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Abstract In this paper, a new distribution space %}, is constructed and the definition of the
classical Hilbert transform is extended to it. It is shown that 9} is the biggest subspace of 2’ on
which the extended Hilbert transform is a homeomorphism and both the classical Hilbert transform for
L? functions and the circular Hilbert transform for periodic functions are special cases of the extension.
Some characterizations of the space P are given and a class of useful nonlinear phase signals is shown
to be in 2. Finally, the applications of the extended Hilbert transform are discussed.
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1 Introduction

Fourier and Hilbert transforms are two most important transforms for many subjects such
as physics, mathematics and engineering. Fourier transform is the indisputable hegemony for
the frequency spectrum analysis in classical signal processingl! €Papter 1] T ikewise, Hilbert
transform, by carrying the instantaneous frequency information of a signal, provides a solid
foundation for non-stationary signal analysis. By setting the Hilbert transform of a real-valued
signal as the imaginary part, an analytic signal is produced, with which the commonly accepted
definitions for instantaneous amplitude and frequency are obtained for any given signall?. Com-
monly encountered signals in reality include mainly those of finite energy (L2-functions in math-
ematics), periodic signals and Dirac impulses (generalized functions). Thus, to analyze signals
mathematically, it is a very important task to establish a function space containing the above
signals such that Fourier or Hilbert transform is closed in it. As one knows, the ideal space for
Fourier transform is that of tempered distributions, which includes all the signals mentioned
above and the Fourier transform is a homeomorphism on it. However, we have no such a
space for Hilbert transform yet. As the development of information science, Hilbert transform
plays a more and more important role in nonstationary signal processing. The recent proposed
technique, Hilbert-Huang transform!3!, employs Hilbert transform to produce Hilbert spectrum
based on the so-called empirical mode decomposition, which stimulates some novel researches

on Hilbert transform and its relevant topics such as Bedrosian identity!*~7].
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The classical Hilbert transform is defined as
1 t—
Hf(t) = p.V./ He=7 (1.1)
™ R T

where, p.v. is the Cauchy principal. It is a continuous linear operator from LP(R) to LP(R) for

L2(R); (if) [|H fll2 = [[f]l2 (Vf € L*(R)), and (iii) (H f)A(w) = —i(sgnw) f(w) a.e. w € R (Vf
L2(R)), where f is the Fourier transform of f defined by

any 1 < p < oo and satisfies the following basic properties (see [8, 9]): (i) H~! = —H : L*(R) —
S

flw) = [ f@yeda

for f € L*(R) and by the density of L?(R) N L(R) in L?(R) for f € L*(R) (see [10]). Similarly
the circular Hilbert transform is defined as

} T/2 .
Hf(z) = 71rp.v./ It )dT (1.2)

/2 2tanj

for any T-periodic function f. Both H and H defined respectively by (1.1) and (1.2) are called
Hilbert transforms. A natural and interesting question is: what is the relation between them?
If s(t) = f(t) + cost with f € L?(R), what is the Hilbert transform of s and how to find its
instantaneous frequency?

No literature is reported on the research of the above questions. Up till now, many achieve-
ments have been made to extend the classical Hilbert transform to some generalized function
spaces!' =161 Most of them (cf. [11-13]) on this topic is to extend the Hilbert transform to a
preexistent distribution space by using the analytic representation of distributions. The notable
one among them is [13] by Orton, in which, Hilbert transform is extended to %', the space of
Schwartz distributions. Her extension depends on the analytic representation, which is unique
up to an entire analytic function, namely, the Hilbert transform of f € 2’ is essentially an
equivalent class. In [14] Hilbert transform is extended to 2’ directly with conjugate operator
by introducing the topology on H(2). With this extension, for any f € &', its Hilbert trans-
form Hf is in H'(2), which is called a space of ultradistributions!'*/. Tt can be verified that
H'(2) is not a subspace of 2’ since Hp ¢ 2 for ¢ € 2 unless ¢ = 0. Let us recall that, the
similar case occurs for Fourier transform since the Fourier transform ¢ of ¢ € Zisnot in
unless ¢ = 0. To extend Fourier transform to distributions, the Schwartz space . of rapidly
decreasing functions is considered. It is well-known that 2 G .7 (see [17] for the exact meaning
of embeding ‘G.’") and the Fourier transform is a homeomorphism on .. Therefore, the dual
space of . satisfies ./ ¢ 2’ and Fourier transform is extended to .’ successfully. Following
this idea, this paper will establish a new space of distributions and extend the classical Hilbert
transform to it such that Hilbert transform is a homeomorphism. It is also shown that the
Hilbert transforms defined respectively by (1.1) and (1.2) are special cases of the extended
Hilbert transform.

For clarification, let us denote some commonly used notations as follows: Let N be the set
of all the natural numbers, Z, be the set of all the nonnegative integers, R be the set of real
numbers. For a Lebesgue measurable set £ C R, let LP(E) be the space of p-power Lebesgue
integrable functions with the well-known LP(FE) norm for 1 < p < 00, Lioc(R) be the space of all
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the locally integrable functions on R, C*(R) (k € Z ) be that of all the k-times differentiable
functions on R, C'(R) := C°(R), C®(R) := NkenC*(R), and 2 be the test function space of all
the compactly supported C*°(R) functions endowed with the usual topology such that its dual
space 9’ is the space of (Schwartz) distributions!").

In the rest of the paper, a distribution space 2y is constructed and some characterizations
are given in Section 2. It is also shown in this section that the Zp is the smallest space with our
desired properties and correspondingly its dual space 2y, is the biggest distribution space such
that 2, G 2'. In Sections 3, it is shown that two classical function spaces are continuously
embedded into Z;; and a class of nonlinear phase signals is in Z;;. Then in Section 4, the
classical Hilbert transform is extended to Z; and it is shown that the circular Hilbert transform
is also a special case of the extension. Finally, Section 5 shows two simple applications.

2 Space Yy

The typical method for extending the classical Hilbert transform to a distribution space 27,
where 2" is a function space, is using the conjugate operator. We denote the space to be
constructed by Zy and assume it satisfies ¥ C Py and H(Zy) = Py such that 7, € 2’ and H
maps Py into itself. The properties imply that 2, H(2) C Py, consequently P+ H(2) C Dy.
In general, the smaller Py is, the bigger 24, is. In this paper, we define

Dy =D+ H(D), (2.1)

and will show that it is what we desire.
Through this paper, we always use C(A) to denote a nonnegative constant depending only
on A but not necessarily the same at different occurrences, where A may be a set of some given

numbers, functions, and sets.

2.1 Direct sum 2+ H(2)
Lemma 2.1. Let f € C[—a,a], a > 0, and f(z) := 0 for all x € R\[—a,a]. Suppose f has

n—1 (n € Zy) vanishing moments, i.e.,

/tkf(t)dtzo (VE€Zy, 0<k<n—1). (2.2)
R
Then
i 1., 1 gt
" H f(x) — " f(t)dt] < Ml (Viz] > a),
™ JR 7r|x|

where || f||1 stands for the well-known L'(R)-norm.

Proof.  Using suppf C [—a, a], we have

Hf(x)= ! lim U

T A-1e—0 e<|t—z|<A,|t|<a T 3

dt.

For any |z| > a, since € < |t — x| < A holds for all |t| < a if A7' e are small enough, it is
followed that {t € R||t| < a} = {t € Rle < |t — 2| < A, |t| < a}, which implies that

R B T L0 (O Y e

- k=0
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for any |z| > a. Since
we conclude by Fubini-Tonelli’s theorem (see [18]) that

t’“f I 1 [,
/ 2 t:w§xk+l /,at f(t)dt

thf(t)

xk+1

_ @) 1 e
=gl =t S Jof = o O € L= al),

Consequencly,
n+1H tn+k
r@ =13 [
Denoting
1 a
Y=, ::/ t" k£ (t)dt
x —a
we get
[ R 1 o™ttt e
ntlg — t" f(t)dt| < k< / tldt  (V|z| > a).
i@ - [ e leti< 0 [ 0l (Yiel > )

This ends the proof of the lemma.
Note 1. Every function has —1 vanishing moment since no integer k satisfies 0 < £k < —1 in
(2.2).
Note 2. Let n € Z,. Function f(z) is said to have exactly n — 1 vanishing moments if it has
n — 1 vanishing moments and [, "¢ (t)dt # 0.

The following theorem shows that the sum of linear spaces ¥ + H(Z) is a direct sum and
therefore is denoted as Zy = P+H ().
Theorem 2.2. 2N H(Z)={0}.

Proof. If 2NH(2) # {0}, there must exist ¢ € ZNH(Z) satistying ¢ £ 0. Let ¢ € 2, ¢ 20
satisfy ¢ = H1p. There must exist n € Z such that 1) has exactly n — 1 vanishing moments.

In fact, if ¢ has arbitrary vanishing moments, let suppy C [—a, a] for some a > 0, then
[ swia=o

for any polynomial p(¢). Due to the density of polynomials in C[—a, a], it is yielded that ¢ = 0,
consequently, ¢ = H1p = 0, which contradicts ¢ # 0.

For this n, using Lemma 2.1 we have

xTr—00 Tr— 00

lim 2" ¢(x) = lim 2" Hi(z) = i/a t"ap(t)dt # 0.

It contradicts ¢ € 2.
Corollary 2.3. Let g € Py\Z. Then there exist n € Z4 and a constant ¢ # 0 satisfying

lim, oo 2" Tlg(z) = c.
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Proof. g € 95\ 2 implies that there are ¢, € 2 such that g = ¢ + He) and ¢» # 0. Then ¢
has exactly n — 1 (n € Z,) vanishing moments for some n € Z,. By Lemma 2.1, there exists
a constant ¢ # 0 such that lim, ., "1 H1(z) = ¢, which implies that

lim 2" g(z) = lim 2" [¢(z) + Hy(z)] = c.

2.2 The topology in Zg
Since Zy 1= Z+H(2) is a direct sum, we define the convergence in Zy as follows:

V{¢n + Hipp} C Py, define ¢, + Hpp, — 0 (in Py) if ¢, — 0 (in 2). (2.3)

Endowed with this topology, 2y becomes a topological vector space satisfying H(Zy) = Py
and H : 9y — Dp is a continuous linear operator. Accordingly, H is a homeomorphism on
Dy since H' = —H.

Let 2 and % be two topological vector spaces satisfying 2~ C %. Space 2 is continuously
embeded in % and denoted as 2" ¢ # if V{x,} C 2", {x,} converging to 0 in 2" implies that
{zy} converges to 0 in & (see [17]). One knowns that 2"/, the dual of 2, is also a topological
vector space with the usual addition, scale multiplication and the following convergence: f, is
said to converges to 0 if f,(z) — 0 for any = € 2. It is easy to show that 2" G % implies
w'a 2.

With the topology of 2 defined above, it is easy to see that Z G- Zy. Therefore 7; ¢ 2.
Moreover, the following theorem shows that 2y is the smallest space such that 2 ¢ Yy and

H is a homeomorphism from Zg to itself.

Theorem 2.4. Let 2 be a topological vector space such that 2 G 2 C L*(R) and the
Hilbert transform H : 2 — 2 be a continuous linear operator. Then Py G 2, consequently
' Dy.
Proof. Embedding ¥ ¢ 2 implies H(Z) C H(Z) C Z". Therefore 9 + H(Z) C 2, i.e.,
YDy C Z.

For any {¢n, + HYn} C Zu, ¢ + Hpp, — 0 (in Zg), we have ¢, 1, — 0 (in Z). Then,
Ony ¥V — 0 (in Z7) and consequently, Hi,, — 0 (in Z7). Hence, ¢,, + Hp,, — 0 (in Z7), which
shows that 2y ¢ 2.

For 1 < p < oo, denote Z1» := {f|f € C®(R) and f*) € LP(R) (Vk € Z,)}. Tt is
proved in [14, 15] that H : Zr» — Pr» is a continuous linear operator. By Theorem 2.4
we have Py G PDp», which implies 27, & 9}, and Py C ﬂ1<p<oo Drvr. Let us show that
P8 G Micpeoo Zrv- In fact, it is easy to see that Gaussian function g(z) := e~171” s in
Ni<pcoo Zrv and lim, oo 2™ g(x) = 0 for any n € N, which shows g ¢ Zy \ Z. On the other
hand, it is obvious that g ¢ 2. Hence, g € Y.

A typical example of the distribution in 2, is the Dirac impulse.

Example 1. Let ¢ € R. Then the Dirac impulse function defined by d,(¢) := ¢(x) (Vo €
PDw) is in Py

Proof. For any g = ¢+ Hp € Dy, ¢, € 2, it is easy to see that (d,,9) = g(x) =
¢(z) + (Hy)(z) is a linear functional on Zx. To show its continuity, we need only to prove
that 0, (Hy) = (Hi,)(z) — 0 for any {¢,} C 2 satistying ¢, — 0 (in 2).
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For any {¢,} C 2 satisfying ¢, — 0 (in 2), there exists a > 0 such that suppy, C [—a,a].
By Lemma 3.1 in the next section we have

[ Hipn ()] < (L + [2])[Hn (@) < Cla)([lthnll2 + 140 ]2)
< Cla)V2a([vpllem + Inller) = 0 (n— o),

which shows that ¢, € 2.

3 Embedment theorems in distribution space 7},

As shown in Theorem 2.4, Py is the smallest space such that 2 G Yy and H is a homeo-
morphism from Zy to itself. In this section, many frequently used spaces are shown to be
continuously embedded into Zy;.

3.1 General embedment theorems

Lemma 3.1. Let ¢ € 2 have n— 1 vanishing moments and satisfy suppy C [—a, a] for some
n € Zy and a > 0. Then there exists a constant C(a,n) > 0 such that

(1 +[2["THY(@)] < Cla,n)[¢li2 (Yo €R),

where ||[¢||1,2 := ||]l2 + ||[¥'|l2 and || - ||2 is the L*(R)-norm.
Proof.  We assume 9 # 0 without losing generality. By Lemma 2.1, there holds

1 anJrl

el gVl (VI > a) (3.

x”“Hz/J(x)—l/ t”w(t)dt’
T J—a
which yields that
1 a
sl < e (14 Y Il < Clamlls (el > 2a)

To estimate |H(x)| for |z| < 2a, let H1) reach its minimum over [—2a, 2a] at £ € [—2a, 2a],
then (see [15])

() — H(E) = \ /£ ””(wa(t)dt' - \ /6 ' Hw'@)dt' < VAl H/|l> = 2/all¢/]1

holds for = € [—2a, 2a]. However,

1 [ NP1 1
@) < (o, [ 1eoPa) <] iola=, )

Thus,
|Hy ()| < [H(2) — HY(@)| + [HP(E)] < Ca)([¢'l2 + [¢ll2) (V2] < 20).
Theorem 3.2. Let 1+f|-|2 € LY(R), and

A —1
. f(x) . f(z)

exist. Then, the following functional Fy defined by

Fi(¢) = (f.6) = 1lim / f@)o@)dz (Vo€ Pn). (3.2)

A B—oo
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is in Dy, [ is determined uniquely by Fy, and for any a > 1 there holds

E @) < C@lolia [ I a V€ 7. suppo C [~a.d],
(3.3)
Frto)] < C@vlha ol + [ ], v e g swp ¢ -adl
where
Af(2a) ;== lim (=) dx. (3.4)

A,B—oo JI_ A B\[-2a,24] T

Proof. 1t is easy to see that f is Lebesgue integrable on any bounded interval, which implies
fé € L*(R) and consequently the limit on the right hand of (3.2) exists for any ¢ € 2. It is
easy to deduce that

|Ff<¢>>|<( 'f(x"da:) max [(1+22)o(@)] (Vo€ ).

R 1 =+ 5172 TESUPpP

For any a > 1, let ¢ € Z,supp¢ C [—a, a] and |¢| arrive at the minimum at £ € [—a, a]. Then

3
19§ < Cla)llllz,  [o(x) — d(§)] = / ¢'(t)dt’ <C@|dllz (Viz <a),

which implies that |¢(z)] < C(a)(]|¢]l2 + [|¢'|l2) (V]z| < a). Therefore

F5 (@)l < C@liels | lfle dz (V¢ € P).

The first inequality of (3.3) is proved.
Let us consider the existence of the limit on the right hand of (3.2) for any ¢ = Hy € H(Z)
with suppy C [—a,a]. By Lemma 2.1, we have

1 a C(a)

[eHp(x) = ey < 19l < [Pl (Y]] > 2a),

™|z —a ||

where ¢y := L [ 4(t)dt. It is followed that

™

tta) - e < c@V Gl € @202
Therefore,
. f(z) _ f(x)
A’grgoo BN 2ese @ [xHY(x) — cyldx = /R\[za,za] . [xHY(x) — cyldx,

which concludes that

lim f(x)HY(x)dr = cyAf(2a) +/ /(@) [xHY(x) — cyldz.

A,B—00 JI_ A, B]\[-2a,2d] R\[-2a,2a] T
Hence the limit on the right hand of (3.2) exists and

Fr(HvY) = cypAf(2a) —|—/ 1(@) [tHY(z) — cyldx + : f(x)Hy(x)dx.

R\[-2a,2a] ¥ —



2224 YANG LiHua

Using Lemma 3.1 we have

2a
[ @it < c@lvla [ 1

24 R 1+22

wf Wl
R\[—2a,2a] 1+

which together with |cy| < C(a)||?]]2 shows the second inequality of (3.3).

It is easy to see that F) is a linear functional on Zg. Using (3.3) one can show the continuity
of Fy over Py without difficulty. Fy € Z}; has been proved.

Finally, using the facts that f € Ljoc(R) and 2 C Py we can show easily that f is determined
by F uniquely.
Note 1. Usually, the functional Fy defined by (3.2) is denoted as f and Fy(¢) is rewritten

as (f, ¢) if no confusion occurs. Accordingly, we have f € Z};.

Therefore

[Fy (H)| < [epAs(2a)] + Cla) |9

Note 2. A typical case is that | JfH € L'(R). In this case all the conditions of Theorem 3.2
are satisfied and the functional Fy defined by (3.2) can be written as

Fr(6) = (f, ) = / f@)d@)dz (V6 € D). (3.5)

Let us turn to another sufficient condition of Theorem 3.2. We first extend the second mean

value theorem of Riemann’s integral calculus to Lebegues’ integral.

Lemma 3.3. Let f € L'([a,b]) and g be a monotone function on [a,b]. Then there exists a
€ € [a,b] such that

b ¢ b
x)g(x)dxr = gla x)dx b x)dx. 3.6
/Qf()g() g<>/Qf<>+g<>/£f<> (3.6)

Proof.  The lemma can be proved easily according to the density of Cla,b] in L!([a,b]) and
the second mean value theorem of Riemann’s integral calculus. We omit the details here.

Corollary 3.4. Let 1+f|-|2 € LY(R). If there exists a constant C > 0 such that

‘ /1 ? s

then the results of Theorem 3.2 hold.
Proof.  For any A; > Ay > 1, by Lemma 3.3 there exists £ € [A7, As] such that

ISR

Ay Ja,
Therefore lim 4_, o0 flA ! (II) dz exists. Similarly, lima_.. f:j‘ ! (f)da: exists. By Theorem 3.2,

<c '/_1f(a:)da: <C (VA1) (3.7)
—A

Az
fx)dx

(x)dx +

<0(1 1>—>0(A17A2—>OO).

+
A2 13 Al A2

the corollary is proved.

3.2 Embeding: LP(R) G Zf (1 < p < o0)
The following corollary shows that LP(R) is continuously embedded into Z7;.
Corollary 3.5. LP(R)G P2y (1 <p< 0).
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Proof.  Any f € LP(R) satisfies 1JfH € LY(R). Thus, LP(R) C Zy;.
Let {fn} C LP(R) satisty || fn|l, — 0 (n — 0).
(i) For any ¢ € 2, assume supp¢ C [—a, al, by (3.3) we have

fn(z
(ol < C@ldlha [ V1) de < Clamdfally =0 (0 o0)
(ii) For any ¢ € 2, assume suppy C [—a, a], by (3.3) similarly we have

[(fns HY)| < Cla, p, 9)[[Ag, (20)| + ([ fullp] = 0 (0 — 00),

[-A,B]\[-2a,2a] ¥
3.3 Embeding: L} G 74,

Let LY (1 < p < 00,T > 0) be the space of all the T-periodic Lebesgue’s measurable functions

[ fll e = (/OT |f(x)|pdx>1/p < o0.
/()Tf(x)dx :o}.

Then we have the following embedment corollary.

Corollary 3.6. L% c 2.

where

|/\fn (2a)| = lim

A,B—

< Cla, )| fnllp-

f satisfying

Denote

LZ}:: {fGqu

Proof.  For any f € L%, it is easy to verify that 1+’|C.|2 € LY(R). For any A > 1, let k € Z
satisfy 1 + kT < A <14 (k+1)T. Then

o[ o

Similarly, we have |f__j f(@)dz| <[|fs. By Corollary 3.4 we have f € %}, which concludes
that LY. C 2y,

To show that L}, is embedded continuously into @}, let {f,} C Lk satisfy [ fallLy, — 0 (n —
00). V¢, € P satisfying suppg, suppy) C [—a, a], using (3.3), we have

A
< / F@ldz <Ifl-  (38)

1+kT

[(frn: 9 < C@)l[@ll 2l fally, — 0 (n— o0)
and

[(frs HY)| < C(a)[[¥]112[[A s, 2a)| + [ fall 22 ], (3.9)
where

[As, (2a)] lim ‘/ fulw ) ’
AB*OO [-A,B\[-2a,2a] T

For any B > 2a, according to Lemma 3.3 there exists &, € [2a, B] such that

"’ f"(x)dx _ !

20 T 2a

fn( ) + /fn
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Similar to the proof of (3.8), we have |fB f’f dr| <! ollfnllzy - Similarly, VA > 2a, there holds
|fﬂia f"f)d | < innHLlT Hence |Ay, (2a)] < aanHLlT, which together with (3.9) implies that
[(frs HY)| < Cl@)[[¥ 12l fulls, — 0 (n — o0). The proof is complete.

Example 2. Let f(z) = coswz or sinwz, where w € R\ {0}. Then f € 7.

3.4 Nonlinear phase signals {cos0(x), sinf(xz)} C 7

The last two subsections show that the classical function spaces LP(R) and L} are subsets
of 9}, However, some typical signals encountered frequently in signal processing such as the
linear chirp s(t) = cos(bt? + ct) with b,c € R are not in these two classes. In this subsection,
it is shown that 2}; contains a class of nonlinear phase signals of the form cosf(z),sin 0(z),
which covers almost all the signals used in time-frequency analysis and signal processing.
Theorem 3.7. Let 0 € CY(R) be strictly monotone on (—oo, —A) and (A, 00) respectively for
some A >0 and lim|,| o |[0(7)| = co. Then cosf(-),sin6(-) € Zy;.

Proof. Tt is obvious that ij_le.?'z) € L*(R). Assume @ is strictly increasing on R without losing
generality. Let {x}32, satisfy 0(zx) = kn + 5 (Vk € N). Then Vn,m € N,n > m, we have

o nmdm/2 nmw+m/2
/ cosf(z) ;. :/ 61 (t)) costdt =/ [ 6="(t)] sintdt

m € m7l'+7l'/2 m7r+7r/2

n

™2 (ke t
- ¥ (—1)’“/ In 1( ™) Gntt.
k=m+1 0 o= (k t)
It can be deduced that In@~'(¢) is strictly increasing and limyy . [#7*(t)| = oo. Hence

r cos () “Ykr+t) .
‘ Am . Z 1 _ 1) sin tdt

k=m+1

- 0~ 1k7r—|—§7r)

N
=]
=
>
=
I

1 1
=Ing~! (TL7T+ 277) —Ing! (mﬂ'—i— 277) — 0 (n,m — 00),

which implies the existence of lima_. s f

Acogz(z)dx It can be shown similarly that

lim A oo f_A Cogz(z) dzr exists. By Theorem 3.2 we have cosf(xz) € ;. Similarly we have
siné(x) € 9.

With the results obtained in this section it is easy to verify that almost all the signals used
in time-frequency analysis and signal processing are in 2;. The signals below are from [2].
Example 3.  All the following signals are in Z7;:

(1) The linear chirp s(t) = exp(i3t? + iyt) with 3 # 0;

(2) Gaussian envelope signal: s(t) = exp(—at? + i3t? + ivyt) with a > 0;

(3) s(t) = exp(—at? +ift? + imsin(wy,t) + iwet) with o > 0;

(4) s(t) = exp(iBt? + im sin(wy,t) + iwet) with 8 # 0.

Proof. (1) and (
(

true since s € L2

4) are easily to be verified according to Theorem 3.7; (2) and (3) are obviously
R) for a > 0.
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4 Hilbert transform of distribution

4.1 Extension of Hilbert transform by conjugate operator
In this section, the classical Hilbert transform H will be extended to 2; by using the conjugate
operator. Before doing this, let us recall the following equality (see [19, p. 132]):

/(Hf)( /f J(HS)(@)de (Y f.6 € LX(R)). (4.1)
R

Considering the constraint of H on %y, we know that H : Yy — Py is a continuous and
linear operator, which implies that its conjugate operator H* : @}, — Zj;, which is defined
as (H*f,¢) := (f,H¢) (Vf € Py, ¢ € Py), is a continuous and linear operator. For any
f € Py, using (4.1), we have

(Hf, ) = / (H)(x) / f@)HY)@)de = —(f.HY) = (—H'f.) (Vo€ D),

ie, Hf = —H*f (in 9};). Moreover, if S: Py — Py is also a continuous and linear operator
satisfying Hf = S*f (V f € Py), then

/f (H)(x /f (So)@)dz (V1,6 € D),

which yields that S¢p = —H¢ (V¢ € Py ). Therefore, —H™* can be defined as the extension of
H to the distribution space 2j;, namely, we have

Definition 4.1.  Let H* : 9}, — P}, be the conjugate operator of the classical Hilbert trans-
form H : 9y — Dy. Then —H* : Dy — Dy is defined as the extension of H to the distribution

space Py, and denoted as H still if no confusion occurs.

It is easy to see that the extended Hilbert transform is a homeomorphism from 2}, to itself.
Theorem 4.2. H : 9}, — P}, satisfies —H? = I (the identity operator).
Proof.  For any f € 9y, we have (H2f, ¢) = —(Hf,Ho) = (f, H*¢) = —(f,¢) (Vo € D),
which concludes that —H? = I.
4.2 The coincidence of the extension with the classical Hilbert transform

Theorem 4.3. Let f € LP(R) (1 < p < o0). Then, Hf, as the classical Hilbert transform,
coincides with the extended one defined by Definition 4.1.

Proof.  The classical Hilbert transfrom H f can be regarded as a distribution on 2y according
0 (3.5), whose function on ¢ € Py is

(HF,¢) = / (H ) (2)é(x)d. (4.2)

On the other hand, as the extended Hilbert transform, H f is also a distribution on 2y, whose
function on ¢ € Yy is

(HF.6) = —(H*f, ) = —(f, H) = / F(@)(HY)(x (4.3)
It can be verified that

/(Hf)( /f J(HY)@)dz (V] € LP(R), 6 € D),
R
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which means that (4.2) and (4.3) give the same result.

4.3 Circular Hilbert transform

The circular Hilbert transform defined by (1.2) can be expressed equivalently as

Hf(z) = [~i(sgn(k))lepe’™ 7 (4.4)

keZ
for any f(z) = 3oy cue™ ¥ ¥ € L2, where sgn is the signum function defined by sgn(0) := 0
and sgn(z) := x/|z| for = # 0 (see [20, Chapter 1] and [21, p. 15]). Since L2 ¢ 2}, we will
show that Hf = Hf for any f € LzT. Before this, let us calculate the Hilbert transforms of
sin(wz) and cos(wz) for w € R\ {0}.
Lemma 4.4. Let ¢ € Py. Then ¢ € C(R\ {0}).
Proof. It is enough to show ¢ € C(R\{0}) for any ¢ = Hy) € H(Z). Since ¢(w) = (H) (w) =
—isgn(w)ifz(w) and ¢ € 2, the proof is complete.
Theorem 4.5. Let w € R\ {0}. Then He™?® = —isgn(w)e™?® a.e. x € R, i.e.,

H cos(wz) = sgn(w) sin(wzx), H sin(wz) = —sgn(w) cos(wz) a.e. x € R.
Proof.  For w € R\ {0}, we have

(He ™ ¢) = —(e”™ H¢) = — lim e ™" Hep(z)dx
A,B—>oo [—A,B]

= —(H¢) (w) = isgn(w)o(w)
= isgn(w){e™™", ¢) (V¢ € In),
which concludes that He ™" = i(sgnw)e ™ (Vw € R\ {0}).
Theorem 4.6. For any f = EkeZ\{O} ckeik?' € LQT, there holds
Hf = Z [—isgn(k:)]ckeikz;'. (4.5)

kEZ\{0}
Proof.  Based on the fact L2 G Z}; and Theorem 4.5 we have

Hf = Z ckHeikzif': Z [—isgn(k)]ckeikzﬂ"w'.

kez\{0} keZ\{0}

5 Application of the extension of Hilbert transform

5.1 Signal demodulation and Bedrosian identity
Let s € L?(R) be a real-valued signal. The classical way to define its instantaneous amplitude
and phase without ambiguity is to write s(t) as s(t) = p(t) cos@(t) with p(t) > 0 such that
a(t) = p(t)e??® is an analytic signal (c.f. [2, 22, 23]). That is

H(p(t)cosO(t)) = p(t)sind(t), (5.1)
where Hs(t) is the classical Hilbert transform defined by (1.1). The left side of (5.1) is the

Hilbert transform of a product. As many authors said[??, it is appropriate to make use of the
so-called Bedrosian identity:

H(fg) = fHg, (5.2)
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which is shown to hold for f,g € L%(R) satisfying some conditions such as suppf C [~B, B]
and suppg C R\[—-B, B] for some B > 0 (c.f. [5, 7, 24-26]). This identity is used without doubt
to conclude (5.1) by setting f(¢) = p(t) and g(t) = cos0(t) (c.f. [22]):

H(p(t) cosO(t)) = p(t)H cos 0(t), (5.3)

However, we point out that since cosf(t) is not in L?(R) usually, Bedrosian identity (5.2)
cannot be used to deduce (5.3). In fact, for s(t) = p(t) cos§(t) € L*(R), the Hilbert transform
on the left side of (5.3) is associated with definition (1.1) but H cos#(t) on its right side does
not make sense with this definition.

If (t) satisfies the conditions of Theorem 3.7, then cosf(t) € 25 and both sides of (5.3)
make sense. Let A be the analytic signal operator defined by A¢ = ¢ + iH¢ for any ¢ € Yy
(see [2, 23]). Denote 2 :={f € 21 |{f,Ad) =0 (V¢ € Zx)}. By means of Therorem 3.7 we
have the following Bedrosian theorem.

Theorem 5.1. Let p € L*(R) satisfy p(z) > 0 and 0 satisfy the conditions of Theorem 3.7.

Then
H(p(z)cosB(x)) = p(x)H cosb(z) = p(x) sin §(x) (5.4)

if and only if pe'? e € 7.
Proof. Tt is easy to see that H cosf(x) = sinf(x) if and only if He®®) = —ie?®®) which is
equivalent to —(e®®, Hp) = — (e i¢) for any ¢ € Py, ie., e € 7.

Similarly, it can be shown that H cosf(z) = sinf(z) if and only if pe?® € #/,. The proof of
the theorem is complete.

As a special case, we have the following

Coroally 5.2.  Let p € L*(R) satisfy p(z) >0 and w > 0, § € R. Then
H(p(x) cos(wx + 0)) = p(x)H cos(wx + 0) = p(x) sin(wz + 0) (5.5)

if and only if suppp C [—w,w].

Proof. Tt is obvious that 6(z) = wx + 0 satisfies the conditions of Theorem 3.7. Equality
(elwz40) Ay = e¥(Ap) (—w) = 0 (V¢ € Pg) implies !9 € @', Therefore (5.5) holds
if and only if pe’@ 9 € @', that is (pe™, ¢ +iH¢) = 0 (V¢ € Zyr), which is equivalent to
p(z)e™® + iH[p(x)e™?] = 0. Operating by Fourier transform we get [sgn(£) — 1]p(§ — w) = 0.
Using the Hermit symmetry of p we conclude p(§) = 0 for all |£] > |w].

5.2 Operator equations
The fact that H : 2}, — 9}, is a homeomorphism can be used to solve operator equation. As

an example, we consider the following equation

y+Hy=f, (56)

where f is a given distribution. This equation is solved for f € 2’ in [14] where the classical
Hilbert transform is extended as an operator H : 2" — H'(2) and H'(2) is defined as the
so-called ultradistributiona space. In [14] the author does not clarify in what distribution space
to solve the solution y. Since the left side of (5.6) is a sum of y and Hy, which makes sense

only if y and Hy are in the same space, it is very suitable to solve it in Z7;. In fact 9y, is the
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most largest space for this equation. Hence, (5.6) can be understood as: for a given f € 2y,
finding y € Z}; such that (5.6) holds.

Operating on both sides of (5.6) by H, the extended Hilbert transform defined by Defini-
tion 4.1, we have Hy—y = H f, which together with (5.6) concludes the solution y = %(f—Hf)
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