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Abstract For several decades, much attention has been paid to the two-sample Behrens-Fisher (BF)

problem which tests the equality of the means or mean vectors of two normal populations with unequal

variance/covariance structures. Little work, however, has been done for the k-sample BF problem for

high dimensional data which tests the equality of the mean vectors of several high-dimensional normal

populations with unequal covariance structures. In this paper we study this challenging problem via

extending the famous Scheffe’s transformation method, which reduces the k-sample BF problem to a

one-sample problem. The induced one-sample problem can be easily tested by the classical Hotelling’s

T 2 test when the size of the resulting sample is very large relative to its dimensionality. For high

dimensional data, however, the dimensionality of the resulting sample is often very large, and even

much larger than its sample size, which makes the classical Hotelling’s T 2 test not powerful or not even

well defined. To overcome this difficulty, we propose and study an L2-norm based test. The asymp-

totic powers of the proposed L2-norm based test and Hotelling’s T 2 test are derived and theoretically

compared. Methods for implementing the L2-norm based test are described. Simulation studies are

conducted to compare the L2-norm based test and Hotelling’s T 2 test when the latter can be well

defined, and to compare the proposed implementation methods for the L2-norm based test otherwise.

The methodologies are motivated and illustrated by a real data example.
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1 Introduction

The problem of testing the equality of the means or mean vectors of two univariate/multivariate
normal populations with unequal variance/covariances is referred to as the Behrens-Fisher (BF)
problem. It is very challenging since it can be proven that there is no exact solution satisfying
the classical criteria for good tests. This problem was very interesting and has drawn a lot of
attention for several decades. For the univariate BF problem, various approaches have been
proposed. Behrens[1] was the first to address this problem whose solution was justified by

Received October 29, 2008; accepted April 22, 2009
DOI: 10.1007/s11425-009-0091-x
† Corresponding author
The work was supported by the National University of Singapore Academic Research Grant (Grant No. R-155-
000-085-112)

Citation: Zhang J T, Xu J F. On the k-sample Behrens-Fisher problem for high-dimensional data. Sci China Ser
A, 2009, 52(6): 1285–1304, DOI: 10.1007/s11425-009-0091-x



1286 Zhang J T & Xu J F

Fisher[2] using his fiducial theory of inference. Scheffe[3] proposed a transformation method
which reduces the original two-sample problem to a one-sample problem. This one-sample
problem can be tested via the usual t-test. The transformation method is simple and the
distribution of the test statistic is exact. Scheffe[3] also showed that this method gives the
shortest confidence interval for the difference between the two means. Welch[4] proposed an
approximate degrees of freedom method based on Student’s t-distribution. Scheffe[5] and Lee
and Gurland[6] provided reviews of many other methods. In the recent decade, several new
methods have been proposed for the BF problem. For example, the generalized P-value method
was studied by Weerahandi[7, 8], Tang and Tsui[9] and references therein; the Bayes method was
studied by Ghosh and Kim[10] and references therein, and the empirical likelihood method was
studied by Dong[11] among others.

For the multivariate BF problem, Bennett[12] extended Scheffe’s transformation method[3].
Anderson[13,p. 178] pointed out that the advantage of the transformation method is that the
sample mean vector difference, which is used in the test statistic, is most relevant to the popu-
lation mean vector difference; the sacrifice of observations in estimating a covariance matrix is
not so important, especially when the sample sizes for the two multivariate samples are about
the same. Welch’s approximate degrees of freedom method[4] was also extended to the multi-
variate BF problem by several authors, including James[14], Yao[15], Johansen[16], and Nel and
Van der Merwe[17] among others. The type-I errors of Yao’s and James’ test were compared by
Algina and Tang[18]. Recently, Krishnamoorthy and Yu[19] examined the affine invariant prop-
erties of these tests and pointed out that the Nel and Van der Merwe’s[17] test was not properly
defined. They then proposed the modified Nel and van der Merwe’s test. Krishnamoorthy and
Xia[20] considered selecting tests for the multivariate BF problem.

In this paper, we are interested in the k-sample high-dimensional BF problem, which tests
the equality of the mean vectors of several high-dimensional normal populations with unequal
covariance structures. This problem was motivated by the dog potassium data considered by
Grizzle and Allen[21] and re-analyzed by Wang[22]. The data are coronary sinus potassium
concentrations measured on each of 36 dogs. The measurements on each dog were taken every
2 mins from 1 to 13 mins after occlusion. These 36 dogs were divided into 4 treatment groups
with 9, 10, 8, 9 dogs respectively. We are interested in testing if the treatment effects are different
from each other. Figure 1 displays the pointwise group means (solid with o) with 95% pointwise
confidence intervals (dashed with ×) for the dog potassium data. From Figure 1, it can be seen
that the pointwise confidence intervals have different lengths for different groups, which suggests
that the four group dog measurements may have different covariance structures. Therefore, this
is a k-sample high-dimensional BF problem with k = 4 since the dimensionality of the data
is large compared with the sample sizes of the four groups. The challenges of the k-sample
high-dimensional BF problem include: (1) it involves several normal populations and hence is
more complicated than the usual two-sample BF problem; (2) the dimensionality of the data
may be very large, or even larger than the sample sizes; and (3) when the dimensionality is too
large, traditional testing procedures such as the classical Hotelling’s T 2-test may fail to work
(see [23]). To our best knowledge, there is little work in the literature available for this problem.

Due to the simplicity and good properties of Scheffe’s transform method[3] for the usual two-
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sample BF problem, following Bennett[12] and Anderson[13], we extend the transform method
to the k-sample high-dimensional BF problem. The transformation method has the following
advantages. The transformation is simple. It reduces the k-sample BF problem to a one-sample
problem. The observations in the resulting sample are independently normally distributed with
mean vector consisting of the differences between the mean vector of one population and the
mean vectors of the other populations. The sample mean vector consists of the differences
between the sample mean vector of one sample and the sample mean vectors of the other
samples, which is most relevant to test the null hypothesis. In addition, the one-sample problem
can be easily tested by the classical Hotelling’s T 2 test when the sample size is very large relative
to its dimensionality.

Figure 1 Pointwise group means with 95% pointwise confidence intervals for the dog potassium data.

Notice that the transformation method has several disadvantages. The size of the resulting
sample is reduced to the smallest sample size of the k samples. This indicates that some obser-
vations in the k samples are “sacrificed” by the transformation method and it does affect the
accuracy of the covariance structure estimation to some extent. As pointed out by Anderson[13],
this sacrifice is not so important, especially when the sample sizes of the k samples are about
the same. Another problem is that the dimensionality of the resulting sample is enlarged to
(k − 1) times of the dimensionality of the original samples so that the dimensionality may be
close to or even larger than the sample size. In these two cases, the classical Hotelling’s T 2

test is not powerful or cannot even be well defined. To overcome this difficulty, following Bai
and Saranadasa[23], we propose and study an L2-norm based test for the resulting one-sample
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problem.
This paper is organized as follows. In Section 2, we describe the transformation method

which reduces the k-sample high-dimensional BF problem to a high-dimensional one-sample
problem. Section 3 derives and compares the asymptotic powers of Hotelling’s T 2 test and
the L2-norm based test for the high-dimensional one-sample problem under the cases when the
dimensionality of the data is fixed or when it tends to ∞ with the sample size. Methods for
implementing the L2-norm based test are also described. Two simulation studies are presented
in Section 4. In Section 5, the methodologies proposed in this paper are illustrated using the
dog potassium data.

2 The transformation method

In this section, following Bennett[12] and Anderson[13], we shall extend Scheffe’s transformation
method[3] to the k-sample high-dimensional BF problem. Assume that we have the following
k independent normal samples xlj , j = 1, 2, . . . , nl ∼ Np(µl,Σl), l = 1, 2, . . . , k, where and
throughout the paper, Np(µ,Σ) denotes a p-dimensional normal distribution with mean vector
µ and covariance matrix Σ. For high-dimensional data, we mean p is very large compared with
the sample sizes nl, l = 1, 2, . . . , k or even larger than them. The BF problem refers to the
problem of testing whether the k mean vectors are equal:

H0 : µ1 = µ2 = · · · = µk, vs H1 : H0 is not true, (2.1)

without assuming that the covariance matrices Σl, l = 1, 2, . . . , k are equal.
Without loss of generality, we assume that n1 � n2 � · · · � nk. The transformation method

is described as follows. Denote x̄l(m) = m−1
∑m

j=1 xlj as the partial sample mean of the
first m observations of the l-th sample. Obviously, x̄l(m) is an unbiased estimator of µl. For
l = 2, . . . , k, define

ylj = [x1j − x̄l(nl)] +
√

n1

nl
[xlj − x̄l(n1)], j = 1, 2, . . . , n1.

This is Scheffe’s transformation method[3] which transforms two normal samples into one. No-
tice that the first partial sample mean x̄l(nl) uses all the observations in the l-th sample while
the second partial sample mean x̄l(n1) uses only the first n1 observations. Combining the
resulting (k − 1) samples into one, we have

zj = [yT
2j ,y

T
3j , . . . ,y

T
kj ]

T , j = 1, 2, . . . , n1.

It is easy to show that
z1, z2, . . . , zn1 i.i.d. ∼ Nq(µ,Σ), (2.2)

where q = (k − 1)p, and

µ = [µT
1 − µT

2 , µT
1 − µT

3 , . . . ,µT
1 − µT

k ]T ,

Σ = Jk−1 ⊗ Σ1 + n1diag
(

Σ2

n2
,
Σ3

n3
, . . . ,

Σk

nk

)

.
(2.3)

In the above expressions, A⊗ B denotes the Kroneck product of two matrices A and B, Jk−1

the (k − 1) × (k − 1) matrix with all entries being 1, and diag(A1, . . . ,Al) the block diagonal
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matrix with entries A1, . . . ,Al. In this way, the original k-sample BF problem (2.1) is reduced
to the one-sample problem (3.5) described in next section with µ0 = 0 based on the i.i.d.
high-dimensional normal sample (2.2).

The transformation method has several advantages. First of all, the induced one-sample
problem is simpler than the original k-sample BF problem (2.1). In particular, when q is much
smaller than n1, the one-sample problem can be tested by the classical Hotelling’s T 2 test which
has a known and exact distribution. Secondly, the observations in the induced sample (2.2) are
independently normally distributed with mean vector µ and covariance matrix Σ as described
in (2.3). Notice that µ = [µT

1 − µT
2 , µT

1 − µT
3 , . . . ,µT

1 − µT
k ]T , consisting of the differences

between µ1 and µl, l = 2, 3, . . . , k. This indicates that µ = 0 if and only if µ1 = µ2 = · · · = µk.
Therefore, testing the null hypothesis of the original k-sample BF problem (2.1) is equivalent to
testing the null hypothesis of the one-sample problem (3.5). Thirdly, µ can be estimated by the
associated sample mean vector z̄ = [x̄T

1 − x̄T
2 , . . . , x̄T

1 − x̄T
k ]T , which consists of the differences

between x̄1and x̄l, l = 2, 3, . . . , k. Obviously, z̄ is invariant to the orders of the k-samples and
is most relevant to test the original null hypothesis and the null hypothesis of the induced one-
sample problem. In addition, we shall know in next section that there is no need to estimate
Σl, l = 1, 2, . . . , k to test the induced one-sample problem.

Notice that the transformation method has some disadvantages too. First of all, the sample
size of the induced sample (2.2) is n1, the smallest sample size among the k samples. This
indicates that some observations are sacrificed by the transformation method. This does not
affect the estimation accuracy of the mean vector µ but it does affect the estimation accuracy of
the covariance matrix Σ to some degree. However, it is known that the sample covariance matrix
Σ̂ = Σ + OP (n−1/2

1 ), indicating that this effect will be small when the sizes of the k samples
are large and are about the same. Moreover, during the data transformation, some information
of the k samples may have already been taken into account, as shown in (2.3) where the factors
Σl/nl, l = 2, 3, . . . , k are involved in Σ. Therefore, as pointed out by Anderson[13], the sacrifice
of the observations for estimating the covariance matrix is not so important especially when
the sizes of the k samples are large and are about the same. Another disadvantage is that the
dimensionality q = (k − 1)p of the induced sample may be very large even when k and p are
moderately large. When this is the case, as pointed out by Bai and Saranadasa[23] via studying
a high-dimensional two-sample problem, the classical Hotelling’s T 2 test may be not powerful or
cannot even be properly defined. In this case, we shall propose an L2-norm based test. Details
for testing a general high-dimensional one-sample problem will be given in the next section.

3 Testing a general high-dimensional one-sample problem

The induced one-sample problem is useful not only for testing the k-sample BF problem (2.1)
for high-dimensional data, but also has its own merits. A lot of other testing problems can be
reduced to it. For example, a pairwise two-sample problem for high dimensional data can be
easily reduced to such a one-sample problem. Therefore, in this section, we shall treat a general
one-sample problem for high-dimensional data, which is described as follows. Given a sample

z1, z2, . . . , zn i.i.d. ∼ Nq(µ,Σ), (3.4)
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where q is large, µ and Σ are unknown. We want to test

H0 : µ = µ0, vs H1 : µ �= µ0, (3.5)

where µ0 is a pre-specified q-dimensional vector. In this section, we shall study two testing
procedures: Hotelling’s T 2-test and an L2-norm based test, under two cases when q is fixed and
when q varies with n. The second case aims to study the asymptotic behaviors of the two tests
for high-dimensional data.

3.1 Hotelling’s T 2 test

When q < n and Σ is invertible, the famous Hotelling’s T 2 test[24] for the one-sample problem
(3.5) is well defined. Hotelling’s T 2 test is well understood and its test statistic is defined as

T 2
n = n(z̄ − µ0)

T Σ̂
−1

(z̄ − µ0), (3.6)

where

z̄ = n−1
n∑

i=1

zi, Σ̂ = (n − 1)−1
n∑

i=1

(zi − z̄)(zi − z̄)T , (3.7)

are respectively the unbiased estimators of µ and Σ. It is well known that

n − q

(n − 1)q
T 2

n ∼ Fq,n−q(δ2), δ2 = n(µ − µ0)
T Σ−1(µ − µ0),

where Fq,n−q(δ2) denotes an noncentral F -distribution with q and n− q degrees of freedom and
the noncentrality parameter δ2. Under H0, the noncentrality parameter δ2 = 0. Therefore it is
easy to conduct Hotelling’s test. For a given significance level α, the critical value for T 2

n is

T 2
α,n =

(n − 1)q
n − q

Fα,q,n−q.

Notice that we generally use Wα to denote the upper (100α) percentile of the random variable
W . For example, T 2

α,n and Fα,q,n−q in the above expression denote the upper (100α) percentiles
of T 2

n and the central F -distribution with q and n − q degrees of freedom respectively; and in
Theorem 1, zα denotes the upper (100α) percentile of the standard normal distribution.

We now study the asymptotic powers of T 2
n under two cases when q is fixed and when q varies

with n. For this end, we specify a sequence of alternatives with detecting difficulty increasing
with n as follows:

H1n : µ = µ0 + n−ω/2u, (3.8)

where ω is some constant satisfying 0 < ω < 1 and u is any fixed real vector with ‖u‖ ∈ (0,∞).
When q varies with n, we impose the following assumptions:

Assumption A. (A1) q/n → γ ∈ (0, 1) as n, q → ∞;

(A2) uTΣ−1u → c1 ∈ (0,∞) as q → ∞.

Theorem 1. Assume 0 < ω < 1. When q is fixed, the asymptotic power of T 2
n is

P (T 2
n � T 2

α,n|H1n) = Φ(n(1−ω)/2
√

uT Σ−1u/4) + o(1),
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which tends to 1 as n → ∞. However, when q tends to ∞ with n, under Assumption A, the
asymptotic power of T 2

n is

P (T 2
n � T 2

α,n|H1n) = Φ
(

− zα + n1/2−ω

√
1 − γ

2γ
c1

)

+ o(1).

As n → ∞, the above power tends to 1 only for 0 < ω < 1/2 and tends to α for 1/2 < ω < 1.

Notice that in the above theorem and the rest of this section, Φ(·) denotes the cumulative
distribution function of the standard normal distribution. By the above theorem, it is seen that
when q is fixed, Hotelling’s T 2 test is root-n consistent. However, when q tends to ∞ with n,
Hotelling’s T 2 test is no longer root-n consistent due to the “curse of dimensionality”. This
effect of large q is not only reflected by 1 − γ but also by the consistency rate. It is seen that
when 1/2 < ω < 1, the asymptotic power of T 2

n is always α, the nominal significance level.

3.2 L2-norm based test
When q > n or when Σ is degenerate, Hotelling’s T 2 test is not well defined since in this
case Σ̂ is degenerate. For the two-sample testing problem, Bai and Saranadasa[23] proposed
an L2-norm based test to improve Hotelling’s T 2 test. For the one-sample problem (3.5), the
L2-norm based test statistic can be specified as:

Rn = n‖z̄ − µ0‖2, (3.9)

where z̄ is the sample mean vector as defined in (3.7). The above test statistic is proper since
under H0, it is expected that Rn will be small, and otherwise large. To conduct the test (3.5),
we need to derive the asymptotic null distribution of Rn. For this purpose, throughout this
paper, let v1, . . . ,vq and λ1, . . . , λq be the eigenvectors and eigenvalues of Σ. Let m denote the
number of all the positive eigenvalues. When all the eigenvalues are positive, we have m = q;
otherwise λr > 0 for r � m and λr = 0 for all m < r � q. In addition, let d= denote that the
left and right hand-side random variables have the same distribution, and let χ2

d(δ
2) denote a

chi-squared distribution with d degrees of freedom and the noncentrality parameter δ2. First
of all, we can show the following result:

Theorem 2.

Rn
d=

m∑

r=1

λrAr + n

(

‖µ − µ0‖2 −
m∑

r=1

π2
r

)

,

where Ar ∼ χ2
1(nλ−1

r π2
r), r = 1, 2, . . . , m are independent, and πr = (µ−µ0)Tvr, r = 1, 2, . . . , q.

We now study the asymptotic power of the L2-norm based test. Like Hotelling’s T 2 test, the
behavior of Rn is different for fixed q and varying q. We first deal with the case when q is fixed.
By Theorem 2 and under H1n, we have

Rn
d=

m∑

r=1

λrAr + n1−ω

(

‖u‖2 −
m∑

r=1

δ2
r

)

, Ar ∼ χ2
1(n

1−ωλ−1
r δ2

r), (3.10)

where δr = uTvr , r = 1, 2, . . . , q. According to the values of m and δ2
r , r = 1, 2, . . . , q, we need

to consider only three possible cases: (1) m < q and δr = 0 for all r ∈ {1, 2, . . . , m}, (2) m < q

and δr �= 0 for at least one r ∈ {1, 2, . . . , m}, and (3) m = q. We shall show that the asymptotic
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power of Rn for H1n tends to 1 as n → ∞ under any of the three cases. That is, the proposed
L2-norm based test is root n-consistent when q is fixed.

We first consider the asymptotic power of Rn under Case (1), in which (3.10) can be simplified
as

Rn
d= R∗ + n1−ω‖u‖2, (3.11)

where

R∗ d=
m∑

r=1

λrAr, Ar
i.i.d∼ χ2

1, (3.12)

which is the null random expression of Rn as derived from Theorem 2. Let R∗
α denote the upper

100α percentile of R∗, which is a fixed number when q is fixed. We have the following result:

Theorem 3. Assume 0 < ω < 1. When q is fixed, the asymptotic power of Rn under Case
(1) is

P (Rn � R∗
α|H1n) = P (R∗ � R∗

α − n1−ω‖u‖2),

which tends to 1 as n → ∞.

We now study the asymptotic power of Rn under Cases (2) and (3). In these two cases, we
first show that Rn is asymptotically normally distributed and then give the asymptotic power
of Rn.

Theorem 4. Assume 0 < ω < 1. When q is fixed, under Cases (2) and (3), as n → ∞, we
have

Rn − [
tr(Σ) + n1−ω‖u‖2

]

√
2

[
tr(Σ2) + 2n1−ωuT Σu

]
L−→ N(0, 1). (3.13)

In addition, the asymptotic power of Rn is

P (Rn � R∗
α|H1n) = Φ

[
n(1−ω)/2‖u‖2

2
√

uTΣu

]

+ o(1), (3.14)

which tends to 1 as n → ∞.

We now study the case when q tends to ∞ with n. In this case, the quantities tr(Σ), tr(Σ2),
‖u‖2 and λmax = max1�r�m λr will vary with q. To derive the asymptotic null distribution of
Rn and its asymptotic power, we impose the following regular assumptions:

Assumption B. (B1) tr(Σ)/q → c2 ∈ (0,∞) and tr(Σ2)/q → c3 ∈ (0,∞) as q → ∞;
(B2) ‖u‖2 → c4 ∈ (0,∞) and uT Σu → c5 ∈ (0,∞) as q → ∞;
(B3) λmax/

√
q → 0 as q → ∞.

These assumptions are similar to those imposed by Bai and Saranadasa[23] for the study of their
two-sample testing procedures.

Theorem 5. Assume 0 < ω < 1 and Assumptions (A1) and B are satisfied. Then as
n → ∞, we have the expression (3.13). Moreover, the upper 100α percentile of Rn under H0

can be expressed as

R∗
α = tr(Σ) +

√

2tr(Σ2)zα + o[tr1/2(Σ2)]. (3.15)

In addition, the asymptotic power of Rn is

P (Rn � R∗
α|H1n) = Φ

[

−zα +
n1/2−ωc4√

2γc3

]

+ o(1).
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As n → ∞, the above power tends to 1 only for 0 < ω < 1/2 and tends to α for 1/2 < ω < 1.

Comparing the asymptotic powers of Tn and Rn, it can be seen that their asymptotical
consistency rates are the same regardless of whether q is fixed or tends to ∞ with n. However,
when q tends to ∞ with n, the asymptotic power of Hotelling’s T 2 test may be lower due to
the fact that the term 1 − γ appears in the expression of the asymptotic power of Tn but it
does not appear in the expression of the asymptotic power of Rn. When q and n are about the
same, this term is about 0, making the classical Hotelling’s T 2 test less powerful.

We now study how to approximate the null distribution of the L2-norm based test. For this
purpose, we need first to address a few issues. First of all, the asymptotic null distribution of
Rn, i.e., the distribution of R∗, depends on m unknown positive eigenvalues of the underlying
covariance matrix Σ. Secondly, the number m is unknown. Finally, when m is very large, say,
m > 50, it is not easy to compute the distribution of R∗ even when the m positive eigenvalues
are known. In what follows, we show how to address them.

First of all, to address the last issue, we approximate the distribution of R∗ by the 2-cumulant
matched χ2-approximation. The key idea of the method is to approximate the distribution of
R∗ by that of a random variable of form S = βχ2

d. The parameters β and d are determined, via
matching the first two cumulants of R∗ and S where d is usually referred to as the approximate
degrees of freedom of R∗. Simple calculation leads to

β =
∑m

r=1 λ2
r∑m

r=1 λr
=

tr(Σ2)
tr(Σ)

, d =
(
∑m

r=1 λr)2∑m
r=1 λ2

r

=
tr2(Σ)
tr(Σ2)

. (3.16)

This indicates that for estimating β and d, we only need to estimate tr(Σ), tr2(Σ) and tr(Σ2)
and we do not actually need to estimate the eigenvalues of Σ and the number of positive
eigenvalues, m. Therefore, the first two issues are already addressed.

Let χ2
α,d denote the upper 100α percentile of χ2

d. Then the α-level critical value of R∗ can
be approximately specified by

βχ2
α,d, or βd +

√
2dzα. (3.17)

The first formula corresponds to the 2-cumulant matched χ2-approximation method and it can
be used even when d is relatively small or moderately large, say d � 2. The second formula
corresponds to the normal approximation method of Bai and Saranadasa[23] and it can be used
only when d is relatively large, say d � 30. Notice that d may not always be an integer. This
will not be a problem for users who compute the P-values using some statistical software since
popular statistical software such as Matlab does allow non-integer degrees of freedom for chi-
squared distributions. However, this may cause a problem for those users who conduct the
proposed L2-norm based test by looking at the chi-squared table for proper critical values. To
avoid this inconvenience, we may truncate the d to its nearest integer, i.e., to approximate the
distribution of R∗ by that of βχ2

[d] where [d] denotes the closest integer to d. That is, the α-level
critical values of R∗ can be obtained from (3.17) by replacing d by [d].

Buckley and Eagleson[25] and Zhang[26] showed that one can also approximate the distri-
butions of R∗ via matching three cumulants, which is known as the three-cumulant matched
χ2-approximation method. Asymptotically, we can show that the three-cumulant matched χ2-
approximation is more accurate than the 2-cumulant matched χ2-approximation. However, in
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this paper, we shall recommend to use the 2-cumulant matched χ2-approximation due to: (1)
the latter is simpler since it involves only two parameters while the former involves three, and
(2) the parameters β and d can be better estimated by a bias-reduced method described below.

A natural way for estimating the parameters β and d is obtained via replacing Σ in (3.16)
with Σ̂, the unbiased estimator of Σ given in (3.7). This method is called as the naive method.
It is biased since tr2(Σ̂) and tr(Σ̂

2
) are biased upward for tr2(Σ) and tr(Σ2) respectively. In

fact, we can show that

Etr2(Σ̂) = tr2(Σ) + Var(tr(Σ̂)), Etr(Σ̂
2
) = tr(Σ2) +

q∑

i=1

q∑

j=1

Var(σ̂ij),

where σ̂ij is the (i, j)-th entry of Σ̂. To address this problem, we propose to replace tr2(Σ) and
tr(Σ2) in (3.16) by their unbiased estimators respectively. We call this latter method as the
bias-reduced method.

The unbiased estimators of tr2(Σ) and tr(Σ2) may be found in [23] and are

̂tr2(Σ) =
(n − 1)n

(n − 2)(n + 1)

[

tr2(Σ̂) − 2
n

tr(Σ̂
2
)
]

,

̂tr(Σ2) =
(n − 1)2

(n − 2)(n + 1)

[

tr(Σ̂
2
) − 1

n − 1
tr2(Σ̂)

]

.

(3.18)

Plugging these into (3.16), we obtain the bias-reduced estimators for β and d. A simulation
study conducted in Section 4 shows that the 2-cumulant matched bias-reduced method indeed
outperforms the 2-cumulant (and 3-cumulant) matched naive method. However, by (3.18) this
advantage may disappear when n is large or when tr2(Σ̂) and tr(Σ̂

2
) are large.

4 Simulation studies

In this section, we shall present two simulation studies. Simulation 1 aims to compare the
approximate powers of Hotelling’s T 2 test, the L2-norm based test with the 2-cumulant matched
bias-reduced χ2-approximation, and that with the normal approximation (see [23]). Simulation
2 aims to compare the approximate powers of the L2-norm based test with the χ2-approximation
using the 2-cumulant matched naive, the 2-cumulant matched bias-reduced and the 3-cumulant
matched naive methods respectively.

In these two simulation studies, we shall generate simulated samples according to (3.4).
That is, for given mean vector µ and covariance matrix Σ, simulated samples will be generated
from Nq(µ,Σ). For the given hypothetical mean vector µ0, the mean vector µ is specified
as µ = µ0 + δu where δ is a tuning parameter taking values over [0, δ0] and u is some fixed
nonzero q-dimensional vector. Notice that when δ = 0, the simulated samples follow the null
distribution Nq(µ0,Σ) so that we can study if the test under consideration has the nominal
significant level α, and when δ �= 0, the simulated samples follow an alternative distribution
Nq(µ0 + δu,Σ) so that we can study what the power of the test at δ is. The power of the
test will generally increase up to 1 with δ increasing. The constant δ0 was chosen so that the
associated power is about 1 when δ = δ0. For different covariance matrix Σ, the performance
of a test may be different. We specified Σ as Σ = (σij) with σij = aw|i−j| where a is a constant
and w is a tuning parameter. The constant a specifies the diagonal entries of Σ, the variances of
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the components of z ∼ Nq(µ0+δu,Σ) and we used a = 40 for simplicity. The tuning parameter
w determines the correlation size of z. When w = 0, we defaulted Σ as aIq, indicating that the
components of z are independently normally distributed. When w increases, the correlations
of the components of z also increase.

Specifically, we first randomly generated µ0 and u. We then took w = 0, 0.3, 0.6 or 0.9. For
each fixed w, we let δ take values uniformly in [0, δ0], e.g., δ = 0, 1/3, 2/3, . . . , δ0. For each
pair (w, δ), N = 10000 samples of size n were generated from Nq(µ,Σ). For each sample,
the test statistics of the testing procedures were computed and the associated P-values were
calculated using some method under consideration. When the test statistics are larger than
the critical values or when the P-values are smaller than the nominal significance level α, the
null hypothesis is rejected. The simulated power of a testing procedure is the proportion of the
number of rejections based on the simulated critical values, computed based on the N = 10000
samples when δ = 0 and with the same a and w. The approximate power of a testing procedure
is the proportion of the number of rejections based on the calculated P-values.

Figure 2 Approximate power functions (upper panel) and relative approximate errors (lower panel) of the

“T 2”, “L2C” and “L2N” tests for Simulation 1 when w = 0.6.

In Simulation 1, we took n = 40 and q = 30 so that Hotelling’s T 2 test can be well de-
fined. We aimed to compare the approximate powers of Hotelling’s T 2 test, the L2-norm based
test with the 2-cumulant matched bias-reduced χ2-approximation, and that with the normal
approximation, namely the “T 2”, “L2C” and “L2N” tests respectively. Figure 2 displays the
simulation results when w = 0.6. The upper panel presents the approximate power functions
of the three tests. It is seen that the approximate powers of Hotelling’s T 2 test are much lower
than the approximate powers of the other two tests. This observation is also valid for the cases
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when w = 0 and w = 0.3 (not shown here). It indicates that when the correlation is moderate or
small, for high-dimensional data, Hotelling’s T 2 test has much lower powers than the L2-norm
based tests. This is consistent with Theorems 1 and 5, and the remarks following Theorem 5.
For two-sample tests for high-dimensional data, similar phenomenon was observed by Bai and
Saranadasa[23].

From the upper panel of Figure 2, it seems that the powers of the “L2N” test are slightly
higher than those of the “L2C” test. This phenomenon, unfortunately, was caused by the
normal approximation used for the L2-norm based test. This can be seen from the lower panel
of Figure 2 where the relative approximate errors (in percentage) of the three tests are displayed.
The relative approximate errors are defined as the errors made by the approximation method,
relative to the simulated power (the assumed true power of a test), i.e., the percentage of the
differences between the approximate power and the simulated power over the simulated power.
It is seen that the relative approximate errors of Hotelling’s T 2 test are much smaller than those
of the “L2C” test, while the latter’s relative approximate errors are much smaller than those of
the “L2N” test, especially for smaller δ. Therefore, the normal approximation is less attractive
for the L2-norm based test especially when the null hypothesis is nearly valid.

Figure 3 Same caption as that of Figure 2 but now for Simulation 1 with w = 0.9.

When the correlation is very large, it is expected that Hotelling’s T 2 test performs better
than the L2-norm based test when Hotelling’s T 2 test can be well defined. Figure 3 presents
such a case when w = 0.9, indicating large correlation for the simulated data. From the upper
panel, it is seen that the approximate powers of Hotelling’s T 2-test are higher than those of
the other two tests, especially when δ is large. Moreover, the relative approximation errors of
Hotelling’s T 2-test are smaller than those of the other two tests. This indicates that although
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the dimensionality is very large relative to the sample size, when the correlation is very large,
it is still a good choice to employ Hotelling’s test which takes the correlation into account.

In Simulation 2, we took n = 40 and q = 50 in which Hotelling’s T 2-test can not be well
defined and we aimed to compare the approximate powers of the L2-norm based test with the
χ2-approximation using the 2-cumulant matched naive, the 2-cumulant matched bias-reduced
and the 3-cumulant matched naive methods, namely, the “L2C, 2-c, naive”, “L2C, 2-c, bias-
reduced” and “L2C, 3-c, naive” tests respectively. Figure 4 shows the simulation results for the
case when w = 0.6. The upper panel displays the approximate power functions of the three
tests. It is seen that the “L2C, 2-c bias-reduced” test has higher powers than the other two
tests. The lower panel displays the relative approximate errors of the three tests. It is seen
that the “L2C, 2-c, bias-reduced” test has much smaller relative approximate errors than the
other two tests, especially when δ is small. This phenomenon was also observed for the cases
when w = 0 and w = 0.3 (not shown here). Therefore, for the moderate and small correlation,
the bias-reduced method is preferred.

Figure 4 Approximate power functions (upper panel) and relative approximate errors (lower panel) of the

“L2C, 2-c, naive”, “L2C, 2-c, bias-reduced” and “ L2C, 3-c, naive” tests for Simulation 2 when w = 0.6.

It is interesting to notice that when the correlation is very large, the naive method for the
χ2-approximation can perform as well as the bias-reduced method. Figure 5 presents such a
case where w = 0.9, indicating large correlation for the simulated data. From the upper panel,
it is seen that the approximate powers of the three tests are similar, with the approximate
powers of the “L2C, 2-c, bias-reduced” test slightly higher than those of the other two tests.
However, the relative approximation errors of the “L2C, 2-c, bias-reduced” test are larger than
those of the other two tests. This indicates that when the correlation is large, it is sufficient to
employ the L2-norm based test with the χ2-approximation using the 2 or 3-cumulant matched
naive methods. From the lower panels of Figures 2–5, we can also see that the bias-reduced
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method performs quite stably whenever w = 0.6 or w = 0.9.

5 The dog potassium data

We now apply the proposed methodologies to the dog potassium data briefly described in
Section 1. This is a 4-sample BF problem. We first transformed this 4-sample BF problem into
a one-sample problem using the transformation method described in Section 2. The resulting
sample has 8 observations, with dimension (4 − 1) × 7 = 21. Thus, Hotelling’s T 2 test is not
applicable. We then applied the L2-norm based test using the 2-cumulant matched bias-reduced
χ2-approximation, resulting in a P-value 0.0022, indicating that there is very strong evidence
to reject the null hypothesis. That is, the four groups of dog potassium measurements unlikely
have the same treatment effects. This conclusion is expected if one observes Figure 1 carefully.

We also applied the L2-norm based test using the 2-cumulant matched naive χ2-approximation
and the normal approximation, resulting in P-values 0.0175 and 0 respectively. They show that
there is indeed strong evidence to reject the null hypothesis although the normal approximation
P-value is less trustful. In fact, the approximate degrees of freedom for the 2-cumulant matched
naive and bias-reduced χ2-approximations are 3.053 and 5.682 respectively, which are too small
to make the normal approximation adequate.

Figure 5 Same caption as that of Figure 4 but now for Simulation 2 with w = 0.9.

We also applied the proposed methodologies to test if the mean differences of any two groups
of the dog potassium data are zero. These mean differences with pointwise 95% confidence
intervals are displayed in Figure 6. Panel (a) shows that the mean differences between Groups
1 and 2 should be statistically highly significant since the pointwise confidence intervals do not
contain 0. Panel (f) shows that the mean differences between Groups 3 and 4 should not be
statistically significant since the pointwise confidence intervals always contain 0. Panels (b)–(e)
indicate that the mean differences of the other pairwise groups should be somewhat significant
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since some of the pointwise confidence intervals contain 0 and some do not. Table 1 shows
the P-values for the pairwise tests. Column 1 shows the pairwise group mean difference tests.
Columns 2–5 respectively list the P-values of Hotelling’s T 2 test, the L2-norm based tests with
P-values approximated by the three methods: the 2-cumulant matched naive and bias-reduced
methods and the normal approximation method. The P-values of Hotelling’s T 2 tests indicate
that all these pairwise tests are not statistically significant. This indicates that Hotelling’s
T 2-test fails to detect the pairwise group mean differences and it yields misleading results. This
is consistent with Theorem 1 since the sample sizes of the induced samples are either 8 or 9,
which are very close to the associated dimensionality 7. However, in these cases, the L2-norm
based tests, especially the L2-norm based test using the 2-cumulant matched bias-reduced χ2-
approximation can powerfully detect the pairwise group mean differences indicated by Figure 6.
These examples show that the L2-norm based tests are indeed useful and can be more powerful
than Hotelling’s T 2 test when the dimensionality is very close to the sample sizes.

Figure 6 Pairwise group mean differences with 95% confidence intervals for the dog potassium data.

Table 1 P-values for pairwise group mean tests for the dog potassium data.

Test for groups T 2 L2C, 2-c naive L2C, 2-c bias-reduced L2N

1 vs 2 0.1178 0.0000 0.0000 0.0000

1 vs 3 0.3399 0.0532 0.0241 0.0082

1 vs 4 0.5999 0.0003 0.0000 0.0000

2 vs 3 0.2383 0.0010 0.0001 0.0000

2 vs 4 0.3368 0.0343 0.0155 0.0022

3 vs 4 0.2126 0.3962 0.3802 0.5345
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Appendix: technical proofs
In this appendix, we first give a lemma and then give the proofs of some theorems.

Lemma 1. Let F ∼ Fr,s(δ2). As r, s → ∞ or δ2, s → ∞, we have

F
d= a +

√
bZ + oP (

√
b), (A.1)

where Z ∼ N(0, 1), a = 1 + δ2/r and b = 2[1+2δ2/r
r + (1+δ2/r)2

s ].
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Proof of Lemma 1. Write F = f(X, Y ) = X/Y , where rX ∼ χ2
r(δ

2) and sY ∼ χ2
s are

independent. We can show that, as r, s → ∞ or as δ2, s → ∞, both X and Y are asymptotically
normally distributed. It follows that F is also asymptotically normally distributed. Notice
that E(X) = 1 + δ2/r, Var(X) = 2(1 + 2δ2/r)/r, E(Y ) = 1, Var(Y ) = 2/s, and f ′

x(x, y) =
1/y, f ′

y(x, y) = −x/y2. By Taylor expansion, as r, s → ∞, F can be expressed as (A.1) with

a = f(E(X), E(Y )) = E(X)/E(Y ) = 1 + δ2/r,

b = f ′2
x [E(X), E(Y )]Var(X) + f ′2

y [E(X), E(Y )]Var(Y )

= 2[(1 + 2δ2/r)/r + (1 + δ2/r)2/s],

as desired.

Proof of Theorem 1. Notice that when q is fixed and as n → ∞, Fα,q,n−q = χ2
q(α)/q[1 + o(1)]

is finite. However, under H1n, by Lemma 1, T 2
n will be asymptotically normally distributed due

to (n − q) → ∞ and the noncentrality parameter

δ2 = n1−ωuTΣ−1u → ∞, as n → ∞.

It follows from Lemma 1 that

n − q

(n − 1)q
T 2

n
d= a +

√
bZ + op(

√
b), (A.2)

where Z ∼ N(0, 1), and

a = 1 +
δ2

q
= n1−ω uT Σ−1u

q
[1 + o(1)],

b = 2
[
1 + 2δ2/q

q
+

(1 + δ2/q)2

n − q

]

= 4n1−ω uT Σ−1u
q2

[1 + o(1)].
(A.3)

It follows that

P (T 2
n � T 2

α,n|H1n) = P

(
n − q

(n − 1)q
T 2

n � Fα,q,n−q |H1n

)

= P

(

Z � Fα,q,n−q − a√
b

)

+ o(1)

= Φ(n(1−ω)/2
√

uT Σ−1u/4) + o(1),

which tends to 1 as n → ∞.
When q tends to ∞ with n, n−q

(n−1)qT 2
n will be asymptotically normally distributed under

both H0 and H1n. Assume Assumption A is satisfied. Letting δ2 = 0 in (A.3), we will obtain

Fα,q,n−q = a +
√

bzα + o(
√

b) = 1 +

√
2

nγ(1 − γ)
zα + o(n−1/2).

On the other hand, under H1n, letting δ2 = n1−ωuTΣ−1u = n1−ωc1[1 + o(1)] in (A.3), we will
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obtain (A.2) with a = (1 + n1−ωc1/γ)[1 + o(1)] and b = 2
nγ(1−γ) [1 + o(1)]. Therefore,

P (T 2
n � T 2

α,n|H1n) = P

(
n − q

(n − 1)q
T 2

n � Fα,q,n−q |H1n

)

= P

(

Z �
1 +

√
2

nγ(1−γ)zα − (1 + n1−ωc1/γ)
√

2
nγ(1−γ)

)

+ o(1)

= Φ
(

− zα + n1/2−ω

√
1 − γ

2γ
c1

)

+ o(1).

The remaining part is obvious. The theorem is proved.

Proof of Theorem 2. Notice that
√

n[z̄ − µ] ∼ Nq(0,Σ). (A.4)

Set R ∼ Nq(0,Σ). Recall that v1, . . . ,vq and λ1, . . . , λq are the eigenvectors and eigenvalues
of Σ, and m is the number of all the positive eigenvalues. It follows that

R =
m∑

r=1

ξrvr,

where ξr = RTvr, r = 1, 2, . . . , m, which are independent and Eξr = 0, var(ξr) = λr > 0 for
r = 1, 2, . . . , m. Set πr = (µ − µ0)

T vr, r = 1, 2, . . . , q. We have

‖R +
√

n(µ − µ0)‖2 =
∥
∥
∥
∥

m∑

r=1

[ξr + n1/2πr ]vr + n1/2

q∑

r=m+1

πrvr

∥
∥
∥
∥

2

=
m∑

r=1

[ξr + n1/2πr]2 + n

q∑

r=m+1

π2
r ,

due to the orthonormality of the eigenvectors vr , r = 1, 2, . . . , q. First notice that
∑q

r=m+1 π2
r =

‖µ − µ0‖2 − ∑m
r=1 π2

r . On the other hand, since R is a normal random vector, we have that

ξr/
√

λr i.i.d. ∼ N(0, 1) for r = 1, 2, . . . , m. Hence (ξr + n1/2πr)2
d= λrAr, Ar ∼ χ2

1(nλ−1
r π2

r). It
follows that

Rn = ‖R +
√

n(µ − µ0)‖2 =
m∑

r=1

(ξr + n1/2πr)2 + n

(

‖µ − µ0‖2 −
m∑

r=1

π2
r

)

d=
m∑

r=1

λrAr + n

(

‖µ − µ0‖2 −
m∑

r=1

π2
r

)

,

as desired.

Proof of Theorem 3. The proof is obvious when one notes that when q is fixed, R∗
α and ‖u‖2

are fixed.

Proof of Theorem 4. Under Cases (2) and (3), by (3.10), we have

E(Rn) =
m∑

r=1

λr(1 + n1−ωλ−1
r δ2

r ) + n1−ω

(

‖u‖2 −
m∑

r=1

δ2
r

)

= tr(Σ) + n1−ω‖u‖2,

Var(Rn) = 2
m∑

r=1

λ2
r(1 + 2n1−ωλ−1

r δ2
r) = 2(tr(Σ2) + 2n1−ωuTΣu).
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Since λrAr
d= λr(zr + n(1−ω)/2λ

−1/2
r δr)2, zr

i.i.d∼ N(0, 1), we have

m∑

r=1

λrAr
d=

m∑

r=1

λrz
2
r + 2n(1−ω)/2

m∑

r=1

λ1/2
r δrzr + n1−ω

m∑

r=1

δ2
r .

It follows that

Rn − (tr(Σ) + n‖u‖2)
√

2(tr(Σ2) + 2n1−ωuTΣu)

d=
∑m

r=1 λr(z2
r − 1) + 2n(1−ω)/2

∑m
r=1 λ

1/2
r δrzr

√
2(tr(Σ) + 2n1−ωuTΣu)

=
∑q

r=1 λr(z2
r − 1) + 2n(1−ω)/2

∑q
r=1 λ

1/2
r δrzr

√
2(tr(Σ2) + 2n1−ωuT Σu)

=
∑q

r=1 λr(z2
r − 1)

√
2(tr(Σ2) + 2n1−ωuTΣu)

+
2n(1−ω)/2

∑q
r=1 λ

1/2
r δrzr

√
2(tr(Σ2) + 2n1−ωuTΣu)

L−→ N(0, 1).

In the above equation, we use the facts that the first term is op(1) and the second term is
asymptotically normally distributed as N(0, 1). These two facts can be easily checked by noting
that when q is a fixed number, tr(Σ), tr(Σ2), ‖u‖2 and uT Σu are all fixed. The first part of
the proof is finished.

We now move to the proof of the second part. First we have

P (Rn � R∗
α|H1n) = 1 − Φ

(
(R∗

α − tr(Σ)) − n1−ω‖u‖2

√
2(tr(Σ2) + 2n1−ωuTΣu)

)

+ o(1).

When q is fixed, tr(Σ), tr(Σ2), ‖u‖2 and uT Σu are all fixed. Moreover, uTΣu > 0. Therefore,
the above expression can be further written as

P (Rn � R∗
α|H1n) = Φ

[
n(1−ω)/2‖u‖2

2
√

uTΣu

]

+ o(1),

which obviously tends to 1 as n → ∞ for 0 < ω < 1. The theorem is proved.

Proof of Theorem 5. From the proof of Theorem 4 and under the given conditions, we have

E(Rn) = tr(Σ) + n1−ω‖u‖2, Var(Rn) = 2(tr(Σ2) + 2n1−ωuT Σu), (A.5)

and

Rn − E(Rn)
√

Var(Rn)
=

∑q
r=1 λr(z2

r − 1)
√

2(tr(Σ2) + 2n1−ωuTΣu)
+

2n(1−ω)/2
∑q

r=1 λ
1/2
r δrzr

√
2(tr(Σ2) + 2n1−ωuTΣu)

, (A.6)

where zr
i.i.d∼ N(0, 1), r = 1, 2, . . . , m. First notice that the second term is op(1) as n → ∞ due

to the facts that its mean is 0 and its variance tends to 0 under the given conditions. Now we
show that the first term in the right-hand side of (A.6) is asymptotically distributed as N(0, 1).
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Let S =
∑q

r=1 λr(z2
r − 1). Then E(S) = 0 and Var(S) = 2tr(Σ2). Moreover, as n → ∞ and

under Assumption (B3), we have

E
∑m

r=1 |λr(z2
r − 1)|3

(2tr(Σ2))3/2
=

∑m
r=1 λ3

rE|z2
1 − 1|3

(2tr(Σ2))3/2
�

(λmax/
√

q)3E|z2
1 − 1|3

(2tr(Σ2)/q)3/2
→ 0.

By Liapounov’s theorem, the first term in the right-hand side of (A.3) tends to N(0, 1) in
distribution as n → ∞. The expression (3.13) then follows from (A.5) and (A.6). So does the
expression (3.15). Therefore,

P (Rn � R∗
α|H1n) = P

(
Rn − E(Rn)
√

Var(Rn)
�

−n1−ω‖u‖2 +
√

2tr(Σ2)zα
√

2tr(Σ2) + 2n1−ωuTΣu

)

= Φ
(−

√
2tr(Σ2)zα + n1−ω‖u‖2

√
2(tr(Σ2) + 2n1−ωuTΣu)

)

+ o(1)

= Φ
(

− zα +
n1−ω‖u‖2

√
2tr(Σ2)

)

+ o(1)

= Φ
(

− zα +
n1/2−ωc4√

2γc3

)

+ o(1),

which tends to 1 as n → ∞ only for 0 < ω < 1/2 and tends to α for 1/2 < ω < 1. In the above
proof, we use the fact that n1−ωuTΣu/tr(Σ2) = n1−ωc5/(nγc3)[1 + o(1)] → 0. The theorem is
proved.
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