
Science in China Series A: Mathematics
Dec., 2008, Vol. 51, No. 12, 2217–2230
www.scichina.com math.scichina.com
www.springerlink.com

A distribution space for Hilbert transform and
its applications

YANG LiHua

School of Mathematics and Computing Science, Sun Yat-Sen University, Guangzhou 510275, China

(email: mcsylh@mail.sysu.edu.cn)

Abstract In this paper, a new distribution space D ′
H is constructed and the definition of the

classical Hilbert transform is extended to it. It is shown that D ′
H is the biggest subspace of D ′ on

which the extended Hilbert transform is a homeomorphism and both the classical Hilbert transform for

Lp functions and the circular Hilbert transform for periodic functions are special cases of the extension.

Some characterizations of the space DH are given and a class of useful nonlinear phase signals is shown

to be in D ′
H . Finally, the applications of the extended Hilbert transform are discussed.
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1 Introduction

Fourier and Hilbert transforms are two most important transforms for many subjects such
as physics, mathematics and engineering. Fourier transform is the indisputable hegemony for
the frequency spectrum analysis in classical signal processing[1, Chapter 1]. Likewise, Hilbert
transform, by carrying the instantaneous frequency information of a signal, provides a solid
foundation for non-stationary signal analysis. By setting the Hilbert transform of a real-valued
signal as the imaginary part, an analytic signal is produced, with which the commonly accepted
definitions for instantaneous amplitude and frequency are obtained for any given signal[2]. Com-
monly encountered signals in reality include mainly those of finite energy (L2-functions in math-
ematics), periodic signals and Dirac impulses (generalized functions). Thus, to analyze signals
mathematically, it is a very important task to establish a function space containing the above
signals such that Fourier or Hilbert transform is closed in it. As one knows, the ideal space for
Fourier transform is that of tempered distributions, which includes all the signals mentioned
above and the Fourier transform is a homeomorphism on it. However, we have no such a
space for Hilbert transform yet. As the development of information science, Hilbert transform
plays a more and more important role in nonstationary signal processing. The recent proposed
technique, Hilbert-Huang transform[3], employs Hilbert transform to produce Hilbert spectrum
based on the so-called empirical mode decomposition, which stimulates some novel researches
on Hilbert transform and its relevant topics such as Bedrosian identity[4−7].
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The classical Hilbert transform is defined as

Hf(t) :=
1
π

p.v.
∫

R

f(t− τ)
τ

dτ, (1.1)

where, p.v. is the Cauchy principal. It is a continuous linear operator from Lp(R) to Lp(R) for
any 1 < p <∞ and satisfies the following basic properties (see [8, 9]): (i) H−1 = −H : L2(R) →
L2(R); (ii) ‖Hf‖2 = ‖f‖2 (∀f ∈ L2(R)), and (iii) (Hf)∧(ω) = −i(sgnω)f̂(ω) a.e. ω ∈ R (∀f ∈
L2(R)), where f̂ is the Fourier transform of f defined by

f̂(ω) :=
∫

R

f(x)e−iωxdx

for f ∈ L1(R) and by the density of L2(R)∩L1(R) in L2(R) for f ∈ L2(R) (see [10]). Similarly
the circular Hilbert transform is defined as

H̃f(x) :=
1
π

p.v.
∫ T/2

−T/2

f(t− τ)
2 tan τ

2

dτ (1.2)

for any T -periodic function f . Both H and H̃ defined respectively by (1.1) and (1.2) are called
Hilbert transforms. A natural and interesting question is: what is the relation between them?
If s(t) = f(t) + cos t with f ∈ L2(R), what is the Hilbert transform of s and how to find its
instantaneous frequency?

No literature is reported on the research of the above questions. Up till now, many achieve-
ments have been made to extend the classical Hilbert transform to some generalized function
spaces[11−16]. Most of them (cf. [11–13]) on this topic is to extend the Hilbert transform to a
preexistent distribution space by using the analytic representation of distributions. The notable
one among them is [13] by Orton, in which, Hilbert transform is extended to D ′, the space of
Schwartz distributions. Her extension depends on the analytic representation, which is unique
up to an entire analytic function, namely, the Hilbert transform of f ∈ D ′ is essentially an
equivalent class. In [14] Hilbert transform is extended to D ′ directly with conjugate operator
by introducing the topology on H(D). With this extension, for any f ∈ D ′, its Hilbert trans-
form Hf is in H ′(D), which is called a space of ultradistributions[14]. It can be verified that
H ′(D) is not a subspace of D ′ since Hφ 	∈ D for φ ∈ D unless φ = 0. Let us recall that, the
similar case occurs for Fourier transform since the Fourier transform φ̂ of φ ∈ D is not in D

unless φ ≡ 0. To extend Fourier transform to distributions, the Schwartz space S of rapidly
decreasing functions is considered. It is well-known that D ⊂� S (see [17] for the exact meaning
of embeding ‘⊂�’) and the Fourier transform is a homeomorphism on S . Therefore, the dual
space of S satisfies S ′ ⊂� D ′ and Fourier transform is extended to S ′ successfully. Following
this idea, this paper will establish a new space of distributions and extend the classical Hilbert
transform to it such that Hilbert transform is a homeomorphism. It is also shown that the
Hilbert transforms defined respectively by (1.1) and (1.2) are special cases of the extended
Hilbert transform.

For clarification, let us denote some commonly used notations as follows: Let N be the set
of all the natural numbers, Z+ be the set of all the nonnegative integers, R be the set of real
numbers. For a Lebesgue measurable set E ⊂ R, let Lp(E) be the space of p-power Lebesgue
integrable functions with the well-known Lp(E) norm for 1 � p � ∞, Lloc(R) be the space of all
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the locally integrable functions on R, Ck(R) (k ∈ Z+) be that of all the k-times differentiable
functions on R, C(R) := C0(R), C∞(R) := ∩k∈NC

k(R), and D be the test function space of all
the compactly supported C∞(R) functions endowed with the usual topology such that its dual
space D ′ is the space of (Schwartz) distributions[17].

In the rest of the paper, a distribution space DH is constructed and some characterizations
are given in Section 2. It is also shown in this section that the DH is the smallest space with our
desired properties and correspondingly its dual space D ′

H is the biggest distribution space such
that D ′

H ⊂� D ′. In Sections 3, it is shown that two classical function spaces are continuously
embedded into D ′

H and a class of nonlinear phase signals is in D ′
H . Then in Section 4, the

classical Hilbert transform is extended to D ′
H and it is shown that the circular Hilbert transform

is also a special case of the extension. Finally, Section 5 shows two simple applications.

2 Space DH

The typical method for extending the classical Hilbert transform to a distribution space X ′,
where X is a function space, is using the conjugate operator. We denote the space to be
constructed by DH and assume it satisfies D ⊂ DH andH(DH) = DH such that D ′

H ⊂ D ′ andH
maps DH into itself. The properties imply that D , H(D) ⊂ DH , consequently D +H(D) ⊂ DH .
In general, the smaller DH is, the bigger D ′

H is. In this paper, we define

DH := D +H(D), (2.1)

and will show that it is what we desire.
Through this paper, we always use C(A) to denote a nonnegative constant depending only

on A but not necessarily the same at different occurrences, where A may be a set of some given
numbers, functions, and sets.

2.1 Direct sum D+̇H(D)

Lemma 2.1. Let f ∈ C[−a, a], a > 0, and f(x) := 0 for all x ∈ R\[−a, a]. Suppose f has
n− 1 (n ∈ Z+) vanishing moments, i.e.,

∫
R

tkf(t)dt = 0 (∀ k ∈ Z+, 0 � k � n− 1). (2.2)

Then ∣∣∣∣xn+1Hf(x) − 1
π

∫
R

tnf(t)dt
∣∣∣∣ � 1

π

an+1

|x| − a
‖f‖1 (∀ |x| > a),

where ‖f‖1 stands for the well-known L1(R)-norm.

Proof. Using suppf ⊂ [−a, a], we have

Hf(x) =
1
π

lim
A−1,ε→0

∫
ε<|t−x|<A,|t|�a

f(t)
x− t

dt.

For any |x| > a, since ε < |t − x| < A holds for all |t| � a if A−1, ε are small enough, it is
followed that {t ∈ R||t| � a} = {t ∈ R|ε < |t− x| < A, |t| � a}, which implies that

Hf(x) =
1
π

∫
|t|�a

f(t)
x− t

dt =
1
π

∫ a

−a

f(t)
x

∞∑
k=0

(
t

x

)k

dt =
1
π

∫ a

−a

∞∑
k=0

tkf(t)
xk+1

dt
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for any |x| > a. Since

∞∑
k=0

∣∣∣∣ t
kf(t)
xk+1

∣∣∣∣ =
|f(t)|
|x| − |t| � 1

|x| − a
|f(t)| ∈ L1([−a, a]),

we conclude by Fubini-Tonelli’s theorem (see [18]) that

Hf(x) =
1
π

∫ a

−a

∞∑
k=0

tkf(t)
xk+1

dt =
1
π

∞∑
k=0

1
xk+1

∫ a

−a
tkf(t)dt.

Consequencly,

xn+1Hf(x) =
1
π

∞∑
k=0

1
xk

∫ a

−a
tn+kf(t)dt.

Denoting

y :=
1
x
, ck :=

∫ a

−a
tn+kf(t)dt,

we get

∣∣∣∣xn+1Hf(x) − 1
π

∫ a

−a
tnf(t)dt

∣∣∣∣ � 1
π

∞∑
k=1

|ckyk| � 1
π

an+1

|x| − a

∫ a

−a
|f(t)|dt (∀ |x| > a).

This ends the proof of the lemma.

Note 1. Every function has −1 vanishing moment since no integer k satisfies 0 � k � −1 in
(2.2).

Note 2. Let n ∈ Z+. Function f(x) is said to have exactly n− 1 vanishing moments if it has
n− 1 vanishing moments and

∫
R
tnψ(t)dt 	= 0.

The following theorem shows that the sum of linear spaces D + H(D) is a direct sum and
therefore is denoted as DH = D+̇H(D).

Theorem 2.2. D ∩H(D) = {0}.
Proof. If D∩H(D) 	= {0}, there must exist φ ∈ D∩H(D) satisfying φ 	≡ 0. Let ψ ∈ D , ψ 	≡ 0
satisfy φ = Hψ. There must exist n ∈ Z+ such that ψ has exactly n− 1 vanishing moments.

In fact, if ψ has arbitrary vanishing moments, let suppψ ⊂ [−a, a] for some a > 0, then
∫ a

−a
p(t)ψ(t)dt = 0

for any polynomial p(t). Due to the density of polynomials in C[−a, a], it is yielded that ψ ≡ 0,
consequently, φ = Hψ ≡ 0, which contradicts φ 	≡ 0.

For this n, using Lemma 2.1 we have

lim
x→∞xn+1φ(x) = lim

x→∞xn+1Hψ(x) =
1
π

∫ a

−a
tnψ(t)dt 	= 0.

It contradicts φ ∈ D .

Corollary 2.3. Let g ∈ DH\D . Then there exist n ∈ Z+ and a constant c 	= 0 satisfying
limx→∞ xn+1g(x) = c.
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Proof. g ∈ DH\D implies that there are φ, ψ ∈ D such that g = φ+Hψ and ψ 	≡ 0. Then ψ
has exactly n− 1 (n ∈ Z+) vanishing moments for some n ∈ Z+. By Lemma 2.1, there exists
a constant c 	= 0 such that limx→∞ xn+1Hψ(x) = c, which implies that

lim
x→∞xn+1g(x) = lim

x→∞xn+1[φ(x) +Hψ(x)] = c.

2.2 The topology in DH

Since DH := D+̇H(D) is a direct sum, we define the convergence in DH as follows:

∀{φn +Hψn} ⊂ DH , define φn +Hψn → 0 (in DH) if φn, ψn → 0 (in D). (2.3)

Endowed with this topology, DH becomes a topological vector space satisfying H(DH) = DH

and H : DH → DH is a continuous linear operator. Accordingly, H is a homeomorphism on
DH since H−1 = −H .

Let X and Y be two topological vector spaces satisfying X ⊂ Y . Space X is continuously
embeded in Y and denoted as X ⊂� Y if ∀{xn} ⊂ X , {xn} converging to 0 in X implies that
{xn} converges to 0 in Y (see [17]). One knowns that X ′, the dual of X , is also a topological
vector space with the usual addition, scale multiplication and the following convergence: fn is
said to converges to 0 if fn(x) → 0 for any x ∈ X . It is easy to show that X ⊂� Y implies
Y ′ ⊂� X ′.

With the topology of DH defined above, it is easy to see that D ⊂� DH . Therefore D ′
H ⊂� D ′.

Moreover, the following theorem shows that DH is the smallest space such that D ⊂� DH and
H is a homeomorphism from DH to itself.

Theorem 2.4. Let X be a topological vector space such that D ⊂� X ⊂ L2(R) and the
Hilbert transform H : X → X be a continuous linear operator. Then DH ⊂� X , consequently
X ′ ⊂� D ′

H .

Proof. Embedding D ⊂� X implies H(D) ⊂ H(X ) ⊂ X . Therefore D + H(D) ⊂ X , i.e.,
DH ⊂ X .

For any {φn + Hψn} ⊂ DH , φn + Hψn → 0 (in DH), we have φn, ψn → 0 (in D). Then,
φn, ψn → 0 (in X ) and consequently, Hψn → 0 (in X ). Hence, φn +Hψn → 0 (in X ), which
shows that DH ⊂� X .

For 1 < p < ∞, denote DLp := {f |f ∈ C∞(R) and f (k) ∈ Lp(R) (∀k ∈ Z+)}. It is
proved in [14, 15] that H : DLp → DLp is a continuous linear operator. By Theorem 2.4
we have DH ⊂� DLp , which implies D ′

Lp ⊂� D ′
H and DH ⊂ ⋂

1<p<∞ DLp . Let us show that
DH �

⋂
1<p<∞ DLp . In fact, it is easy to see that Gaussian function g(x) := e−|x|2 is in⋂

1<p<∞ DLp and limx→∞ xng(x) = 0 for any n ∈ N, which shows g 	∈ DH \ D . On the other
hand, it is obvious that g 	∈ D . Hence, g 	∈ DH .

A typical example of the distribution in D ′
H is the Dirac impulse.

Example 1. Let x ∈ R. Then the Dirac impulse function defined by δx(φ) := φ(x) (∀φ ∈
DH) is in D ′

H .

Proof. For any g = φ + Hψ ∈ DH , φ, ψ ∈ D , it is easy to see that 〈δx, g〉 := g(x) =
φ(x) + (Hψ)(x) is a linear functional on DH . To show its continuity, we need only to prove
that δx(Hψn) = (Hψn)(x) → 0 for any {ψn} ⊂ D satisfying ψn → 0 (in D).



2222 YANG LiHua

For any {ψn} ⊂ D satisfying ψn → 0 (in D), there exists a > 0 such that suppψn ⊂ [−a, a].
By Lemma 3.1 in the next section we have

|Hψn(x)| � (1 + |x|)|Hψn(x)| � C(a)(‖ψn‖2 + ‖ψ′
n‖2)

� C(a)
√

2a(‖ψ′
n‖C(R) + ‖ψn‖C(R)) → 0 (n→ ∞),

which shows that δx ∈ D ′
H .

3 Embedment theorems in distribution space D ′
H

As shown in Theorem 2.4, DH is the smallest space such that D ⊂� DH and H is a homeo-
morphism from DH to itself. In this section, many frequently used spaces are shown to be
continuously embedded into D ′

H .

3.1 General embedment theorems

Lemma 3.1. Let ψ ∈ D have n−1 vanishing moments and satisfy suppψ ⊂ [−a, a] for some
n ∈ Z+ and a > 0. Then there exists a constant C(a, n) > 0 such that

(1 + |x|n+1)|Hψ(x)| � C(a, n)‖ψ‖1,2 (∀x ∈ R),

where ‖ψ‖1,2 := ‖ψ‖2 + ‖ψ′‖2 and ‖ · ‖2 is the L2(R)-norm.

Proof. We assume ψ 	≡ 0 without losing generality. By Lemma 2.1, there holds∣∣∣∣xn+1Hψ(x) − 1
π

∫ a

−a
tnψ(t)dt

∣∣∣∣ � 1
π

an+1

|x| − a
‖ψ‖1 (∀ |x| > a), (3.1)

which yields that

|xn+1Hψ(x)| � 1
π
an

(
1 +

a

|x| − a

)
‖ψ‖1 � C(a, n)‖ψ‖2 (∀ |x| > 2a).

To estimate |Hψ(x)| for |x| � 2a, let Hψ reach its minimum over [−2a, 2a] at ξ ∈ [−2a, 2a],
then (see [15])

|Hψ(x) −Hψ(ξ)| =
∣∣∣∣
∫ x

ξ

(Hψ)′(t)dt
∣∣∣∣ =

∣∣∣∣
∫ x

ξ

Hψ′(t)dt
∣∣∣∣ �

√
4a‖Hψ′‖2 = 2

√
a‖ψ′‖2

holds for x ∈ [−2a, 2a]. However,

|Hψ(ξ)| �
(

1
4a

∫ 2a

−2a

|Hψ(t)|2dt
)1/2

� 1
2
√
a
‖Hψ‖2 =

1
2
√
a
‖ψ‖2.

Thus,

|Hψ(x)| � |Hψ(x) −Hψ(ξ)| + |Hψ(ξ)| � C(a)(‖ψ′‖2 + ‖ψ‖2) (∀ |x| � 2a).

Theorem 3.2. Let f
1+|·|2 ∈ L1(R), and

lim
A→∞

∫ A

1

f(x)
x

dx, lim
A→∞

∫ −1

−A

f(x)
x

dx

exist. Then, the following functional Ff defined by

Ff (φ) := 〈f, φ〉 := lim
A,B→∞

∫ B

−A
f(x)φ(x)dx (∀φ ∈ DH ). (3.2)
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is in D ′
H , f is determined uniquely by Ff , and for any a � 1 there holds

⎧⎪⎨
⎪⎩

|Ff (φ)| � C(a)‖φ‖1,2

∫
R

|f(x)|
1 + x2

dx, ∀φ ∈ D , suppφ ⊂ [−a, a],

|Ff (Hψ)| � C(a)‖ψ‖1,2

[
|λf (2a)| +

∫
R

|f(x)|
1 + x2

dx

]
, ∀ψ ∈ D , suppψ ⊂ [−a, a],

(3.3)

where
λf (2a) := lim

A,B→∞

∫
[−A,B]\[−2a,2a]

f(x)
x

dx. (3.4)

Proof. It is easy to see that f is Lebesgue integrable on any bounded interval, which implies
fφ ∈ L1(R) and consequently the limit on the right hand of (3.2) exists for any φ ∈ D . It is
easy to deduce that

|Ff (φ)| �
( ∫

R

|f(x)|
1 + x2

dx

)
max

x∈suppφ
[(1 + x2)|φ(x)|] (∀φ ∈ D).

For any a � 1, let φ ∈ D , suppφ ⊂ [−a, a] and |φ| arrive at the minimum at ξ ∈ [−a, a]. Then

|φ(ξ)| � C(a)‖φ‖2, |φ(x) − φ(ξ)| =
∣∣∣∣
∫ ξ

x

φ′(t)dt
∣∣∣∣ � C(a)‖φ′‖2 (∀ |x| � a),

which implies that |φ(x)| � C(a)(‖φ‖2 + ‖φ′‖2) (∀ |x| � a). Therefore

|Ff (φ)| � C(a)‖φ‖1,2

∫
R

|f(x)|
1 + x2

dx (∀φ ∈ D).

The first inequality of (3.3) is proved.
Let us consider the existence of the limit on the right hand of (3.2) for any φ = Hψ ∈ H(D)

with suppψ ⊂ [−a, a]. By Lemma 2.1, we have

|xHψ(x) − cψ| � 1
π

a

|x| − a
‖ψ‖1 � C(a)

|x| ‖ψ‖2 (∀ |x| � 2a),

where cψ := 1
π

∫ a
−a ψ(t)dt. It is followed that

∣∣∣∣f(x)
x

[xHψ(x) − cψ]
∣∣∣∣ � C(a)

|f(x)|
x2

‖ψ‖2 ∈ L1(R\[−2a, 2a]).

Therefore,

lim
A,B→∞

∫
[−A,B]\[−2a,2a]

f(x)
x

[xHψ(x) − cψ]dx =
∫

R\[−2a,2a]

f(x)
x

[xHψ(x) − cψ]dx,

which concludes that

lim
A,B→∞

∫
[−A,B]\[−2a,2a]

f(x)Hψ(x)dx = cψλf (2a) +
∫

R\[−2a,2a]

f(x)
x

[xHψ(x) − cψ]dx.

Hence the limit on the right hand of (3.2) exists and

Ff (Hψ) = cψλf (2a) +
∫

R\[−2a,2a]

f(x)
x

[xHψ(x) − cψ]dx+
∫ 2a

−2a

f(x)Hψ(x)dx.
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Using Lemma 3.1 we have
∫ 2a

−2a

|f(x)Hψ(x)|dx � C(a)‖ψ‖1,2

∫
R

|f(x)|
1 + x2

dx.

Therefore
|Ff (Hψ)| � |cψλf (2a)| + C(a)‖ψ‖1,2

∫
R\[−2a,2a]

|f(x)|
1 + x2

dx,

which together with |cψ| � C(a)‖ψ‖2 shows the second inequality of (3.3).
It is easy to see that Ff is a linear functional on DH . Using (3.3) one can show the continuity

of Ff over DH without difficulty. Ff ∈ D ′
H has been proved.

Finally, using the facts that f ∈ Lloc(R) and D ⊂ DH we can show easily that f is determined
by Ff uniquely.

Note 1. Usually, the functional Ff defined by (3.2) is denoted as f and Ff (φ) is rewritten
as 〈f, φ〉 if no confusion occurs. Accordingly, we have f ∈ D ′

H .

Note 2. A typical case is that f
1+|·| ∈ L1(R). In this case all the conditions of Theorem 3.2

are satisfied and the functional Ff defined by (3.2) can be written as

Ff (φ) := 〈f, φ〉 =
∫

R

f(x)φ(x)dx (∀φ ∈ DH). (3.5)

Let us turn to another sufficient condition of Theorem 3.2. We first extend the second mean
value theorem of Riemann’s integral calculus to Lebegues’ integral.

Lemma 3.3. Let f ∈ L1([a, b]) and g be a monotone function on [a, b]. Then there exists a
ξ ∈ [a, b] such that

∫ b

a

f(x)g(x)dx = g(a)
∫ ξ

a

f(x)dx+ g(b)
∫ b

ξ

f(x)dx. (3.6)

Proof. The lemma can be proved easily according to the density of C[a, b] in L1([a, b]) and

the second mean value theorem of Riemann’s integral calculus. We omit the details here.

Corollary 3.4. Let f
1+|·|2 ∈ L1(R). If there exists a constant C � 0 such that

∣∣∣∣
∫ A

1

f(x)dx
∣∣∣∣ � C,

∣∣∣∣
∫ −1

−A
f(x)dx

∣∣∣∣ � C (∀A � 1), (3.7)

then the results of Theorem 3.2 hold.

Proof. For any A2 � A1 � 1, by Lemma 3.3 there exists ξ ∈ [A1, A2] such that
∣∣∣∣
∫ A2

A1

f(x)
x

dx

∣∣∣∣ =
∣∣∣∣ 1
A1

∫ ξ

A1

f(x)dx+
1
A2

∫ A2

ξ

f(x)dx
∣∣∣∣ � C

(
1
A1

+
1
A2

)
→ 0 (A1, A2 → ∞).

Therefore limA→∞
∫ A
1

f(x)
x dx exists. Similarly, limA→∞

∫ −1

−A
f(x)
x dx exists. By Theorem 3.2,

the corollary is proved.

3.2 Embeding: Lp(R) ⊂� D ′
H (1 � p < ∞)

The following corollary shows that Lp(R) is continuously embedded into D ′
H .

Corollary 3.5. Lp(R)⊂� D ′
H (1 � p <∞).
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Proof. Any f ∈ Lp(R) satisfies f
1+|·| ∈ L1(R). Thus, Lp(R) ⊂ D ′

H .
Let {fn} ⊂ Lp(R) satisfy ‖fn‖p → 0 (n→ ∞).
(i) For any φ ∈ D , assume suppφ ⊂ [−a, a], by (3.3) we have

|〈fn, φ〉| � C(a)‖φ‖1,2

∫
R

|fn(x)|
1 + x2

dx � C(a, p, φ)‖fn‖p → 0 (n→ ∞).

(ii) For any ψ ∈ D , assume suppψ ⊂ [−a, a], by (3.3) similarly we have

|〈fn, Hψ〉| � C(a, p, ψ)[|λfn(2a)| + ‖fn‖p] → 0 (n→ ∞),

where

|λfn(2a)| = lim
A,B→∞

∣∣∣∣∣
∫

[−A,B]\[−2a,2a]

fn(x)
x

dx

∣∣∣∣∣ � C(a, p)‖fn‖p.

3.3 Embeding: L̇1
T ⊂� D ′

H

Let LpT (1 � p <∞, T > 0) be the space of all the T -periodic Lebesgue’s measurable functions
f satisfying

‖f‖Lp
T

:=
( ∫ T

0

|f(x)|pdx
)1/p

<∞.

Denote

L̇pT :=
{
f ∈ LpT

∣∣∣∣
∫ T

0

f(x)dx = 0
}
.

Then we have the following embedment corollary.

Corollary 3.6. L̇1
T ⊂� D ′

H .

Proof. For any f ∈ L̇1
T , it is easy to verify that f

1+|·|2 ∈ L1(R). For any A � 1, let k ∈ Z+

satisfy 1 + kT � A < 1 + (k + 1)T . Then
∣∣∣∣
∫ A

1

f(x)dx
∣∣∣∣ =

∣∣∣∣
( ∫ 1+kT

1

+
∫ A

1+kT

)
f(x)dx

∣∣∣∣ �
∫ A

1+kT

|f(x)|dx � ‖f‖L1
T
. (3.8)

Similarly, we have | ∫ −1

−A f(x)dx| � ‖f‖L1
T
. By Corollary 3.4 we have f ∈ D ′

H , which concludes
that L̇1

T ⊂ D ′
H .

To show that L̇1
T is embedded continuously into D ′

H , let {fn} ⊂ L̇1
T satisfy ‖fn‖L1

T
→ 0 (n→

∞). ∀φ, ψ ∈ D satisfying suppφ, suppψ ⊂ [−a, a], using (3.3), we have

|〈fn, φ〉| � C(a)‖φ‖1,2‖fn‖L1
T
→ 0 (n→ ∞)

and
|〈fn, Hψ〉| � C(a)‖ψ‖1,2[|λfn(2a)| + ‖fn‖L1

T
], (3.9)

where
|λfn(2a)| = lim

A,B→∞

∣∣∣∣
∫

[−A,B]\[−2a,2a]

fn(x)
x

dx

∣∣∣∣.
For any B � 2a, according to Lemma 3.3 there exists ξn ∈ [2a,B] such that

∫ B

2a

fn(x)
x

dx =
1
2a

∫ B

ξn

fn(x)dx +
1
B

∫ B

ξn

fn(x)dx.
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Similar to the proof of (3.8), we have |∫ B
2a

fn(x)
x dx| � 1

a‖fn‖L1
T
. Similarly, ∀A � 2a, there holds

| ∫ −2a

−A
fn(x)
x dx| � 1

a‖fn‖L1
T
. Hence |λfn(2a)| � 2

a‖fn‖L1
T
, which together with (3.9) implies that

|〈fn, Hψ〉| � C(a)‖ψ‖1,2‖fn‖L1
T
→ 0 (n→ ∞). The proof is complete.

Example 2. Let f(x) = cosωx or sinωx, where ω ∈ R \ {0}. Then f ∈ D ′
H .

3.4 Nonlinear phase signals {cos θ(x), sin θ(x)} ⊂ D ′
H

The last two subsections show that the classical function spaces Lp(R) and L̇1
T are subsets

of D ′
H . However, some typical signals encountered frequently in signal processing such as the

linear chirp s(t) = cos(bt2 + ct) with b, c ∈ R are not in these two classes. In this subsection,
it is shown that D ′

H contains a class of nonlinear phase signals of the form cos θ(x), sin θ(x),
which covers almost all the signals used in time-frequency analysis and signal processing.

Theorem 3.7. Let θ ∈ C1(R) be strictly monotone on (−∞,−A) and (A,∞) respectively for
some A > 0 and lim|x|→∞ |θ(x)| = ∞. Then cos θ(·), sin θ(·) ∈ D ′

H .

Proof. It is obvious that cos θ(·)
1+|·|2 ∈ L1(R). Assume θ is strictly increasing on R without losing

generality. Let {xk}∞k=1 satisfy θ(xk) = kπ + π
2 (∀ k ∈ N). Then ∀n,m ∈ N, n > m, we have

∫ xn

xm

cos θ(x)
x

dx =
∫ nπ+π/2

mπ+π/2

[ln θ−1(t)]′ cos tdt =
∫ nπ+π/2

mπ+π/2

[ln θ−1(t)] sin tdt

=
n∑

k=m+1

(−1)k
∫ π/2

0

ln
θ−1(kπ + t)
θ−1(kπ − t)

sin tdt.

It can be deduced that ln θ−1(t) is strictly increasing and lim|t|→∞ |θ−1(t)| = ∞. Hence

∣∣∣∣
∫ xn

xm

cos θ(x)
x

dx

∣∣∣∣ �
n∑

k=m+1

∫ π/2

0

ln
θ−1(kπ + t)
θ−1(kπ − t)

sin tdt

�
n∑

k=m+1

ln
θ−1(kπ + 1

2π)
θ−1(kπ − 1

2π)

= ln θ−1

(
nπ +

1
2
π

)
− ln θ−1

(
mπ +

1
2
π

)
→ 0 (n,m→ ∞),

which implies the existence of limA→∞
∫ A
1

cos θ(x)
x dx. It can be shown similarly that

limA→∞
∫ −1

−A
cos θ(x)

x dx exists. By Theorem 3.2 we have cos θ(x) ∈ D ′
H . Similarly we have

sin θ(x) ∈ D ′
H .

With the results obtained in this section it is easy to verify that almost all the signals used
in time-frequency analysis and signal processing are in D ′

H . The signals below are from [2].

Example 3. All the following signals are in D ′
H :

(1) The linear chirp s(t) = exp(iβt2 + iγt) with β 	= 0;
(2) Gaussian envelope signal: s(t) = exp(−αt2 + iβt2 + iγt) with α > 0;
(3) s(t) = exp(−αt2 + iβt2 + im sin(ωmt) + iω0t) with α > 0;
(4) s(t) = exp(iβt2 + im sin(ωmt) + iω0t) with β 	= 0.

Proof. (1) and (4) are easily to be verified according to Theorem 3.7; (2) and (3) are obviously
true since s ∈ L2(R) for α > 0.
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4 Hilbert transform of distribution

4.1 Extension of Hilbert transform by conjugate operator
In this section, the classical Hilbert transform H will be extended to D ′

H by using the conjugate
operator. Before doing this, let us recall the following equality (see [19, p. 132]):

∫
R

(Hf)(x)φ(x)dx = −
∫

R

f(x)(Hφ)(x)dx (∀ f, φ ∈ L2(R)). (4.1)

Considering the constraint of H on DH , we know that H : DH → DH is a continuous and
linear operator, which implies that its conjugate operator H∗ : D ′

H → D ′
H , which is defined

as 〈H∗f, φ〉 := 〈f,Hφ〉 (∀ f ∈ D ′
H , φ ∈ DH), is a continuous and linear operator. For any

f ∈ DH , using (4.1), we have

〈Hf, φ〉 :=
∫

R

(Hf)(x)φ(x)dx = −
∫

R

f(x)(Hφ)(x)dx = −〈f,Hφ〉 = 〈−H∗f, φ〉 (∀φ ∈ DH),

i.e., Hf = −H∗f (in D ′
H). Moreover, if S : DH → DH is also a continuous and linear operator

satisfying Hf = S∗f (∀ f ∈ DH), then
∫

R

f(x)(Hφ)(x)dx = −
∫

R

f(x)(Sφ)(x)dx (∀ f, φ ∈ DH),

which yields that Sφ = −Hφ (∀φ ∈ DH). Therefore, −H∗ can be defined as the extension of
H to the distribution space D ′

H , namely, we have

Definition 4.1. Let H∗ : D ′
H → D ′

H be the conjugate operator of the classical Hilbert trans-
form H : DH → DH . Then −H∗ : D ′

H → D ′
H is defined as the extension of H to the distribution

space D ′
H , and denoted as H still if no confusion occurs.

It is easy to see that the extended Hilbert transform is a homeomorphism from D ′
H to itself.

Theorem 4.2. H : D ′
H → D ′

H satisfies −H2 = I (the identity operator).

Proof. For any f ∈ D ′
H , we have 〈H2f, φ〉 = −〈Hf,Hφ〉 = 〈f,H2φ〉 = −〈f, φ〉 (∀φ ∈ DH),

which concludes that −H2 = I.

4.2 The coincidence of the extension with the classical Hilbert transform

Theorem 4.3. Let f ∈ Lp(R) (1 < p < ∞). Then, Hf , as the classical Hilbert transform,
coincides with the extended one defined by Definition 4.1.

Proof. The classical Hilbert transfrom Hf can be regarded as a distribution on DH according
to (3.5), whose function on φ ∈ DH is

〈Hf, φ〉 =
∫

R

(Hf)(x)φ(x)dx. (4.2)

On the other hand, as the extended Hilbert transform, Hf is also a distribution on DH , whose
function on φ ∈ DH is

〈Hf, φ〉 = −〈H∗f, φ〉 = −〈f,Hφ〉 = −
∫

R

f(x)(Hφ)(x)dx. (4.3)

It can be verified that∫
R

(Hf)(x)φ(x)dx = −
∫

R

f(x)(Hφ)(x)dx (∀ f ∈ Lp(R), φ ∈ DH),
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which means that (4.2) and (4.3) give the same result.

4.3 Circular Hilbert transform
The circular Hilbert transform defined by (1.2) can be expressed equivalently as

H̃f(x) =
∑
k∈Z

[−i(sgn(k))]ckeik
2π
T x (4.4)

for any f(x) =
∑
k∈Z

cke
ik 2π

T x ∈ L2
T , where sgn is the signum function defined by sgn(0) := 0

and sgn(x) := x/|x| for x 	= 0 (see [20, Chapter 1] and [21, p. 15]). Since L̇2
T ⊂� D ′

H we will
show that H̃f = Hf for any f ∈ L̇2

T . Before this, let us calculate the Hilbert transforms of
sin(ωx) and cos(ωx) for ω ∈ R \ {0}.
Lemma 4.4. Let φ ∈ DH . Then φ̂ ∈ C∞(R \ {0}).
Proof. It is enough to show φ̂ ∈ C(R\{0}) for any φ = Hψ ∈ H(D). Since φ̂(ω) = (Hψ)̂ (ω) =
−isgn(ω)ψ̂(ω) and ψ ∈ D , the proof is complete.

Theorem 4.5. Let ω ∈ R \ {0}. Then Heiωx = −isgn(ω)eiωx a.e. x ∈ R, i.e.,

H cos(ωx) = sgn(ω) sin(ωx), H sin(ωx) = −sgn(ω) cos(ωx) a.e. x ∈ R.

Proof. For ω ∈ R \ {0}, we have

〈He−iω·, φ〉 = −〈e−iω·, Hφ〉 = − lim
A,B→∞

∫
[−A,B]

e−iωxHφ(x)dx

= −(Hφ)̂ (ω) = isgn(ω)φ̂(ω)

= isgn(ω)〈e−iω·, φ〉 (∀φ ∈ DH),

which concludes that He−iω· = i(sgnω)e−iω· (∀ω ∈ R \ {0}).
Theorem 4.6. For any f =

∑
k∈Z\{0} cke

ik 2π
T · ∈ L̇2

T , there holds

Hf =
∑

k∈Z\{0}
[−isgn(k)]ckeik

2π
T ·. (4.5)

Proof. Based on the fact L̇2
T ⊂� D ′

H and Theorem 4.5 we have

Hf =
∑

k∈Z\{0}
ckHe

ik 2π
T · =

∑
k∈Z\{0}

[−isgn(k)]ckeik
2π
T ·.

5 Application of the extension of Hilbert transform

5.1 Signal demodulation and Bedrosian identity
Let s ∈ L2(R) be a real-valued signal. The classical way to define its instantaneous amplitude
and phase without ambiguity is to write s(t) as s(t) = ρ(t) cos θ(t) with ρ(t) � 0 such that
a(t) = ρ(t)eiθ(t) is an analytic signal (c.f. [2, 22, 23]). That is

H(ρ(t) cos θ(t)) = ρ(t) sin θ(t), (5.1)

where Hs(t) is the classical Hilbert transform defined by (1.1). The left side of (5.1) is the
Hilbert transform of a product. As many authors said[22], it is appropriate to make use of the
so-called Bedrosian identity:

H(fg) = fHg, (5.2)
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which is shown to hold for f, g ∈ L2(R) satisfying some conditions such as suppf̂ ⊂ [−B,B]
and suppĝ ⊂ R\[−B,B] for some B > 0 (c.f. [5, 7, 24–26]). This identity is used without doubt
to conclude (5.1) by setting f(t) = ρ(t) and g(t) = cos θ(t) (c.f. [22]):

H(ρ(t) cos θ(t)) = ρ(t)H cos θ(t), (5.3)

However, we point out that since cos θ(t) is not in L2(R) usually, Bedrosian identity (5.2)
cannot be used to deduce (5.3). In fact, for s(t) = ρ(t) cos θ(t) ∈ L2(R), the Hilbert transform
on the left side of (5.3) is associated with definition (1.1) but H cos θ(t) on its right side does
not make sense with this definition.

If θ(t) satisfies the conditions of Theorem 3.7, then cos θ(t) ∈ D ′
H and both sides of (5.3)

make sense. Let A be the analytic signal operator defined by Aφ = φ + iHφ for any φ ∈ DH

(see [2, 23]). Denote D ′
A := {f ∈ D ′

H |〈f,Aφ〉 = 0 (∀φ ∈ DH)}. By means of Therorem 3.7 we
have the following Bedrosian theorem.

Theorem 5.1. Let ρ ∈ L2(R) satisfy ρ(x) � 0 and θ satisfy the conditions of Theorem 3.7.
Then

H(ρ(x) cos θ(x)) = ρ(x)H cos θ(x) = ρ(x) sin θ(x) (5.4)

if and only if ρeiθ, eiθ ∈ D ′
A.

Proof. It is easy to see that H cos θ(x) = sin θ(x) if and only if Heiθ(x) = −ieiθ(x), which is
equivalent to −〈eiθ, Hφ〉 = −〈eiθ, iφ〉 for any φ ∈ DH , i.e., eiθ ∈ D ′

A.
Similarly, it can be shown that H cos θ(x) = sin θ(x) if and only if ρeiθ ∈ D ′

A. The proof of
the theorem is complete.

As a special case, we have the following

Coroally 5.2. Let ρ ∈ L2(R) satisfy ρ(x) � 0 and ω > 0, θ ∈ R. Then

H(ρ(x) cos(ωx+ θ)) = ρ(x)H cos(ωx+ θ) = ρ(x) sin(ωx+ θ) (5.5)

if and only if suppρ̂ ⊂ [−ω, ω].

Proof. It is obvious that θ(x) = ωx + θ satisfies the conditions of Theorem 3.7. Equality
〈ei(ωx+θ), Aφ〉 = eiθ(Aφ)̂ (−ω) = 0 (∀φ ∈ DH) implies ei(ω·+θ) ∈ D ′

A. Therefore (5.5) holds
if and only if ρei(ω·+θ) ∈ D ′

A, that is 〈ρeiω·, φ + iHφ〉 = 0 (∀φ ∈ DH), which is equivalent to
ρ(x)eiωx + iH [ρ(x)eiωx] = 0. Operating by Fourier transform we get [sgn(ξ) − 1]ρ̂(ξ − ω) = 0.
Using the Hermit symmetry of ρ̂ we conclude ρ̂(ξ) = 0 for all |ξ| > |ω|.
5.2 Operator equations
The fact that H : D ′

H → D ′
H is a homeomorphism can be used to solve operator equation. As

an example, we consider the following equation

y +Hy = f, (5.6)

where f is a given distribution. This equation is solved for f ∈ D ′ in [14] where the classical
Hilbert transform is extended as an operator H : D ′ → H ′(D) and H ′(D) is defined as the
so-called ultradistributiona space. In [14] the author does not clarify in what distribution space
to solve the solution y. Since the left side of (5.6) is a sum of y and Hy, which makes sense
only if y and Hy are in the same space, it is very suitable to solve it in D ′

H . In fact D ′
H is the
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most largest space for this equation. Hence, (5.6) can be understood as: for a given f ∈ D ′
H ,

finding y ∈ D ′
H such that (5.6) holds.

Operating on both sides of (5.6) by H , the extended Hilbert transform defined by Defini-
tion 4.1, we haveHy−y = Hf , which together with (5.6) concludes the solution y = 1

2 (f−Hf).
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