F |h(t, y)|. In particu-
lar, for the transition density function p(t, x, y) of X, for any t0 ∈ (0, 1) (resp. any T > 0 and
any t0 ∈ (0, T ) when γ1 = γ2 = 0), there are constants c = c(t0) > 0 and κ > 0 such that for
any t, s ∈ [t0, 1] (resp. t, s ∈ [t0, T ]) and (xi, yi) ∈ F × F with i = 1, 2,

|p(s, x1, y1) − p(t, x2, y2)| � c
1

φ−1(t0)n φ−1(t0)κ
(φ−1(|t− s|) + ρ(x1, x2) + ρ(y1, y2))κ.

4 Finite range stable-like processes

A finite range α-stable-like process X on R
n is a symmetric Hunt process on R

n of purely
discontinuous type whose jumping kernel is J(x, y) = c(x,y)

|x−y|n+α�{|x−y|�κ}, where α ∈ (0, 2),
κ > 0 and c(x, y) is a symmetric function on R

n × R
n that is bounded between two positive

constants. The Dirichlet form (E ,F) associated with X on L2(Rn,m) is given by

F =
{

u ∈ L2(Rn;m) :
∫

Rn×Rn

(u(x) − u(y))2

|x− y|n+α
�{|x−y|�κ}m(dx)m(dy) <∞

}

=
{

u ∈ L2(Rn;m) :
∫

Rn×Rn

(u(x) − u(y))2

|x− y|n+α
m(dx)m(dy) <∞

}

, (4.1)
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E(u, v) =
1
2

∫

F×F

(u(x) − u(y))(v(x) − v(y))
c(x, y)

|x − y|n+α
�{|x−y|�κ}m(dx)m(dy) (4.2)

for u, v ∈ F . The L2-infinitesimal generator of X and (E ,F) is a non-local (integro-differential)
operators L on R

n with measurable symmetric kernel J(x, y) = c(x,y)
|x−y|n+α�{|x−y|�κ}:

Lu(x) = lim
ε↓0

∫

{y∈Rn: |y−x|>ε}
(u(y) − u(x))J(x, y)dy.

Theorem 4.1 ([13, Proposition 2.1 and Theorems 2.3 and 3.6]). The finite range stable-like
process X has a jointly continuous transition density function p(t, x, y) and so X can be refined
to start from every point on R

n. Moreover the following sharp two-sided heat kernel estimates
hold.

(i) There is R∗ ∈ (0, 1) so that for every t ∈ (0, Rα∗ ] and x, y ∈ R
n with |x− y| � R∗

p(t, x, y) �
(

t−n/α ∧ t

|x− y|n+α

)

.

(ii) There exists C∗ ∈ (0, 1) such that for x, y ∈ R
n with |x− y| � max{t/C∗, R∗},

p(t, x, y) �
(

t

|x− y|
)c|x−y|

= exp
(

− c|x− y| log
|x− y|
t

)

.

(iii) For t � Rα∗ or x, y ∈ R
n with |x− y| ∈ [R∗, t/C∗],

p(t, x, y) � t−n/2 exp
(

− c|x− y|2
t

)

.

The following weighted Poincaré inequality for non-local operators together with Lemma 3.5
played a crucial role in our proof of Theorem 4.1 in [13]. In the remainder of this paper, B(x, r)
denotes the Euclidean ball in R

n with radius r centered at x.

Theorem 4.2 ([13,Proposition 3.2]). Suppose that J(x, y) is a symmetric non-negative kernel
on R

n × R
n such that J(x, y) = 0 when |x− y| � 1 and

κ1|x− y|−n−α � J(x, y) � κ2|x− y|−n−β when |x− y| < 1

for some constants κ1, κ2 > 0 and 0 < α < β < 2. Let φ(x) := c(1 − |x|2)12/(2−β)
�B(0,1)(x),

where c > 0 is the normalizing constant so that
∫

Rn φ(x)dx = 1. Then there is a positive
constant c1 = c1(n, α, β) independent of r > 1, such that for every u ∈ L1(B(0, 1), φdx),

∫

B(0,1)

(u(x) − uφ)2φ(x)dx � c1

∫

B(0,1)×B(0,1)

(u(x) − u(y))2 rn+2J(rx, ry)
√
φ(x)φ(y) dxdy.

Here uφ :=
∫

B(0,1) u(x)φ(x)dx.

5 Diffusions with jumps

In this section, we consider symmetric Markov processes on R
n that have both the diffusion

and pure jumping components. More precisely, consider the following regular Dirichlet form
(E ,F) on L2(Rn;m) given by

⎧
⎨

⎩

E(u, v) =
1
2

∫

Rn

∇u(x) · A(x)∇v(x)dx +
∫

Rn

(u(x) − u(y))(v(x) − v(y))J(x, y)dxdy,

F = C1
c (Rn)

E1
,

(5.1)
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where A(x) = (aij(x))1�i,j�n is a measurable n × n matrix-valued function on R
n that is

uniform elliptic and bounded in the sense that there exists a constant c � 1 such that

c−1
n∑

i=1

ξ2i �
n∑

i,j=1

aij(x)ξiξj � c

n∑

i=1

ξ2i for every x, (ξ1, . . . , ξd) ∈ R
n, (5.2)

and J is a symmetric non-negative measurable kernel on R
n × R

n such that there are positive
constants κ0 > 0, and β ∈ (0, 2) so that

J(x, y) � κ0|x− y|−n−β for |x− y| � δ0, (5.3)

and that
sup

x∈Rn

∫

Rn

(|x− y|2 ∧ 1)J(x, y) dy <∞.. (5.4)

Clearly under Condition (5.3), Condition (5.4) is equivalent to

sup
x∈Rn

∫

{y∈Rn:|y−x|�1}
J(x, y) dy <∞.

By the Dirichlet form theory, there is an R
n-valued symmetric Hunt process X associated with

(E ,F). The L2-infinitesimal generator of X ia a non-local (pseudo-differential) operators L on
R

n:

Lu(x) =
1
2

n∑

i,j=1

∂

∂xi

(

aij(x)
∂u(x)
∂xj

)

+ lim
ε↓0

∫

{y∈Rn: |y−x|>ε}
(u(y) − u(x))J(x, y)dy. (5.5)

When the jumping kernel J ≡ 0 in (5.5) and (5.1), L is a uniform elliptic operator of divergence
form and X is a symmetric diffusion on R

n. It is well-known that X has a joint Hölder
continuous transition density function p(t, x, y), which enjoys the celebrated Aronson’s two-
sided heat kernel estimate (1.1).

When A(x) ≡ 0 in (5.1) and J is given by

J(x, y) � 1
|x− y|d φ(|x − y|) , (5.6)

where φ a strictly increasing continuous function φ : R+ → R+ with φ(0) = 0, and φ(1) = 1 that
satisfies the conditions (3.3)–(3.4) with φ in place of φ1 there, the corresponding process X is a
mixed stable-like process on R

n appeared in the previous section. We know from Theorem 3.2
that there are positive constants 0 < c1 < c2 so that

c1p
j(t, |x− y|) � p(t, x, y) � c2p

j(t, |x− y|) for t > 0, x, y ∈ R
n,

where
pj(t, r) :=

(

φ−1(t)−n ∧ t

rnφ(r)

)

(5.7)

with φ−1 being the inverse function of φ.
In this section, we consider the case where both A and J are non-trivial in (5.5) and (5.1).

Clearly such non-local operators and diffusions with jumps take up an important place both in
theory and in applications. However, there are very limited work in literature for this mixture
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case on the topics of this paper until very recently. One of the difficulties in obtaining fine
properties for such an operator L and process X is that they exhibit different scales: the
diffusion part has Brownian scaling r 
→ r2 while the pure jump part has a different type of
scaling. Nevertheless, there is a folklore which says that with the presence of the diffusion
part corresponding to 1

2

∑n
i,j=1

∂
∂xi

(aij(x) ∂
∂xj

), better results can be expected under weaker
assumptions on the jumping kernel J as the diffusion part helps to smooth things out. Our
investigation in [17] confirms such an intuition. In fact we can establish a priori Hölder estimate
and parabolic Harnack inequality under weaker conditions than (5.6). We now present the
main results of [17]. Let W 1,2(Rn) denote the Sobolev space of order (1, 2) on R

n; that is,
W 1,2(Rn) := {f ∈ L2(Rn;m) : ∇f ∈ L2(Rn;m)}. It is not difficult (see Proposition 1.1 of
[17]) to show that under the conditions (5.2)–(5.4), the domain of the Dirichlet form of (5.1) is
characterized by

F = W 1,2(Rn)

and that ([17,Theorem 2.2]) the corresponding process X has infinite lifetime. Let Z = {Zt :=
(V0 − t,Xt), t � 0} denote the space-time process of X . We say that a non-negative real valued
Borel measurable function h(t, x) on [0,∞)×R

n is parabolic (or caloric) on D = (a, b)×B(x0, r)
if there is a properly exceptional set N ⊂ R

n such that for every relatively compact open subset
D1 of D,

h(t, x) = E
(t,x)[h(ZτD1

)]

for every (t, x) ∈ D1 ∩ ([0,∞) × (Rn \ N )), where τD1 = inf{s > 0 : Zs /∈ D1}. We remark
that in Sections 2 and 3 the space-time process is defined to be (V0 + t,Xt) but this is merely
a notational difference. (For reader’s convenience, we keep the notations same as those in the
references [11, 12, 17].)

Theorem 5.1 ([17, Theorem 1.2]). Assume that the Dirichlet form (E ,F) given by (5.1)
satisfies the conditions (5.2)–(5.4) and that for every 0 < r < δ0,

inf
x0,y0∈Rn

|x0−y0|=r

inf
x∈B(x0, r/16)

∫

B(y0, r/16)

J(x, z)dz > 0. (5.8)

Then for every R0 ∈ (0, 1], there are constants c = c(R0) > 0 and κ > 0 such that for every
0 < R � R0 and every bounded parabolic function h in Q(0, x0, 2R) := (0, 4R2) ×B(x0, 2R),

|h(s, x) − h(t, y)| � c ‖h‖∞,RR
−κ (|t− s|1/2 + |x− y|)κ

holds for (s, x), (t, y) ∈ (3R2, 4R2) ×B(x0, R), where ‖h‖∞,R := sup(t,y)∈[0, 4R2]×Rn\N |h(t, y)|.
In particular, X has a jointly continuous transition density function p(t, x, y) with respect to
the Lebesgue measure. Moreover, for every t0 ∈ (0, 1) there are constants c > 0 and κ > 0 such
that for any t, s ∈ (t0, 1] and (xi, yi) ∈ R

n × R
n with i = 1, 2,

|p(s, x1, y1) − p(t, x2, y2)| � c t
−(n+κ)/2
0 (|t− s|1/2 + |x1 − x2| + |y1 − y2|)κ.

In addition to (5.2)–(5.4) and (5.8), if there is a constant c > 0 such that

J(x, y) � c

rn

∫

B(x,r)

J(z, y)dz wheneverr � 1
2
|x− y| ∧ 1, x, y ∈ R

n, (5.9)
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then the following parabolic Harnack principle holds for non-negative parabolic functions of X .

Theorem 5.2 ([17,Theorem 1.3]). Suppose that the Dirichlet form (E ,F) given by (5.1) sat-
isfies the condition (5.2)–(5.4), (5.8) and (5.9). For every δ ∈ (0, 1), there exist constants
c1 = c1(δ) and c2 = c2(δ) > 0 such that for every z ∈ R

n, t0 � 0, 0 < R � c1 and every
non-negative function u on [0,∞) × R

n that is parabolic on (t0, t0 + 6δR2) ×B(z, 4R),

sup
(t1,y1)∈Q−

u(t1, y1) � c2 inf
(t2,y2)∈Q+

u(t2, y2), (5.10)

where Q− = (t0 + δR2, t0 + 2δR2) ×B(x0, R) and Q+ = (t0 + 3δR2, t0 + 4δR2) ×B(x0, R).

We next present a two-sided heat kernel estimate for X when J(x, y) satisfies the condition
(5.6). Clearly (5.3)–(5.4), (5.8) and (5.9) are satisfied when (5.6) holds. Recall that functions
pc(t, x, y) and pj(t, x, y) are defined by (1.2) and (5.7), respectively.

Theorem 5.3 ([17,Theorem 1.4]). Suppose that (5.2) holds and that the jumping kernel J
of the Dirichlet form (E ,F) given by (5.1) satisfies the condition (5.6). Denote by p(t, x, y)
the continuous transition density function of the symmetric Hunt process X associated with
the regular Dirichlet form (E ,F) of (5.1) with the jumping kernel J given by (5.6). There are
positive constants ci, i = 1, 2, 3, 4 such that for every t > 0 and x, y ∈ R

n,

c1 (t−n/2 ∧ φ−1(t)−n) ∧ (pc(t, c2|x− y|) + pj(t, |x− y|))
� p(t, x, y) � c3 (t−n/2 ∧ φ−1(t)−n) ∧ (pc(t, c4|x− y|) + pj(t, |x − y|)). (5.11)

Here pc and pj are the functions given by (1.2) and (5.7), respectively.

When A(x) ≡ In×n, the n×n identity matrix, and J(x, y) = c|x−y|−n−α for some α ∈ (0, 2)
in (5.1), that is, when X is the independent sum of a Brownian motion W on R

n and an
isotropically symmetric α-stable process Y on R

n, the transition density function p(t, x, y) can
be expressed as the convolution of the transition density functions of W and Y , whose two-sided
estimates are known. In [31], heat kernel estimates for this Lévy process X are carried out by
computing the convolution and the estimates are given in a form that depends on which region
the point (t, x, y) falls into. Subsequently, the parabolic Harnack inequality (5.10) for such a
Lévy process X is derived in [31] by using the two-sided heat kernel estimate. Clearly such an
approach is not applicable in our setting even when φ(r) = rα, since in our case, the diffusion
and jumping part of X are typically not independent. The two-sided estimate in this simple
form of (5.11) is a new observation of [17] even in the independent sum of a Brownian motion
and an isotropically symmetric α-stable process case considered in [31].

The approach in [17] employs methods from both probability theory and analysis, but it is
mainly probabilistic. It uses some ideas previously developed in [11–13, 16, 30]. To get a priori
Hölder estimates for parabolic functions of X , we establish the following three key ingredients.

(i) Exit time upper bound estimate:

Ex[τB(x0,r)] � c1r
2 for x ∈ B(x0, r),

where τB(x0,r) := inf{t > 0 : Xt /∈ B(x0, r)} is the first exit time from B(x0, r) by X .
(ii) Hitting probability estimate:

Px(XτB(x,r) /∈ B(x, s)) � c2r
2

(s ∧ 1)2
for every r ∈ (0, 1] and s � 2r.
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(iii) Hitting probability estimate for space-time process Zt = (V0 − t,Xt): for every x ∈ R
n,

r ∈ (0, 1] and any compact subset A ⊂ Q(x, r) := (0, r2) ×B(x, r),

P
(r2,x)(σA < τr) � c3

mn+1(A)
rn+2

,

where by slightly abusing the notation, σA := {t > 0 : Zt ∈ A} is the first hitting time of A,
τr := inf{t > 0 : Zt /∈ Q(x, r)} is the first exit time from Q(x, r) by Z and mn+1 is the Lebesgue
measure on R

n+1.
Here we use the following notations. The probability law of the process X starting from x is

denoted as Px and the mathematical expectation under it is denoted as Ex, while probability
law of the space-time process Z = (V,X) starting from (t, x), i.e. (V0, X0) = (t, x), is denoted
as P

(t,x) and the mathematical expectation under it is denoted as E
(t,x). To establish parabolic

Harnack inequality, we need in addition the following
(iv) Short time near-diagonal heat kernel estimate: for every t0 > 0, there is c4 = c4(t0) > 0

such that for every x0 ∈ R
n and t ∈ (0, t0],

pB(x0,
√

t)(t, x, y) � c4t
−n/2 for x, y ∈ B(x0,

√
t/2).

Here pB(x0,
√

t) is the transition density function for the part process XB(x0,
√

t) of X killed upon
leaving the ball B(x0,

√
t).

(v) Let R � 1 and δ < 1. Q1 = [t0+2δR2/3, t0+5δR2]×B(x0, 3R/2), Q2 = [t0+δR2/3, t0+
11δR2/2]×B(x0, 2R) and define Q− and Q+ as in Theorem 5.2. Let h : [0,∞)× R

n → R+ be
bounded and supported in [0,∞) ×B(x0, 3R)c. Then there exists c5 = c5(δ) > 0 such that

E
(t1,y1)[h(ZτQ1

)] � c5E
(t2,y2)[h(ZτQ2

)] for (t1, y1) ∈ Q− and (t2, y2) ∈ Q+.

The proof of (iv) uses ideas from [16], where a similar inequality is established for finite range
pure jump process. However, some difficulties arise due to the presence of the diffusion part.

The upper bound heat kernel estimate in Theorem 5.3 is established by using method of
scaling, by Meyer’s construction of the process X based on finite range process X(λ), where the
jumping kernel J is replaced by J(x, y)�{|x−y|�λ}, and by Davies’ method from [32] to derive
an upper bound estimate for the transition density function of X(λ) through carefully chosen
testing functions. Here we need to select the value of λ in a very careful way that depends on
the values of t and |x− y|.

To get the lower bound heat kernel estimate in Theorem 5.3, we need a full scale parabolic
Harnack principle that extends Theorem 5.2 to all R > 0 with the scale function φ̃(R) :=
R2 ∧φ(R) in place of R 
→ R2 there. To establish such a full scale parabolic Harnack principle,
we show the following

(iii′) Strengthened version of (iii): for every x ∈ R
n, r > 0 and any compact subset A ⊂

Q(0, x, r) := [0, γ0φ̃(r)] ×B(x, r),

P
(γ0φ̃(r),x)(σA < τr) � c3

mn+1(A)

rnφ̃(r)
.

Here γ0 denotes the constant γ(1/2, 1/2) in Proposition 6.2 of [17].
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(vi) For every δ ∈ (0, γ0], there is a constant c6 = c6(γ) so that for every 0 < R � 1,
r ∈ (0, R/4] and (t, x) ∈ Q(0, z, R/3) with 0 < t � γ0φ̃(R/3) − δφ̃(r),

P
(γ0φ̃(R/3),z)(σU(t,x,r) < τQ(0,z,R)) � c6

rnφ̃(r)

Rnφ̃(R)
,

where U(t, x, r) := {t} ×B(x, r).
With the full scale parabolic Harnack inequality, the lower bound heat kernel estimate can

then be derived once the following estimate is obtained.
(vii) Tightness result: there are constants c7 � 2 and c8 > 0 such that for every t > 0 and

x, y ∈ R
n with |x− y| � c7φ̃(t),

Px(Xt ∈ B(y, c7φ̃−1(t))) � c8
t(φ̃−1(t))n

|x− y|nφ̃(|x− y|) .

6 Dirichlet heat kernel estimates for symmetric stable processes

Many times one encounters part process XD of X killed upon exiting a open set D. The
infinitesimal generator LD of XD is the infinitesimal generator L of X satisfying Dirichlet
boundary or zero exterior condition. It is a fundamental problem both in analysis and in
probability theory to study precise estimate for the transition density function of XD (or
equivalently, the Dirichlet heat kernel of LD). However due to the complication near the
boundary, two-sided estimates on the transition density of killed Brownian motion in bounded
C1,1 domains D (equivalently, the Dirichlet heat kernel) have been established only recently in
2002, see [18] and the references therein. In this section, we survey the recent result from [19] on
sharp two-sided estimates on the transition density function pD(t, x, y) of part process XD of a
rotationally symmetric α-stable process killed upon leaving a C1,1 open set D. The infinitesimal
generator of XD is the fractional Laplacian cΔα/2|D satisfying zero exterior condition on Dc.

Recall that an open set D in R
n (when n � 2) is said to be a C1,1 open set if there exist a

localization radius R0 > 0 and a constant Λ0 > 0 such that for every z ∈ ∂D, there is a C1,1-
function φ = φz : R

n−1 → R satisfying φ(0) = ∇φ(0) = 0, ‖∇φ‖∞ � Λ0, |∇φ(x) − ∇φ(z)| �
Λ0|x − z|, and an orthonormal coordinate system CSz : y = (y1, . . . , yn−1, yn) := (ỹ, yn) with
its origin at z such that

B(z,R0) ∩D = {y ∈ B(0, R0) : yn > φ(ỹ)},

where the ballB(0, R0) on the right hand side is in the coordinate system CSz. The pair (R0,Λ0)
is called the characteristics of the C1,1 open set D. We remark that in some literatures, the
C1,1 open set defined above is called a uniform C1,1 open set as (R0,Λ0) is universal for every
z ∈ ∂D. For x ∈ R

n, let δD(x) denote the Euclidean distance between x and Dc. By a C1,1

open set in R we mean an open set which can be written as the union of disjoint intervals
so that the minimum of the lengths of all these intervals is positive and the minimum of the
distances between these intervals is positive. Note that a C1,1 open set can be unbounded and
disconnected.

Theorem 6.1 ([19,Theorem 1.1]). Let D be a C1,1 open subset of R
n with n � 1 and δD(x)

the Euclidean distance between x and Dc.
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(i) For every T > 0, on (0, T ]×D ×D,

pD(t, x, y) � t−n/α

(

1 ∧ t1/α

|x− y|
)n+α(

1 ∧ δD(x)
t1/α

)α/2(

1 ∧ δD(y)
t1/α

)α/2

.

(ii) Suppose in addition that D is bounded. For every T > 0, there are positive constants
c1 < c2 so that on [T,∞) ×D ×D,

c1 e
−λ1t δD(x)α/2 δD(y)α/2 � pD(t, x, y) � c2 e

−λ1t δD(x)α/2 δD(y)α/2,

where λ1 > 0 is the smallest eigenvalue of the Dirichlet fractional Laplacian (−Δ)α/2|D.
By integrating the two-sided heat kernel estimates in Theorem 6.1 with respect to t, one can

easily recover the following estimate of the Green function GD(x, y) =
∫ ∞
0 pD(t, x, y)dt, initially

obtained independently in [33, 34] when n � 2.

Corollary 6.2 ([19, Corollary 1.2]). Let D be a bounded C1,1-open set in R
n with n � 1. Then

on D ×D,

GD(x, y) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
|x− y|n−α

(

1 ∧ δD(x)α/2δD(y)α/2

|x− y|α
)

when n > α,

log
(

1 +
δD(x)α/2δD(y)α/2

|x− y|α
)

when n = 1 = α,

(δD(x)δD(y))(α−1)/2 ∧ δD(x)α/2δD(y)α/2

|x− y| when n = 1 < α.

Theorem 6.1 (i) is established in [19] through Theorems 6.3 and 6.4, which give the upper
bound and lower bound estimates, respectively. Theorem 6.1 (ii) is an easy consequence of the
intrinsic ultracontractivity of the symmetric α-stable process in a bounded C1,1 open set. In
fact, the upper bound estimates in both Theorem 6.1 and Corollary 6.2 hold for any domain
D with (a weak version of) the uniform exterior ball condition in place of the C1,1 condition,
while the lower bound estimates in both Theorem 6.1 and Corollary 6.2 hold for any domain
D with the uniform interior ball condition in place of the C1,1 condition.

We say that D is an open set satisfying (a weak version of) the uniform exterior ball condition
with radius r0 > 0 if for every z ∈ ∂D and r ∈ (0, r0), there is a ball Bz of radius r such that
Bz ⊂ R

n \D and ∂Bz ∩ ∂D = {z}.
Theorem 6.3 ([19,Theorem 2.4]). Let D be an open set in R

n that satisfies the uniform
exterior ball condition with radius r0 > 0. For every T > 0, there exists a positive constant
c = c(T, r0, α) such that for t ∈ (0, T ] and x, y ∈ D,

pD(t, x, y) � c t−n/α

(

1 ∧ t1/α

|x− y|
)n+α(

1 ∧ δD(x)
t1/α

)α/2(

1 ∧ δD(y)
t1/α

)α/2

. (6.1)

An open set D is said to satisfy the uniform interior ball condition with radius r0 > 0 in the
following sense: For every x ∈ D with δD(x) < r0, there is zx ∈ ∂D so that |x − zx| = δD(x)
and B(x0, r0) ⊂ D for x0 := zx + r0(x − zx)/|x − zx| . It is well-known that any (uniform)
C1,1 open set D satisfies both the uniform interior ball condition and the uniform exterior ball
condition.
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Theorem 6.4 ([19,Theorem 3.1]). Assume that D is an open set in R
n satisfying the uniform

interior ball condition. Then for every T > 0 there exists a positive constant c = c(r0, α, T )
such that for all (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) � c t−n/α

(

1 ∧ t1/α

|x− y|
)n+α(

1 ∧ δD(x)
t1/α

)α/2(

1 ∧ δD(y)
t1/α

)α/2

.

There are significant differences between obtaining two-sided Dirichlet heat kernel estimates
for the Laplacian and the fractional Laplacian, as the latter is a non-local operator. Our
approach in [19] is mainly probabilistic. It uses only the following five ingredients:

(i) the upper bound heat kernel estimate for the rotationally symmetric α-stable process X
in R

n and the stable-scaling property of X ;
(ii) the Lévy system of X that describes how the process jumps;
(iii) the mean exit time estimates from annuli and from balls;
(iv) the boundary Harnack inequality of X in annuli (when n � 2) and in intervals (when

n = 1), and the parabolic Harnack inequality of X ;
(v) the intrinsic ultracontractivity of X in bounded open sets.
The upper bound heat kernel estimate of X on R

n gives an upper bound for pD(t, x, y),
while the Lévy system is the basic tool used throughout our argument as the symmetric stable
process moves by “pure jumping”. To get the boundary decay rate of pD(t, x, y), we use the
boundary Harnack inequality and the domain monotonicity of the killed stable process XD in
D by comparing it with certain truncated exterior balls (i.e. annulus) as well as interior balls.
The mean exit time estimate for an annulus is applied with the help of the boundary Harnack
inequality to get the boundary decay rate in the upper bound heat kernel estimates. The two-
sided estimates in the ball B = B(0, 1): Ex[τB ] � δB(x)α/2 is used to get the two-sided estimate
on the first eigenfunction in balls. The latter is then used to get the boundary decay rate for
the lower bound estimate in pD(t, x, y). The parabolic Harnack inequality allows us to get
pointwise lower bound on pD(t, x, y) from the integral of w 
→ pD(t/2, x, w) over some suitable
region. When XD is intrinsic ultracontractive, pD(t, x, y) is comparable to ctφD(x)φD(y) for
some ct > 0 and a good control is known for ct when t is above a certain large t0, where φD is
the positive first eigenfunction of (−Δ)α/2|D, the infinitesimal generator of XD.

Note that the large time heat kernel estimate in Theorem 6.1(ii) requires D to be bounded.
See [35] for recent results on large time sharp heat kernel estimates for symmetric stable pro-
cesses in certain unbounded C1,1 open sets.

The approach developed in [19] is quite general in principle and can be adapted to study
heat kernel estimates for other types of jump processes in open subsets and their perturbations,
such as censored stable processes to be discussed in next section.

7 Dirichlet heat kernel estimates for censored stable processes

Censored α-stable processes in an open subset of R
n were introduced and studied by Bogdan,

Burdzy and Chen in [36]. Fix an open set D in R
n with n � 1. Define a bilinear form E on

C∞
c (D) by

E(u, v) :=
1
2

∫

D

∫

D

(u(x) − u(y))(v(x) − v(y))
c

|x− y|n+α
dxdy, u, v ∈ C∞

c (D), (7.1)
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where c > 0 is a constant. Using Fatou’s lemma, it is easy to check that the bilinear form
(E , C∞

c (D)) is closable in L2(D, dx). Let F be the closure of C∞
c (D) under the Hilbert inner

product E1 := E + ( · , · )L2(D,dx). As is noted in [36], (E ,F) is Markovian and hence a regular
symmetric Dirichlet form on L2(D, dx), and therefore there is an associated symmetric Hunt
process X = {Xt, t � 0,Px, x ∈ D} taking values in D. The process X is called a censored (or
resurrected) α-stable process in D.

Let Y be a rotationally symmetric α-stable process in R
n with jumping kernel c|x− y|−n−α.

For any open subset D of R
n, we use Y D to denote the subprocess of Y killed upon exiting

from D. The following result gives two other ways of constructing a censored α-stable process.
Theorem 7.1 ([36,Theorem 2.1 and Remark 2.4]). The following processes have the same
distribution:

(i) the symmetric Hunt process X associated with the regular symmetric Dirichlet form (E ,F)
on L2(D, dx);

(ii) the strong Markov process X obtained from the killed symmetric α-stable-like process Y D

in D through the Ikeda-Nagasawa-Watanabe piecing together procedure;
(iii) the process X obtained from Y D through the Feynman-Kac transform e

∫ t
0 κD(Y D

s )ds with

κD(x) :=
∫

Dc

c

|x− y|n+α
dy.

The Ikeda-Nagasawa-Watanabe piecing together procedure mentioned in (ii) goes as follows.
Let Xt(ω) = Y D

t (ω) for t < τD(ω). If Y D
τD−(ω) /∈ D, set Xt(ω) = ∂ for t � τD(ω). If

Y D
τD−(ω) ∈ D, let XτD(ω) = Y D

τD−(ω) and glue an independent copy of Y D starting from
Y D

τD−(ω) to XτD(ω). Iterating this procedure countably many times, we obtain a process on
D which is a version of the strong Markov process X ; the procedure works for every starting
point in D.

For any open n-set D in R
n, define

F ref :=
{

u ∈ L2(D) :
∫

D

∫

D

(u(x) − u(y))2

|x− y|n+α
dxdy <∞

}

,

and

Eref(u, v) :=
1
2

∫

D

∫

D

(u(x) − u(y))(v(x) − v(y))
c

|x− y|n+α
dxdy, u, v ∈ F ref .

As we see from Section 2, the bilinear form (Eref ,F ref) is a regular symmetric Dirichlet form on
L2(D, dx). The process X on D associated with (Eref ,F ref) is called in [36] a reflected α-stable
process on D. By Theorem 2.1, X has a Hölder continuous transition density function p(t, x, y)
on (0,∞)×D×D and for every T0 > 0, there are positive constants c1, c2 so that for t ∈ (0, T0]
and x, y ∈ D,

c1 t
−n/α

(

1 ∧ t1/α

|x− y|
)n+α

� p(t, x, y) � c2 t
−n/α

(

1 ∧ t1/α

|x− y|
)n+α

. (7.2)

This in particular implies that X can start from every point in D. When D is an open n-set
in R

n, the censored α-stable-like process X can be realized as a subprocess of X killed upon
leaving D (see [36,Remark 2.1]). It is proved in [36] that when D is a global Lipschitz domain
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and α ∈ (0, 1], then X and X are the same and so X has a sharp two-sided heat kernel estimate
(7.2) in this case. Hence in the following we will concentrate on the case of α ∈ (1, 2). The
next theorem gives a sharp two-sided heat kernel estimate for the transition density function
pD(t, x, y) of censored α-stable process in an C1,1 open set with α ∈ (1, 2).

Theorem 7.2 ([20,Theorem 1.1]). Suppose that n � 1, α ∈ (1, 2) and D is a C1,1 open subset
of R

n. Let δD(x) be the Euclidean distance between x and Dc.
(i) For every T > 0, on (0, T ]×D ×D

pD(t, x, y) � t−n/α

(

1 ∧ t1/α

|x− y|
)n+α(

1 ∧ δD(x)
t1/α

)α−1(

1 ∧ δD(y)
t1/α

)α−1

.

(ii) Suppose in addition that D is bounded. For every T > 0, there exist positive constants
c1 < c2 such that for all (t, x, y) ∈ [T,∞) ×D ×D,

c1e
−λ1tδD(x)α−1δD(y)α−1 � pD(t, x, y) � c2e

−λ1tδD(x)α−1δD(y)α−1,

where −λ1 < 0 is the largest eigenvalue of the L2-generator of X.

By integrating the above two-sided heat kernel estimates in Theorem 7.2 with respect to t,
one can easily obtain the following sharp two-sided estimate of the Green function GD(x, y) =
∫ ∞
0
pD(t, x, y)dt of a censored stable process in a bounded C1,1 open set D.

Corollary 7.3 ([20,Corollary 1.2]). Suppose that n � 1, α ∈ (1, 2) and D is a bounded C1,1

open set in R
n. Then on D ×D, we have

GD(x, y) �

⎧
⎪⎪⎨

⎪⎪⎩

1
|x− y|n−α

(

1 ∧ δD(x)δD(y)
|x− y|2

)α−1

when n � 2,

(
δD(x)δD(y)

)(α−1)/2 ∧
(
δD(x)δD(y)

|x− y|
)α−1

when n = 1.

Sharp two-sided estimates on the Green function are very important in understanding deep
potential theoretic properties of Markov processes. When D is a bounded C1,1 connected open
sets in R

n and n � 2, estimates in Corollary 7.3 had been obtained in [37].
Our approach in [20] is adapted from that of [19]. In [19], the following domain monotonicity

for the killed symmetric stable processes is used in a crucial way. Let Z be a symmetric α-
stable process and ZD be the subprocess of Z killed upon leaving an open set D. If U is an
open subset of D, then ZU is a subprocess of ZD killed upon leaving U . However censored
stable-like processes do not have this kind of domain monotonicity. So there are new challenges
to overcome when studying heat kernel estimates for censored stable processes. A quantitative
version of the intrinsic ultracontractivity, a crucial use of boundary Harnack inequality for
censored stable process and the reflected stable process X all played an important role in our
approach in [20].

8 Concluding remarks

In this paper, we surveyed some recent progress in the study of fine potential theoretic properties
of various models of symmetric discontinuous Markov processes that the author is involved. To
keep the exposition as transparent as possible, sometimes we did not state the results in its
most general form. For example, results in Sections 2 and 3 hold for general d-sets F in R

n and
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for F being a measure-metric space satisfying certain conditions, see [11, 12]; and the Dirichlet
heat kernel estimates in Section 7 in fact holds also for censored stable-like processes, see [20].
Two-sided transition density function estimates for relativistic stable processes in C1,1 open
sets have recently been established in [21]. The study of sharp two-sided heat kernel estimates
for discontinuous Markov processes is in its early stage and is currently a very active research
area. There are many questions waiting to be answered and several active studies are currently
underway. For instance, it is natural to study the large time estimate for p(t, x, y) of the
processes considered in Section 3 for the case of γ2 > γ1 > 0. It is also nature and important
to investigate the sharp two-sided heat kernel estimates for stable processes of mixed type in
C1,1-open sets, and for Lévy processes that is the independent sum of a Brownian motion and
a symmetric stable process in C1,1-domains. Some promising progress has already been made
in these studies.

Acknowledgements The author thanks Panki Kim and Song Renming for comments on an
earlier version of this paper.
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