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Abstract For large sparse non-Hermitian positive definite system of linear equations, we present

several variants of the Hermitian and skew-Hermitian splitting (HSS) about the coefficient matrix and

establish correspondingly several HSS-based iterative schemes. Theoretical analyses show that these

methods are convergent unconditionally to the exact solution of the referred system of linear equations,

and they may show advantages on problems that the HSS method is ineffective.
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1 Introduction

Many problems in the area of scientific computing require the solution of a sequence of large
linear systems, usually written in the form

Ax = b or Au = f , x, b, u, f ∈ C
n, A ∈ C

n×n. (1)

Often we may assume that A is invertible. The form Au = f usually signals that the authors
are really thinking about discretized versions of partial differential equations whereas those who
work with more diverse applications in optimization, or approximation or signal processing seem
to prefer Ax = b.

The crucial feature in discussion of methods for solving (1) is the extent to which A is
known. At one extreme is the case when A is given only as a black box which can return the
vector Av for any v ∈ Cn, even A∗, the adjoint of A for the standard Euclidean inner product,
is not available. At the other extreme are discretizations of known differential operators on
nice tensor-product domains with preconditioners that are spectrally equivalent to the positive
definite Hermitian part of A.

The long enduring tension between experts in direct methods and experts in iterative methods
began to dissipate in the 1990’s when it was perceived that direct methods play a decisive role
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in fashioning good preconditioners without which Krylov subspace methods and truly iterative
methods are ineffective on challenging problems.

In other words the demands placed on numerical analysts in the twenty-first century have
enabled the two groups of experts to see that they need each other.

Our results are situated nearer the ignorant end of the scale of knowledge of A. However we
do assume that both Av and A∗v may be computed for any v and this permits us to write (1)
as

(H − S)x = b (2)

with

H =
1
2
(A∗ + A), S =

1
2
(A∗ − A).

The negative sign in (2) leads to nicer formulations later. The great appeal of (2) is that H

and S are normal matrices even though the nature of A is unknown. H −S is called a splitting
of A provided that at least one of the terms is invertible. If S is invertible then S2 = −S∗S is
negative definite and we again recover the Hermitian case. We will make use of S2 later.

In general we will not know whether H dominates S or vice versa. If A is a discretization
of a second-order partial differential equation, then, as the mesh size goes to zero, H will
dominate S but in convection-diffusion equations with strong convection the reverse may hold
for practical values of the mesh size h[1−6]. What we want is that when A is a function of some
parameter then, as the balance between H and S changes, our iterative method should adapt
automatically to the change.

We accept that so-called inner iterations will be needed to provide approximate solutions to
the outer iterations that we will discuss. In this paper we focus on obtaining satisfactory outer
iterations given by rather limited information about A. Note that much has changed concerning
iterative methods since the 1960’s and 1970’s. In those days users were willing to take a huge
number of iterations, far exceeding n, and consequently the asymptotic rate of convergence,
governed by the spectral radius of the iteration matrix for stationary methods, was of prime
importance.

By the late 1970’s Krylov subspace methods were widely appreciated and the scene changed
dramatically; see [7, 8]. In exact arithmetic these methods terminate after at most n steps and
even 1

2n iterations was regarded as excessive. (Multigrid methods strengthened this trend.)
These are all considered as iterative methods. Now, for outer iteration, it is the norm of the
iteration matrix that matters and values too close to 1 are not acceptable.

The arrival of GMRES, by Saad and Schultz[9], defined a turning point in the development
of iterative methods. Here is a viable method that makes minimal demands on A. Any new
iteration must outperform GMRES, or a variant such as GMRES(20), in order to be taken
seriously.

With these remarks in mind we examine the use of (2), and an extension, to provide powerful
outer iterative schemes in this paper.

2 Hermitian and skew-Hermitian splitting (HSS)

By analogy with the alternating direction implicit (ADI) iteration[10] for elliptic and separable
partial differential equations, Bai, Golub, and Ng[11] considered a two-step scheme derived
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from (2).

HSS method. Given an initial approximate solution x(0) to (2), for k = 0, 1, 2, . . . until
convergence solve

(αI + H)x(k+1/2) = (αI + S)x(k) + b, (3a)

(αI − S)x(k+1) = (αI − H)x(k+1/2) + b, (3b)

where α is a given positive constant.
Theorem 2.2 in [11] shows that if the coefficient matrix A ∈ C

n×n is positive definite1), i.e.,
its Hermitian part H is positive definite, then x(k) −→ A−1b and the contraction factor at each
step is bounded by

σ(α) := max
i

∣
∣
∣
∣

α − λi[H ]
α + λi[H ]

∣
∣
∣
∣
< 1,

where λi[H ] denotes the i-th eigenvalue of the matrix H . Moreover, in Corollary 2.3 in [11] it
is shown that

min
α>0

max
λmin[H]�μ�λmax[H]

∣
∣
∣
∣

α − μ

α + μ

∣
∣
∣
∣

occurs when α = α∗ =
√

λmin[H ] · λmax[H ] and then

σ(α∗) =

√

κ(H) − 1
√

κ(H) + 1
.

Here, λmin[H ] and λmax[H ] are the minimum and the maximum eigenvalues, and κ(H) =
λmax[H ]/λmin[H ] denotes the spectral condition number of the Hermitian positive definite ma-
trix H . The result just quoted suggests that for HSS to achieve a performance level similar to
the conjugate gradient (CG) method applied to H it would be necessary to know λmin[H ] and
λmax[H ] explicitly in order to use α∗. However that message is misleading because σ(α) is only
a bound on the contraction factor and a very pessimistic one when S dominates H . Numerical
experiments in [11] show spectral radii as small as 0.75 for a wide range of α values when solving
convection-diffusion equations despite σ(α∗) � 0.95, see [11, Figures 5.1 and 5.2]. Thus HSS
is more effective when S dominates H than vice versa. Nevertheless HSS requires the solution
of two nice systems and should be compared with the solution of (1) by using GMRES on A.
The positive definite system in HSS (3a) is suitable for CG and the other system (3b) can be
solved by an efficient Krylov subspace method that exploits the fact that S is skew-Hermitian.
However when S is very small compared to H then (3b) contributes little to convergence and
the inner iterations must be designed to terminate promptly since

(I − S/α)−1 = I + S/α + (S/α)2 + · · · .

A blemish on HSS is that the iteration matrix

L(α) := (αI − S)−1(αI − H)(αI + H)−1(αI + S)

is similar to W (α)Q(α), where W (α) := (I − H/α)(I + H/α)−1 is Hermitian, indefinite, and
‖W (α)‖ < 1, and Q(α) := (I + S/α)(I − S/α)−1 is unitary for all α. Here, ‖ · ‖ denotes the

1) A non-Hermitian matrix A ∈ Cn×n is called positive (negative) definite if for all x ∈ Cn\{o}, the real part

of x∗Ax is positive (negative), where o denotes the zero vector.
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spectral norm. In [11, Corollary 2.3] it is made clear how to choose a good α when S is small
compared to H , using approximations to λmin[H ] and λmax[H ], but it is not clear how to choose
α when S dominates H ; see [12] for some further results. Yet it is in these skew-dominated
cases that HSS is effective for a large range of α.

So we look for different iterations that combine H and S∗S more naturally.

3 The skew-normal equations

In general the normal equations A∗Ax = A∗b, although attractive theoretically, are not an
efficient approach to solving Ax = b. However, when A is orthogonal we use them unconsciously
when writing x = A∗Ax = A∗b. The prejudice against the normal equations grew from the
prevalence of systems that were positive definite or nearly so.

Since −S2 = S∗S is Hermitian positive semi-definite, there is a strong attraction to making
use of it. When S is invertible, we may, without loss of generality, multiply (2) on the left by
S to obtain a splitting of what we call the skew-normal equations

(SH − S2)x = Sb. (4)

In order to derive a two-step iteration, we add αH to each side and write down two fixed-point
equations

(αH + SH)x ≡ (αI + S)Hx = (αH + S2)x + Sb, (5a)

(αH − S2)x = (αH − SH)x + Sb ≡ (αI − S)Hx + Sb, (5b)

where α is a free positive parameter.
The new extra term Hx causes no extra work provided that we solve (5a) before (5b). In

analogy to the HSS method we present the Skew-Normal Splitting (SNS) method.

SNS method. Given an initial approximate solution x(0) to (1), for k = 0, 1, 2, . . . until
convergence solve

(αI + S)x(k+1/2) = (αH + S2)x(k) + Sb, (6a)

(αH − S2)x(k+1) = (αI − S)x(k+1/2) + Sb, (6b)

with given α > 0.
Let us compare the coefficient matrices of SNS to those in HSS. Our αI + S is similar to

the αI − S in HSS but the Hermitian system (6b) changes from αI + H in HSS to αH − S2 =
αH + S∗S for us. Note that we do not need to assume that H is positive definite, only

S is invertible, αH + S∗S is positive definite.

However, we can obtain stronger results when H is positive definite.

Convergence theory
From (6a) and (6b) we form the iteration matrix

M(α) := (αH − S2)−1(αI − S)(αI + S)−1(αH + S2).

Then we can demonstrate that the iteration matrix M(α) has the following two properties.

Property 1. Given invertible A ∈ Cn×n. Let H = 1
2 (A∗ + A) and S = 1

2 (A∗ − A). If

H is positive definite, S is invertible,
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then, for all α > 0, M(α) is similar to Q(α)W (α), where Q(α) is unitary and all eigenvalues
of W (α) are included in the interval (−1, 1).

Proof.

(αH − S2)M(α)(αH − S2)−1 = Q(α)W (α),

Q(α) := (αI − S)(αI + S)−1,

W (α) := (αH + S2)(αH − S2)−1.

Q(α) is the Cayley transform of S and thus is unitary for all α > 0. The matrix W (α) is not, in
general, Hermitian. Nevertheless, since αH and S∗S are positive definite there is an invertible
matrix Z such that H = ZZ∗ and S∗S = ZΛZ∗ with Λ diagonal and positive definite. Thus

W (α) = Z(αI − Λ)Z∗[Z(αI + Λ)Z∗]−1 = Z(αI − Λ)(αI + Λ)−1Z−1,

‖(αI − Λ)(αI + Λ)−1‖ = max
i

∣
∣
∣
∣

α − λi

α + λi

∣
∣
∣
∣
< 1, for α > 0.

Property 2. With the notation of Property 1, let V := V (α) = (αH + S∗S). Then, for all
α > 0, ‖M(α)‖ = ‖Q(I − 2J)‖V −2 with Q := Q(α) unitary and the spectrum of I − 2J lying in
(−1, 1).

Proof.

M := M(α) = V −1Q[V − 2S∗S] = V −1Q[I − 2J ]V,

with J := J(α) = S∗SV −1 = S∗S(αH + S∗S)−1. Hence

max
x �=o

x∗M∗Mx

x∗x
= max

x �=o

x∗V (I − 2J∗)Q∗V −2Q(I − 2J)V x

x∗x

= max
y �=o

y∗(I − 2J∗)Q∗V −2Q(I − 2J)y
y∗V −2y

= ‖Q(I − 2J)‖2
V −2 ,

where ‖ · ‖B is the matrix norm subordinate to the vector norm ‖x‖2
B := maxx �=o

x∗Bx
x∗x . Since

V −1/2JV 1/2 = V −1/2S∗SV −1/2 =: G∗G,

we have

‖J‖2
V −1 = max

x �=o

x∗J∗V −1Jx

x∗V −1x
= max

y �=o

y∗V 1/2J∗V −1JV 1/2y

y∗y

= max
y �=o

y∗(G∗G)2y
y∗y

= ‖G∗G‖2.

Since V − S∗S = αH is positive definite, I − G∗G = αV −1/2HV −1/2 is also positive definite.
Thus, as a quadratic from, 0 < G∗G < I and the singular values of G lie in (0, 1). Note
also that V −1/2(I − 2J)V 1/2 = I − 2G∗G has eigenvalues in the open interval (−1, 1). Thus
‖M‖ = ‖Q(I − 2J)‖V −2 .

Theorem 1. Given invertible A ∈ Cn×n. Let H = 1
2 (A∗ + A) and S = 1

2 (A∗ − A). If

H is positive definite, S is invertible,
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then, for all α > 0, the spectral radius of the iteration matrix M(α) of the SNS method is
bounded by

ς(α) = ‖(I + αS−1HS−1)(I − αS−1HS−1)−1‖,
i.e., ρ(M(α)) � ς(α). Moreover, it holds that ρ(M(α)) � ς(α) < 1, ∀α > 0. That is to say, the
SNS method converges to the unique solution of the system of linear equations (1).

Proof. By the similarity invariance of the matrix spectrum and the nonsingularity of the
matrix S, we have

ρ(M(α)) = ρ((αI − S)(αI + S)−1(αH + S2)(αH − S2)−1)

= ρ((αI − S)(αI + S)−1S(αS−1HS−1 + I)(αS−1HS−1 − I)−1S−1)

= ρ(S−1(αI − S)(αI + S)−1S(αS−1HS−1 + I)(αS−1HS−1 − I)−1)

= ρ((I − αS−1)(I + αS−1)−1(I + αS−1HS−1)(I − αS−1HS−1)−1). (7)

Because S is skew-Hermitian, we easily know that S−1 is skew-Hermitian, too. It then follows
that Q̂(α) := (I−αS−1)(I+αS−1)−1 is a Cayley transform and is, thus, orthogonal. Therefore,
for ∀α > 0 it holds that ‖Q̂(α)‖ = 1.

Now, from (7) we can further obtain

ρ(M(α)) � ‖(I − αS−1)(I + αS−1)−1(I + αS−1HS−1)(I − αS−1HS−1)−1‖
� ‖(I − αS−1)(I + αS−1)−1‖ · ‖(I + αS−1HS−1)(I − αS−1HS−1)−1‖
= ‖(I + αS−1HS−1)(I − αS−1HS−1)−1‖
= ς(α).

Let P = −S−1HS−1 ≡ S−∗HS−1. Because H is Hermitian positive definite and S is invertible,
we see that P is a Hermitian positive definite matrix. Therefore, when α > 0, it holds that

ς(α)2 = ‖(I − αP )(I + αP )−1‖2

= ρ([(I − αP )(I + αP )−1]∗[(I − αP )(I + αP )−1])

= max
‖x‖=1

x∗(I + αP ∗)−1(I − αP ∗)(I − αP )(I + αP )−1x

= max
‖x‖=1

x∗(I − αP )2x
x∗(I + αP )2x

= max
‖x‖=1

1 − 2α · x∗Px + x∗P 2x

1 + 2α · x∗Px + x∗P 2x
< 1.

That is to say, ρ(M(α)) � ς(α) < 1, ∀α > 0.

If the lower and the upper bounds of the eigenvalues of the Hermitian positive definite matrix
P are known, then the optimal parameter α for ς(α) (or the upper bound of ρ(M(α))) can be
obtained. This fact is precisely stated as the following theorem.

Theorem 2. Given invertible A ∈ Cn×n. Let H = 1
2 (A∗ + A) and S = 1

2 (A∗ − A). Assume
that

H is positive definite, S is invertible.

Let λmin[P ] and λmax[P ] be the minimum and the maximum eigenvalues of the matrix P =
−S−1HS−1, respectively, and α be a positive constant. Then

α∗ ≡ arg min
α

{

max
λmin[P ]�λ�λmax[P ]

∣
∣
∣
∣

α − λ

α + λ

∣
∣
∣
∣

}

=
√

λmin[P ] · λmax[P ],
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and

ς(α∗) =

√

λmax[P ] − √

λmin[P ]
√

λmax[P ] +
√

λmin[P ]
=

√

κ(P ) − 1
√

κ(P ) + 1
,

where κ(P ) is the spectral condition number of P .

Proof. Now,

ς(α) = max
{∣

∣
∣
∣

α − λmin[P ]
α + λmin[P ]

∣
∣
∣
∣
,

∣
∣
∣
∣

α − λmax[P ]
α + λmax[P ]

∣
∣
∣
∣

}

.

To compute an approximate optimal α > 0 such that the convergence factor ρ(M(α)) of the
SNS iteration is minimized, we can minimize the upper bound ς(α) of ρ(M(α)) instead. If α∗
is such a minimum point, then it must satisfy α∗ − λmin[P ] > 0, α∗ − λmax[P ] < 0, and

α∗ − λmin[P ]
α∗ + λmin[P ]

=
λmax[P ] − α∗
λmax[P ] + α∗

.

Therefore,
α∗ =

√

λmin[P ] · λmax[P ],

and the result follows.
We remark that in the above discussions, the condition that S is invertible is not intrinsic

and is removable by a slight modification of the original system of linear equations (1). More
precisely, when the skew-Hermitian part S is singular, we can choose a small positive constant
ε ∈ (0, λmin[H ]) such that Hε = H − εI is still Hermitian positive definite and Sε = S − εI is
nonsingular. Then, we can equivalently transform the system of linear equations Ax = b into
the one (Hε − Sε)x = b and the skew-normal equations (4) into the one (SεHε − S2

ε )x = Sεb.

Now, by directly applying the SNS iteration technique to this new skew-normal equations we
can obtain the corresponding iteration scheme and theoretical results for this case.

4 The skew-scaling equations

Another way of using the skew-Hermitian matrix S is to employ it to scale the linear system (1).
When S = 0, we use some appropriate standard methods. Otherwise, let α > 0 be a scalar
parameter, and we first add and then subtract 1

αS2x to the fixed-point equation

Hx = Sx + b, (8)

see (2), to obtain

(

H +
1
α

S2

)

x =
(

I +
1
α

S

)

Sx + b,

(

H − 1
α

S2

)

x =
(

I − 1
α

S

)

Sx + b.

After rearranging these equalities and choosing x(0) wisely, we can straightforwardly get the
following iteration scheme:

(αI + S)Sx(k+1/2) = (αH + S2)x(k) − αb, (9a)

(αH − S2)x(k+1) = (αI − S)Sx(k+1/2) + αb. (9b)

The new extra term Sx(k+1/2) causes no extra work provided that we let x(k+1/2) :=
Sx(k+1/2) in (9a) and (9b). Therefore, in analogy to the HSS method we present the Skew-
Scaling Splitting (SSS) method.
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SSS method. Given an initial approximate solution x(0) to (1), for k = 0, 1, 2, . . . until
convergence solve

(αI + S)x(k+1/2) = (αH + S2)x(k) − αb, (10a)
(αH − S2)x(k+1) = (αI − S)x(k+1/2) + αb, (10b)

with given α > 0.
Clearly, the coefficient matrices of SSS and SNS are exactly the same. The only difference

between these two methods is on the constant vector terms which change from Sb in SNS to αb

in SSS. Hence, SSS has the same convergence speed but is much cheaper than SNS. Note that
for the SSS method we do not need to assume that H is positive definite and S is invertible,
only αH +S∗S is positive definite. However, just like the SNS method, we can obtain stronger
results about the SSS method when H is positive definite.

Convergence theory
From (10a) and (10b) we form the iteration matrix of the SSS method as

M(α) := (αH − S2)−1(αI − S)(αI + S)−1(αH + S2).

Note that this matrix is exactly the same as the iteration matrix of the SNS method. Therefore,
exactly following the demonstrations in Section 3, we can prove that Properties 1 and 2 for
the SNS method also hold for the SSS method, and the convergence of the SSS method can be
described by the following theorem.

Theorem 3. Given invertible A ∈ Cn×n. Let H = 1
2 (A∗ + A) and S = 1

2 (A∗ − A). If

H is positive definite, S is invertible,

then, for all α > 0, the spectral radius of the iteration matrix M(α) of the SSS method is
bounded by

ς(α) = ‖(I + αS−1HS−1)(I − αS−1HS−1)−1‖,
i.e., ρ(M(α)) � ς(α). Moreover, it holds that ρ(M(α)) � ς(α) < 1, ∀α > 0. That is to say, the
SSS method converges to the unique solution of the system of linear equations (1).

Analogously to Theorem 2, if the lower and the upper bounds of the eigenvalues of the
Hermitian positive definite matrix P are known, then the optimal parameter α for ς(α) (or
the upper bound of ρ(M(α))) can be obtained. This fact is precisely stated as the following
theorem.

Theorem 4. Given invertible A ∈ Cn×n. Let H = 1
2 (A∗ + A) and S = 1

2 (A∗ − A). Assume
that

H is positive definite, S is invertible.

Let λmin[P ] and λmax[P ] be the minimum and the maximum eigenvalues of the matrix P =
−S−1HS−1, respectively, and α be a positive constant. Then

α∗ ≡ arg min
α

{

max
λmin[P ]�λ�λmax[P ]

∣
∣
∣
∣

α − λ

α + λ

∣
∣
∣
∣

}

=
√

λmin[P ] · λmax[P ],

and

ς(α∗) =

√

λmax[P ] − √

λmin[P ]
√

λmax[P ] +
√

λmin[P ]
=

√

κ(P ) − 1
√

κ(P ) + 1
,
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where κ(P ) is the spectral condition number of P .

We remark that in the above discussions, the condition that S is invertible is not intrinsic
and is removable by a slight modification of the original system of linear equations (1). More
precisely, when the skew-Hermitian part S is singular, we can choose a small positive constant
ε ∈ (0, λmin[H ]) such that Hε = H − εI is still Hermitian positive definite and Sε = S − εI is
nonsingular. Then, we can equivalently transform the system of linear equations Ax = b into
the one (Hε−Sε)x = b and the skew-scaling equations (8) into the one S−∗

ε HεS
−1
ε x̃ = S−∗

ε x̃+b̃,

with x̃ := Sεx and b̃ := S−∗
ε b. Now, by directly applying the SSS iteration technique to this

new equations we can obtain the corresponding iteration scheme and theoretical results for this
case.

5 Remarks

Theorems 1 and 3 show that the convergence speeds of both SNS and SSS iterations are bounded
by ς(α), which only depends on the spectrum of the Hermitian positive definite matrix P :=
−S−1HS−1, but does not depend on the spectrum of the coefficient matrix A, and neither on
the eigenvectors of the matrices H , S, P and A. When the matrix P has a more clustered
spectrum than the matrix H , both SNS and SSS iterations may show faster convergence speeds
than the HSS iteration.

We emphasize that in Theorems 2 and 4 the optimal parameter α∗ only minimizes the upper
bound ς(α) of the spectral radius of the iteration matrix, but does not minimize the spectral
radius itself.

Theorems 2 and 4 also show that when the so-called optimal parameter α∗ is employed, the
upper bounds of the convergence rates of both SNS and SSS iterations are about the same as
that of the conjugate gradient method associated with the Hermitian positive definite linear
system Px = b.

Moreover, if we introduce a vector norm |||x||| = ‖S−1(αH−S2)x‖, ∀x ∈ Cn, and represent
the induced matrix norm by

|||X ||| = ‖S−1(αH − S2)X(αH − S2)−1S‖, ∀X ∈ C
n×n,

then from Theorems 1 and 3 we see that

|||M(α)||| = ‖S−1(αI − S)(αI + S)−1(αH + S2)(αH − S2)−1S‖
= ‖(I − αS−1)(I + αS−1)−1(I + αS−1HS−1)(I − αS−1HS−1)−1‖
� ‖(I + αS−1HS−1)(I − αS−1HS−1)−1‖
= ς(α),

and it follows that

|||x(k+1) − x̂||| � ς(α)|||x(k) − x̂|||, k = 0, 1, 2, . . . ,

where x̂ is the exact solution of the system of linear equations (1). Therefore, ς(α) is also an
upper bound of the contraction factors of both SNS and SSS iterations in the sense of ||| · |||-
norm. It should be mentioned that when the coefficient matrix A is normal, we have HS = SH
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and, therefore, ρ(M(α)) = |||M(α)||| = ς(α). The optimal parameter α∗ then minimizes all of
these three quantities.
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