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Abstract Using the methods of dynamical systems for the (n+1)-dimensional multiple sine-Gordon

equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded

wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric rep-

resentations of the bounded traveling solutions are given. To guarantee the existence of the above

solutions, all parameter conditions are determined.
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1 Introduction

In this paper, we consider the following generalized forms of the double sine-Gordon equation:

k

n∑

j=1

∂2u

∂x2
j

− ∂2u

∂t2
= 2α sin(mu) + β sin(2mu), m � 1 (1)

and the multiple sine-Gordon equation

k

n∑

j=1

∂2u

∂x2
j

− ∂2u

∂t2
=

p∑

l=1

αl sin(lmu), (1mul)

where m, n and p are positive integers.
When β = 0 and m = 1, (1) is the (n + 1)-dimensional sine-Gordon equation (see [1, 2]

and references therein). Recently, by using the tanh method and a variable separated ODE
method, for the case n = 1, Wazwaz[2] derived several exact travelling wave solutions of (1).
There are some interesting problems: does an exact travelling wave solution obtained by the
computer algebraic method really satisfy the given travelling equation? What is the dynamical
behavior of the known exact travelling wave solutions? How do the travelling wave solutions
depend on the parameters of the system? Are there the dynamics of the so-called compacton
and peakon solutions for (1)? As we know, these problems have not been considered before for
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(1) and (1mul). In this paper, we shall consider the existence and dynamical behavior of the
bounded travelling wave solutions of (1) in different regions of the parametric space, by using the
methods of dynamical systems (see [3, 4]). We shall give the possible exact explicit parametric
representations for these bounded travelling wave solutions of (1). The more generalized form
(1mul) of (1) will be briefly considered. The results of this paper will more completely answer
the above problems and improve the conclusions of [2].

To find the travelling wave solutions for (1) and (1mul), we use the wave variable ξ =
∑n

j=1 μjxj − ct, where c is the propagating wave velocity. Then, (1) and (1mul) can become
the ordinary differential equations

(
c2 − k

n∑

j=1

μ2
j

)
uξξ + 2α sin(mu) + β sin(2mu) = 0 (2)

and (
c2 − k

n∑

j=1

μ2
j

)
uξξ +

p∑

l=1

αl sin(lmu) = 0. (2mul)

Making the transformation v = eimu, i =
√−1, we have

sin(mu) =
v − v−1

2i
, cos(mu) =

v + v−1

2
, sin(2mu) =

v2 − v−2

2i
. (3)

Denote that

A = c2 − k

n∑

j=1

μ2
j . (4)

We always assume A �= 0. Substituting (3) for (2), we have

2Avvξξ − 2Av2
ξ + m(v2 − 1)(βv2 + 2αv + β) = 0, (5)

which is equivalent to the system

dv

dξ
= y,

dy

dξ
=

2Ay2 − m(v2 − 1)(βv2 + 2αv + β)
2Av

. (6)

This system has the first integral

H(v, y) =
y2

v2
+

m

2Av2
(βv4 + 4αv3 + 4αv + β) = h. (7)

Notice that

sin(3mu) = 3 sin(mu) − 4 sin3(mu), sin(4mu) = 8 cos3(mu) sin(mu) − 4 cos(mu) sin(mu), . . . .

Hence,
p∑

l=1

αl sin(lmu) = P

(
v − v−1

2i
,
v + v−1

2

)
,

where P (·, ·) is a p-degree polynomial of two variables. Thus, (2mul) can become the system

dv

dξ
= y,

dy

dξ
=

2Avp−2y2 − mQ(v)
2Avp−1

, (6mul)
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where

Q(v) = αpv
2p + αp−1v

2p−1 + · · ·+ α1v
p+1 −α1v

p−1 −αp−2
2 − · · · −αp−1v −αp = (v2 − 1)Q1(v).

(6mul) has the first integral

Hp(v, y) =
y2

v2
+

m

Av2

∫
(v2 − 1)Q1(v)

vp+1
dv. (7mul)

The system (6mul) abounds in a dynamical bifurcation behavior due to the high order nonlin-
earity of Q(v).

We see from (3) that

u =
1
m

arccos
v2 + 1

2v
. (I)

We emphasize that when v = 0, the right hands of the second equations of systems (6) and
(6mul) are discontinuous. We call such systems as the singular travelling wave systems. The
straight line v = 0 in the v − y-phase plane is called a singular straight line. It derives the
existence of some non-smooth behavior and breaking properties of travelling wave solutions of
systems (6) and (6mul) (see [3, 4]).

In next two sections, we shall use the “three-step method” posed by the author to discuss
system (6). Namely, (i) Making a transformation of the variable, such that a singular travelling
wave system becomes a “regular system”; (ii) Investigating the dynamical bifurcation behavior
for the “regular system”; (ii) By using the fact of different scales of “new (fast time scale)”
variable and “old (slow time scale)” variable near the singular straight line, we determine
the profiles of the travelling wave solutions and give all possible exact explicit parametric
representations for the bounded travelling wave solutions.

2 Bifurcations of the phase portraits of (6)

We first make the transformation dξ = vdζ for v �= 0, such that the system (6) becomes

dv

dζ
= vy,

dy

dζ
= y2 − m

2A
(v2 − 1)(βv2 + 2αv + β). (8)

Clearly, (8) has the same phase portraits as (6). But, the phase orbits of two systems have
different parametric representations. Denote that

q(v) = (v2 − 1)(βv2 + 2αv + β), (9)

q′(v) = (v2 − 1)(2βv + α) + 2v(βv2 + 2αv + β). (10)

Clearly, when |α| > |β|, system (8) has four equilibrium points A(−1, 0), B(1, 0), C(v1, 0) and
D(v2, 0) on the v-axis, where

v1 =
1
β

(−α −
√

α2 − β2), v2 =
1
β

(−α +
√

α2 − β2).

When |α| = |β|, the equilibrium points C(v1, 0) and D(v2, 0) coincide with each other. When
|α| < |β|, (8) has two equilibrium points A(−1, 0) and B(1, 0) on the v-axis. When βA < 0,

(8) has two equilibrium points S−(0,−Y ) and S+(0, Y ) on the y-axis, where Y =
√

−mβ
2A .

Especially, when α �= 0 and β = 0, the origin O(0, 0) is an high order equilibrium point of (8).
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Let M(ve, ye) be the coefficient matrix of the linearized system of (8) at an equilibrium point
(ve, ye) and J(ve, ye) be its Jacobin determinant. Then, we have Trace(M(ve, 0)) = 0 and
J(ve, 0) = −mve

A q′(ve).
By the theory of planar dynamical systems, we know that for an equilibrium point of a

planar integrable system, if J < 0 then the equilibrium point is a saddle point; if J > 0 and
Trace(M(φi, 0)) = 0 then it is a center point; if J > 0 and (Trace(M(φi, 0)))2 − 4J(φi, 0) > 0
then it is a node; if J = 0 and the Poincare index of the equilibrium point is 0 then it is a cusp.

Now, we have

J(−1, 0) = −2m

A
(α − β), J(1, 0) =

2m

A
(α + β),

J(v1,2, 0) =
4m(−v1,2)

A
(α2 − β2)(α ±

√
α2 − β2), J(0,±Y ) = 2Y 2 > 0.

So that, the equilibrium points S±(0,±Y ) of (8) are node points. When |α| > |β|, the equilib-
rium points C and D have the same types (center points or saddle points), while the equilibrium
points A and B have different types. When |α| < |β|, the equilibrium points A and B have the
same types (center points or saddle points).

For the invariant function H(v, y) given by (7), we have

hA = H(−1, 0) = −m

A
(4α − β), hB = H(1, 0) =

m

A
(4α + β),

hC = H(v1, 0) =
m[(β4 − 4α4) − (4α3 + 2αβ2)

√
α2 − β2]

Aβ(α +
√

α2 − β2)2
= −m(2α2 + β2)

Aβ
,

hD = H(v2, 0) =
m[(β4 − 4α4) + (4α3 + 2αβ2)

√
α2 − β2]

Aβ(α −
√

α2 − β2)2
= −m(2α2 + β2)

Aβ
= hC .

By using the above fact to do a qualitative analysis, we obtain the bifurcations of phase
portraits of (8) shown in Fig. 1.

Fig. 1. The bifurcations of phase portraits of (8).

(1-1) |α| > |β|, αA > 0, βA > 0; (1-2) |α| > |β|, αA > 0, βA < 0; (1-3) |α| > |β|, αA < 0, βA > 0;

(1-4) |α| > |β|, αA < 0, βA < 0; (1-5) |α| � |β|, αA > 0, βA > 0; (1-6) |α| � |β|, αA < 0, βA < 0; (1-7)

αA > 0, β = 0; (1-8) αA < 0, β = 0.
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3 The parametric representations of the bounded travelling wave solutions of
system (6)

In this section, we use the results given by sec. 2 to determine the parametric representations
of the bounded phase orbits of (6) in its parameter space. Then, we give the exact explicit
travelling wave solutions of (1). Because the phase portraits (1-3), (1-4) and (1-8) are the
reflections of the phase portraits (1-1), (1-2) and (1-7) in Fig. 1 with respect to the y-axis,
respectively, we only discuss the last three phase portraits, and Fig. 1 (1-5) and (1-6).

3.1 Solitary wave solutions and periodic wave solutions
Suppose that |α| > |β|, αA > 0, βA > 0. For example, α > 0, β > 0, A > 0. We consider the
case of Fig. 1 (1-1).

(i) Corresponding to H(v, y) = hA, we have two homoclinic orbits of (8). The function (7)
can be written as

y2 = − m

2A
(v + 1)2(βv2 + 2(2α − β)v + β) =

mβ

2A
(v + 1)2(vM − v)(v − vm), (11)

where vM,m = 1
β [−(2α − β) ± 2

√
α(α − β)]. By using (11) and the first equation of (6), we

obtain the following two parametric representations:

v(ξ) = 1 +
2a1

eM cosh(ω1ξ) − b1
, (12)

v(ξ) = 1 +
2a1

em cosh(ω1ξ) − b1
, (13)

where a1 = −(vM + 1)(vm + 1), b1 = vM + vm = − 2
β (2α − β), eM = b1 + 2a1

vM +1 , em =

b1 + 2a1
vm+1 , ω1 =

√
ma1β
2A . From the relationship (I), we obtain two solitary wave solutions of

(1) with the peak type and valley type, respectively, as follows:

u

( n∑

j=i

μjxj − ct

)
=

1
m

arccos

⎛

⎜⎜⎜⎝

(
1 + 2a1

eM cosh(ω1(
∑

n
j=1 μjxj−ct))−b1

)2

+ 1

2
(

1 + 2a1

eM cosh(ω1(
∑

n
j=1 μjxj−ct))−b1

)

⎞

⎟⎟⎟⎠ (14)

and

u

( n∑

j=i

μjxj − ct

)
=

1
m

arccos

⎛

⎜⎜⎜⎝

(
1 + 2a1

em cosh(ω1(
∑

n
j=1 μjxj−ct))−b1

)2

+ 1

2
(

1 + 2a1

em cosh(ω1(
∑n

j=1 μjxj−ct))−b1

)

⎞

⎟⎟⎟⎠ . (15)

(ii) Corresponding to H(v, y) = h, h ∈ (hC , hA), we have two families of periodic orbits of
(8) for which the function (7) can be respectively written as

y2 = − m

2A
(βv4 + 4αv3 + 4αv + β) + hv2 =

mβ

2A
(r1 − v)(v − r2)(v − r3)(v − r4)

and

y2 = − m

2Av2
(βv4 + 4αv3 + 4αv + β) + hv2 =

mβ

2A
(r1 − v)(r2 − v)(r3 − v)(v − r4).
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By using these formulas and the first equation of (6), we obtain the following two parametric
representations:

v(ξ) = r2 +
(r1 − r2)(r2 − r3)sn2(ω2ξ, k1)

(r1 − r3) − (r1 − r2)sn2(ω2ξ, k1)
(16)

and

v(ξ) = r4 +
(r1 − r4)(r3 − r4)sn2(ω2ξ, k1)

(r1 − r3) + (r3 − r4)sn2(ω2ξ, k1)
, (17)

where ω2 =
√

mβ(r1−r3)(r2−r4)
8A , k1 =

√
(r1−r2)(r3−r4)
(r1−r3)(r2−r4)

. Hence, there exist the following periodic
travelling wave solutions of (1):

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
r2 + (r1−r2)(r2−r3)sn

2(ω2ξ,k1)
(r1−r3)−(r1−r2)sn2(ω2ξ,k1)

)2

+ 1

2
(
r2 + (r1−r2)(r2−r3)sn2(ω2ξ,k1)

(r1−r3)−(r1−r2)sn2(ω2ξ,k1)

)

⎞

⎟⎠ (18)

and

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
r4 + (r1−r4)(r3−r4)sn2(ω2ξ,k1)

(r1−r3)+(r3−r4)sn2(ω2ξ,k1)

)2

+ 1

2
(
r4 + (r1−r4)(r3−r4)sn2(ω2ξ,k1)

(r1−r3)+(r3−r4)sn2(ω2ξ,k1)

)

⎞

⎟⎠ . (19)

(iii) Corresponding to H(v, y) = h, h ∈ (hA, hB), we have a family of periodic orbits of (8)
enclosing three equilibrium points A, C and D, for which the function (7) can be written as

y2 = − m

2A
(βv4 + 4αv3 + 4αv + β) + hv2 =

mβ

2A
(r1 − v)(v − r2)[(v − g2)2 + g2

1].

By using this formula and the first equation of (6), we obtain the following parametric repre-
sentations:

v(ξ) =
(r1B1 + r2A1) − (r1B1 − r2A1)cn(ω3ξ, k2)

(A1 + B1) + (A1 − B1)cn(ω3ξ, k2)
, (20)

where A2
1 = (r1 − g2)2 + g2

1, B2
1 = (r2 − g2)2 + g2

1 , k2
2 = (r1−r2)

2−(A1−B1)
2

4A1B1
, ω3 =

√
mβA1B1

2A .

Thus, we have the periodic traveling wave solutions of (1):

u(ξ) =
1
m

arccos

⎛

⎝

(
(r1B1+r2A1)−(r1B1−r2A1)cn(ω3ξ,k2)

(A1+B1)+(A1−B1)cn(ω3ξ,k2)

)
+ 1

2
(

(r1B1+r2A1)−(r1B1−r2A1)cn(ω3ξ,k2)
(A1+B1)+(A1−B1)cn(ω3ξ,k2)

)

⎞

⎠ . (21)

(iv) Corresponding to H(v, y) = h, h ∈ (hB,∞), we have two families of periodic orbits of
(8). One family encloses three equilibrium points A, C and D, while another family encloses
the equilibrium point B. Now, the function (7) has the same representation as the case (ii).
Therefore, we have the same periodic travelling wave solutions of (1) as (18) and (19).

3.2 Kink wave solutions, anti-kink wave solutions and periodic wave solutions
Suppose that |α| > |β|, αA > 0, βA < 0. For example, α > 0, β < 0, A > 0. We consider the
case of Fig. 1(1-2).

(i) Corresponding to H(v, y) = hC , we have two heteroclinic orbits of (8) connecting the
equilibrium points C and D. The function (7) can be written as

y2 = − m

2A

(
βv4 + 4αv3 +

2(2α2 + β2)
β

v2 + 4αv + β
)

=
−mβ

2A
(v2 − v)2(v − v1)2, (22)
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where v1 and v2 were given in sec. 2. By using this formula and the first equation of (6), we
obtain the following two parametric representations:

v(ξ) = ±
[
−α

β
+

√
α2 − β2

β
tanh(ω4ξ)

]
, (22)

where ω4 =
√

−m(α2−β2)
2Aβ . Hence, we obtain the kink wave solution and anti-kink wave solution

of (1) as follows:

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
− α

β +
√

α2−β2

β tanh(ω4ξ)
)2

+ 1

±2
(
− α

β +
√

α2−β2

β tanh(ω4ξ)
)

⎞

⎟⎠ . (23)

(ii) Corresponding to H(v, y) = h, h ∈ (hB, hC), we have a family of periodic orbits of (8)
enclosing the equilibrium point B, for which the function (7) can be respectively written as

y2 = − m

2A
(βv4 + 4αv3 + 4αv + β) + hv2 = −mβ

2A
(r1 − v)(r2 − v)(v − r3)(v − r4).

By using this formula and the first equation of (6), we obtain the following parametric repre-
sentation:

v(ξ) = r3 +
(r3 − r4)(r2 − r3)sn2(ω5ξ, k3)

(r2 − r4) − (r2 − r3)sn2(ω5ξ, k3)
, (24)

where ω5 =
√

−mβ(r1−r3)(r2−r4)
8A , k5 =

√
(r2−r3)(r1−r4)
(r1−r3)(r2−r4) . Thus, we have the periodic travelling

wave solutions of (1) as follows:

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
r3 + (r3−r4)(r2−r3)sn2(ω5ξ,k3)

(r2−r4)−(r2−r3)sn2(ω5ξ,k3)

)2

+ 1

2
(
r3 + (r3−r4)(r2−r3)sn2(ω5ξ,k3)

(r2−r4)−(r2−r3)sn2(ω5ξ,k3)

)

⎞

⎟⎠ . (25)

3.3 Two families of periodic travelling wave solutions
Suppose that |α| � |β|, αA > 0, βA > 0. For example, α > 0, β > 0, A > 0. We consider the
case of Fig. 1 (1-5).

(i) Corresponding to H(v, y) = h, h ∈ (hA, hB), we have a family of periodic orbits of (8)
enclosing the equilibrium point A, for which the function (7) has the same representation as in
3.1 (iii), so that we have the same family of periodic travelling wave solutions as (21).

(ii) Corresponding to H(v, y) = h, h ∈ (hB,∞), we have two families of periodic orbits of
(8) enclosing the equilibrium point A and B, respectively, for which the function (7) has the
same representation as in 3.1 (ii), so that we have the same two families of periodic travelling
wave solutions as (18) and (19).

3.4 The breaking kink (or anti-kink) wave solutions in the “half-time intervals”
for the existence of the solutions
We next assume that |α| � |β|, αA < 0, βA < 0. Namely, we consider the case of Fig. 1 (1-6).
In addition, we continuously consider the case of Fig. 1 (1-2).

(i) Corresponding to H(v, y) = hA, we have two heteroclinic orbits of (8) connecting the
equilibrium points A(−1, 0) and S±(0,±Y ). For (6), we have the equilibrium points S±(0,±Y )
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on the singular straight line v = 0. These two connecting orbits determine two breaking wave
solutions of (6) in their “half-time intervals” for the existence of the solutions. In fact, now,
the function (7) can be written as

y2 = −mβ

2A
(v + 1)2

(
v2 +

2(2α − β)
β

v + 1
)

.

By using this formula and the first equation of (6), we obtain

v(ξ) = −1 ± 2a2√
q sinh(ω6ξ + ξ0) − a2

, ξ ∈ (−∞, ξf ), (26)

where

a2 =
4(β − α)

β
, q =

16α(β − α)
β2

, ω6 =

√
−2m(β − α)

A
,

ξf = sinh−1

(
3
√

β−α
α − ξ0

ω6

)
, ξ0 = − 1√

a2
sinh−1

(
2a2 + b(v0 + 1)

(v0 + 1)
√

q

)
,

for any v0 ∈ (−1, 0).

Clearly, when the “time variable ξ” takes a finite value ξ = ξf = sinh−1
( 3
√

β−α
α −ξ0

ω6

)
, the

solution v(ξ) has arrived the state S±(0,±Y ). Thus, the parametric representations

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
− 1 ± 2a2√

q sinh(ω6ξ+ξ0)−a2

)2

+ 1

2
(
− 1 ± 2a2√

q sinh(ω6ξ+ξ0)−a2

)

⎞

⎟⎠ , ξ ∈ (−∞, ξf ) (27)

give rise to a breaking kink wave solution and a breaking anti-kink wave solution of (1).
Similarly, corresponding to H(v, y) = hB, we have two heteroclinic orbits of (8) connecting

the equilibrium points B(1, 0) and S±(0,±Y ). We also have the similar breaking kink wave
solution and breaking anti-kink wave solution of (1) as (27).

3.5 The existence of uncountably infinite many bounded breaking wave solutions
of (1)
We first assume that |α| > |β|, αA > 0, βA < 0 (see Fig. 1 (1-2)).

(i) Corresponding to H(v, y) = h, h ∈ (−∞, hA), there exist two families of heteroclinic
orbits of (8) connecting two equilibrium points S±(0,±Y ) inside the two curve triangles consist-
ing of the segment S+S− and four heteroclinic orbits AS+, AS− and BS+, BS−, respectively.
For (6), these orbits are close to the singular straight line v = 0 and connecting to two points
S±. Due to the different “time scales” of ξ and ζ near the singular straight line v = 0, two
connecting orbits give rise to the uncountably infinite many breaking wave solutions of (1). In
fact, the function (7) has the form

y2 = − m

2A
(βv4 + 4αv3 + 4αv + β) + hv2 =

mβ

2A
(r1 − v)(r2 − v)(v − r3)(v − r4), h ∈ (−∞, hA).

By using this formula and the first equation of (6), we obtain the following two parametric
representations, for the orbits in the left side of S+S−:

v(ξ) = r3 +
(r3 − r4)(r2 − r3)sn2(ω5ξ, k3)

(r2 − r4) − (r2 − r3)sn2(ω5ξ, k3)
, ξ ∈ (0, ξlf ) (28)
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and for the orbits in the right side of S+S−:

v(ξ) = r2 − (r1 − r2)(r2 − r3)sn2(ω5ξ, k3)
(r1 − r3) − (r2 − r3)sn2(ω5ξ, k3)

, ξ ∈ (0, ξrf), (29)

where

ω5 =

√
−mβ(r1 − r3)(r2 − r4)

8A
, k5 =

√
(r2 − r3)(r1 − r4)
(r1 − r3)(r2 − r4)

,

ξlf =
1
ω5

sn−1

(√
r3(r2 − r4)
r4(r2 − r3)

, k5

)
, ξrf =

1
ω5

sn−1

(√
r2(r1 − r3)
r1(r2 − r3)

, k5

)
.

Because the above two solutions given by (32) and (33) are only determined in two finite exis-
tence “time intervals”. So they are the breaking solutions. Therefore, we have the uncountably
infinite many bounded breaking wave solutions of (1) as follows:

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
r3 + (r3−r4)(r2−r3)sn

2(ω5ξ,k3)
(r2−r4)−(r2−r3)sn2(ω5ξ,k3)

)2

+ 1

2
(
r3 + (r3−r4)(r2−r3)sn2(ω5ξ,k3)

(r2−r4)−(r2−r3)sn2(ω5ξ,k3)

)

⎞

⎟⎠ , ξ ∈ (0, ξlf ) (30)

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
r2 − (r1−r2)(r2−r3)sn

2(ω5ξ,k3)
(r1−r3)−(r2−r3)sn2(ω5ξ,k3)

)2

+ 1

2
(
r2 − (r1−r2)(r2−r3)sn2(ω5ξ,k3)

(r1−r3)−(r2−r3)sn2(ω5ξ,k3)

)

⎞

⎟⎠ , ξ ∈ (0, ξrf). (31)

Second, we assume that |α| < |β|, αA < 0, βA < 0 (see Fig. 1 (1-6)).
(ii) Corresponding to H(v, y) = h, h ∈ (−∞, hB), there exist two families of heteroclinic

orbits of (8) connecting two equilibrium points S±(0,±Y ) inside the two curve triangles consist-
ing of the segment S+S− and four heteroclinic orbits AS+, AS− and BS+, BS−, respectively.
We have the same results as (30) and (31).

3.6 The bounded travelling wave solutions of (1)β=0 (i.e. sine-Gordon equation)
We finally assume that αA > 0, β = 0. That is, we consider the case of Fig. 1 (1–7). Under
these conditions, eq. (1) is the original (n + 1)-dimensional sine-Gordon equation. In this case,
we have hA = − 4mα

A = −hB.
(i) Corresponding to H(v, y) = hA, we have two heteroclinic orbits of (8) connecting the

equilibrium points A(−1, 0) and the origin O(0, 0). In this case, (7) becomes

y2 = −2mα

A
v(v + 1)2.

By using this formula and the first equation of (6), we obtain the following two parametric
representations:

v(ξ) = −tanh2

(√
mα

2A
ξ

)
, ξ ∈ [0,∞) and ξ ∈ (−∞, 0), respectively. (32)

Thus, we have a breaking kink wave solution and a breaking anti-kink wave solution of (1) as
follows:

u(ξ) =
1
m

arccos

(
tanh4

(
mα
2A ξ

)
+ 1

−2tanh2
(√

mα
2A ξ

)
)

, ξ ∈ [0,∞) and ξ ∈ (−∞, 0), respectively. (33)
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(ii) Corresponding to H(v, y) = h, h ∈ (hB ,∞), there exists a family of periodic orbits of
(8) enclosing the equilibrium point B(1, 0). The function (7) has the form

y2 = −2mα

A
(v3 + v) + hv2 =

2mα

A
v(vM − v)(v − vm),

where

vM,m =
1

4mα
(hA ±

√
h2A2 − 16α2m2) =

1
4mα

(hA ±
√

Δ1(h)).

By using this formula and the first equation of (6), we obtain the following parametric repre-
sentation:

v(ξ) = vm +
vm

√
Δ1(h)sn2(ω7ξ, k4)

2mαvM −√Δ1(h)sn2(ω7ξ, k4)
, h ∈ (hB,∞), (34)

where

ω7 =
√

mαvM

2A
, k4 =

√√
Δ1(h)
vM

.

Hence, we have the family of periodic wave solutions of (1)β=0 as follows:

u(ξ) =
1
m

arccos

⎛

⎜⎜⎝

(
vm + vm

√
Δ1(h)sn2(ω7ξ,k4)

2mαvM−
√

Δ1(h)sn2(ω7ξ,k4)

)2

+ 1

2
(
vm + vm

√
Δ1(h)sn2(ω7ξ,k4)

2mαvM−
√

Δ1(h)sn2(ω7ξ,k4)

)

⎞

⎟⎟⎠ . (35)

(iii) Corresponding to H(v, y) = h, h ∈ (−∞, hA), there exists a family of homoclinic orbits
of (8) connecting to the origin O(0, 0) inside the two heteroclinic orbits defined by H(v, y) = hA.
Since these orbits are tangent to the singular line v = 0 of (6) at the origin (0, 0), they give rise
to the uncountably infinite many periodic orbits of (6). In fact, in this case, the function (7)
becomes

y2 =
−2mα

A
v(v2 − hv + 1) =

−2mα

A
v(v − vM )(v − vm).

By using this formula and the first equation of (6), we obtain the following parametric repre-
sentation:

v(ξ) = vM +
(−vM )

√
Δ1(h)sn2(ω7ξ, k7)

2mα[(−vM ) + vmsn2(ω7, k7)]
, (36)

where vM,m, ω5, k5 and Δ1(h) are the same as (ii).
Thus, we have the family of periodic wave solutions of (1)β=0 as follows:

u(ξ) =
1
m

arccos

⎛

⎜⎝

(
vM + (−vM )

√
Δ1(h)sn2(ω7ξ,k4)

2mα[(−vM )+vmsn2(ω7ξ,k4)]

)2

+ 1

2
(
vM + (−vM )

√
Δ1(h)sn2(ω7ξ,k4)

2mα[(−vM )+vmsn2(ω7ξ,k4)]

)

⎞

⎟⎠ . (37)

For all h ∈ (−∞, hA), the solutions given by (37) are just so called compacton solutions.

4 Brief discussion of bounded travelling wave solutions for system (6mul)

In this section, we discuss the system

dv

dξ
= y,

dy

dξ
=

2Avp−2y2 − m(v2 − 1)(αpv
2(p−1) + · · · + αp)

2Avp−1
, (6mul)
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where p > 2. For example, when p = 3 and p = 4, (6mul) has the equivalent forms

dv

dζ
= v2y,

dy

dζ
= vy2 − m

2A
(v2 − 1)(α3v

4 + α2v
3 + (α1 + α3)v2 + α2v + α3) (38)

with the first integral

H3(v, y) =
y2

v2
+

m

6Av3
(2α3v

6 + 3α2v
5 + 6α1v

4 + 6α1v
2 + 3α2v + 2α3); (39)

and

dv

dζ
= v3y,

dy

dζ
= v2y2 − m

2A (v2 − 1)(α4v
6+α3v

5 + (α2+α4)v4+(α1+α3)v3+(α2+α4)v2+α3v+α4)
(40)

with the first integral

H4(v, y) =
y2

v2
+

m

12Av4
(3α4v

8 +4α3v
7 +6α2v

6 +12α1v
5 +12α1v

3 +6α2v
2 +4α3v+3α4). (41)

System (6mul) is a (p + 1)-parameter system consisting of the parameter group (A, α1, α2,

. . . , αp). If the polynomial Q(u) = αpv
2(p−1) + · · · − αp has more real zeros, then, (6mul) has a

very complicated dynamical bifurcation behavior.
We again consider the system

dv

dζ
= vp−1y,

dy

dζ
= vp−2y2 − m

2A
(v2 − 1)(αpv

2(p−1) + · · · + αp). (42)

Obviously, for any p > 2, system (42) always has two equilibrium points A(−1, 0), B(1, 0). There
is no equilibrium point on the y-axis. Therefore, for p > 2, system (6mul) has no equilibrium
point (node) on the singular line v = 0. Unlike system (6), it has no breaking kink and anti-kink
solutions.

For the linearized system of (42), we have the Jacobin determinants

J(−1, 0) =
2m

A
(−1)pQ1(−1), J(1, 0) =

2m

A
Q1(1).

And from (39) and (41), we obtain

hA3 = H3(−1, 0) = − m

3A
(2α3 − 3α2 + 6α1), hB3 = H3(1, 0) =

m

3A
(2α3 + 3α2 + 6α1);

hA4 =H4(−1, 0)=
m

6A
(3α4 − 4α3 + 6α2 − 12α1), hB4 =H4(1, 0)=

m

6A
(3α4 + 4α3 + 6α2 − 12α1).

Generally, we denote that hAp = Hp(−1, 0), hBp = Hp(1, 0).
By choosing the parameters in the parameter space S(A, α1, α2, . . . , αp), we can make Q1(v)

not have real zero. Then, there exist three cases: (i) both equilibrium points A and B are
centers; (ii) both equilibrium points A and B are saddle points; (iii) one is a center, another is
a saddle point (see Fig. 2).

We see from Fig. 2 that there is a region of the parameter space S such that the following
fact holds.
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(1) Corresponding to the orbit family defined by Hp(v, y) = h, h ∈ (−∞, hAp) with the
initial condition (v0, 0), −1 < v0 < 0, there is a family of bounded solutions of (6mul) ( for
which v(ξ) is bounded, but v′(ξ) is unbounded). This family gives rise to the uncountably finite
many breaking wave solutions of (1mul).

(2) Corresponding to the orbit family defined by Hp(v, y) = h, h ∈ (hBp,∞) with the initial
condition (v0, 0), 0 < v0 < ∞, there is a family of periodic solutions of (6mul). This family
gives rise to the uncountably finite many periodic wave solutions of (1mul).

Fig. 2. A phase portrait of (42) with a center and a saddle point.

To sum up, we have the following conclusion:

Theorem A. There exists a region of the parameter space S(A, α1, . . . , αp) such that the
multiple sine-Gordon equation (1mul) has the uncountably finite many periodic wave solutions
and the uncountably finite many bounded breaking wave solutions.

When the polynomial Q1(v) has real zeros, then, (1mul) has the smooth solitary wave so-
lutions, the kink wave solutions and the anti-kink wave solutions. Because the bifurcation
behavior is too complicated in this case, we do not generally consider the travelling wave solu-
tion problem.

References

[1] Li J B, Li M. Bounded travelling wave solutions for the (n+1)-dimensional sine- and sinh-Gordon equations.

Chaos, Solitons and Fractals, 25: 1037–1047 (2005)

[2] Wazwaz A M. The tanh method and a variable separated ODE method for solving double sine-Gordon

equation. Physics Letter A, 350: 367–370 (2006)

[3] Li J B, Liu Z R. Smooth and non-smooth travelling waves in a nonlinearly dispersive equation. Appl Math

Modeling, 25: 41–56 (2000)

[4] Li J B, Liu Z R. Travelling wave solutions for a class of nonlinear dispersive equations. Chin Ann of Math,

23B: 397–418 (2002)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


