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Abstract This paper discusses the uncooperative target tracking control problem for the unmanned

aerial vehicle (UAV) under the performance constraint and scaled relative velocity constraint, in which

the states of the uncooperative target can only be estimated through a vision sensor. Considering

the limited detection range, a prescribed performance function is designed to ensure the transient and

steady-state performances of the tracking system. Meanwhile, the scaled relative velocity constraint in

the dynamic phase is taken into account, and a time-varying nonlinear transformation is used to solve

the constraint problem, which not only overcomes the feasibility condition but also fails to violate the

constraint boundaries. Finally, the practically prescribed-time stability technique is incorporated into

the controller design procedure to guarantee that all signals within the closed-loop system are bounded.

It is proved that the UAV can follow the uncooperative target at the desired relative position within a

prescribed time, thereby improving the applicability of the vision-based tracking approach. Simulation

results have been presented to prove the validity of the proposed control strategy.
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1 Introduction

During the past years, the research on unmanned aerial vehicle (UAV) control has achieved
great progress[1–4]. Due to its practical significance, uncooperative target tracking control has
become a popular research topic in the field of UAV[5]. Uncooperative target maneuvers arbi-
trarily and cannot communicate with the tracker, i.e., the tracker cannot directly obtain target
information[6]. In response, the vision-based tracking control strategy has been investigated[7].
Different from the conventional control schemes[8–10], the vision-based control method provides
useful information from the target environment through the vision sensor, especially in areas
where communication is poor or even not available. However, vision sensors only have access to
target image information (e.g., deflection and pitch angle) but cannot directly measure relative
distance. To solve this problem, some estimation methods were used to estimate the relative
distance[11–13]. For ground targets[14], the relative distance was estimated from the altitude
of the UAV by a coordinate system conversion. The estimation method using altitude is not
available for airborne targets, while other estimation methods are required. Image feature
point information is used to estimate the relative distance of the target, such as the image-
based method[15] and the stereovision method[16], which require a priori information about the
target. To overcome this problem, a vision-based control scheme was proposed[6], which only
considers an ideal tracker. Therefore, it remains an interesting research for the UAV to track
an uncooperative target when the relative distance is unknown and the priori information is
lacking.

For the vision-based methods[14–16], the main attention is paid to the asymptotic stabil-
ity, that is, the closed-loop system is stable as the time tends to infinity. However, for many
time-sensitive applications, such as spacecraft docking and target interception, the preferred
tracking accuracy needs to be achieved in finite time[17]. Sun, et al.[18] constructed a vision-
based finite-time controller for UAV, where the convergence time was limited by initial values.
Based on fractional plus regular state feedback, a fixed-time control approach was presented[19],
which makes the settling time irrelevant to the initial value of the state. Note that fixed-time
control algorithms with a state feedback component are usually difficult or even impossible
to achieve stability in prescribed time. Thus, the concept of prescribed-time stability was
proposed[20], which has more robust and attractive convergence performance than finite/fixed
time control, i.e., the settling time can be artificially prescribed depending on the task require-
ments rather than determined by parameters. A prescribed finite-time control scheme was
constructed with regular state feedback for specific classes of systems[21–23]. The above meth-
ods must have high energy consumption to achieve high tracking accuracy when the system has
unknown disturbances and uncertainties. However, in actual tracking control, it is sufficient to
achieve a prescribed range of tracking accuracy within a prescribed time. Thus, developing a
practical prescribed-time control scheme for tracking system with uncertainties and unknown
disturbances is of practical interest.

Due to the uncooperative feature of the target, state information can only be measured by
onboard sensors, which requires that the target is always within the detectable range. Thus,
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it is of great interest to determine the performance metrics (e.g., convergence rate, maximum
overshoot, and stable residual set of tracking errors) in advance[24–26]. A prescribed perfor-
mance control (PPC) was designed to meet the performance requirements, where the system
performance could be guaranteed by the prescribed performance function[27–29]. This approach
has been commonly employed in different systems due to its advantages in the transient and
steady-state performances of the control system. For instance, Zhang, et al.[30] proposed a
pattern-based intelligent control strategy for uncertain pure-feedback systems, where the track-
ing error was guaranteed in a prescribed range. However, the mentioned works require that the
initial value must be predetermined within a given range, which relies on the prescribed bound-
ary function. To remove the restriction on the initial condition, the funnel control approaches[31]

and deferred PPC schemes[32] were presented, but these methods have some drawbacks. Specif-
ically, the funnel control approach is conservative, and the deferred PPC method needs a con-
tinuous differentiable shift function. By using a time-varying scaling function, a new prescribed
performance function is designed for uncertain strict-feedback nonlinear systems, which elim-
inates the initial condition[33]. However, in previous PPC results, the convergence time to
reach the prescribed steady-state boundary could not be specified in advance. In addition,
considering security and physical restrictions, constraints become one of the main problems in
practical systems.

There have been many achievements in dealing with constraints[34–37]. An adaptive control
scheme with the barrier Lyapunov function (BLF) was designed for nonlinear pure-feedback
systems with constraints[38]. Note that if BLF is combined with the backstepping design proce-
dure to solve the state constraint problem, the feasibility condition needs to be satisfied[39, 40].
To eliminate the demanding feasibility condition, Zhao, et al.[41] defined a nonlinear transforma-
tion function within the constrained states, and the original constrained system was converted
into an equivalent unconstrained one. Following the idea proposed in [41], adaptive full-state
constrained controllers were developed, such as for robust control of stochastic systems with
unknown time delays[42] and nonlinear systems with unmodeled dynamics[43]. It is noticed that
the above constrained researches only achieve ultimately uniform boundedness, whose settling
time cannot be user-defined.

Motivated by the above discussion, this article investigates the uncooperative target tracking
control problem for the UAV with unknown disturbances and performance constraint, where
uncommunication and the priori information of the target are available. A vision-based adaptive
prescribed-time control strategy is proposed to ensure that the UAV tracks the uncooperative
target at the desired relative position within a prescribed time while satisfying all constraints
during the operation. The main contributions of this article are summarized as follows: 1) Dif-
ferent from [8–10], the uncommunicative uncooperative target tracking problem is considered in
this paper. Additionally, some difficulties associated with this problem (e.g., detectable range
constraint and convergence rate requirement) are also considered, unlike existing literature[6, 18].
2) A prescribed performance function for uncooperative target tracking is designed to guaran-
tee tracking performance without using relative distance. In contrast to existing work on
PPC[31–33], the designed prescribed performance function reaches the steady-state boundary
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within a predefined time and relaxes the restrictions on the initial values. 3) An adaptive pre-
scribed time controller is constructed for vision-based uncooperative target tracking of UAV,
ensuring the practical prescribed-time stability of tracking system. Unlike the existing vision-
based control schemes[18, 44–46], which only achieve finite/fixed time convergence, the setting
time and tracking accuracy in this paper can be prescribed flexibly by user.

The remainder of this article is structured as follows. The problem statement and vision-
based measurement are given in Section 2. The prescribed performance function is constructed
in Section 3. Section 4 presents a time-varying nonlinear function that converts the constrained
systems into an unconstrained nonlinear system. Then, an adaptive practical prescribed-time
controller is designed to stabilize the unconstrained nonlinear system. Simulations are provided
in Section 5 to validate the effectiveness of the proposed control strategy. Section 6 summarizes
the conclusion of this article.

2 Problem Statement and Vision-Based Measurement

2.1 Problem Statement

This paper considers the position tracking control of UAV, where it is assumed that the
attitude control of the UAV has been presented according to [15]. To better describe the
relative position model, two reference frames are defined, i.e., the inertial coordinate frame I =
{OI , XI , YI , ZI} fixed on the earth and the body-fixed reference frame B = {OB, XB, YB, ZB}
fixed on the UAV. The rotation matrix between reference frames I and B is represented as RIB .
The relative position model of the tracker-target is shown in Figure 1.

Figure 1 Relative position between target and tracker in the frame I

According to [47], we can obtain the position dynamics of the UAV as

l̇f = vf ,

v̇f = uf + g (vf ) + d, (1)

where lf = [lf,1, lf,2, lf,3]
T and vf = [vf,1, vf,2, vf,3]

T denote the position and velocity in frame I,
respectively. uf = [uf,1, uf,2, uf,3]

T is the control input. g (vf ) = [g1, g2, g3]
T denotes the known

nonlinearity function and vf =
[
lTf , v

T
f

]T. d = [d1, d2, d3]
T represents unknown disturbances.
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The motion equation of the target is

l̈t = at, lt (0) = lt0, l̇t (0) = vt0, (2)

where lt = [lt,1, lt,2, lt,3]
T and at = [at,1, at,2, at,3]

T represent the position and acceleration in
frame I, respectively. lt0 and vt0 are the initial values.

In the frame I, the relative position between UAV tracker and target can be denoted as
l = lt − lf , whose dynamics are given by

l̈ = at − v̇f , l (0) = l0, l̇ (0) = lv0, (3)

where l0 and lv0 denote the initial values.

Assumption 2.1 (see [48]) The disturbance di is bounded by an unknown positive con-
stant, that is |di| < dimax.

Assumption 2.2 (see [18]) The acceleration of target is bounded such that |at,i| < aimax,
where aimax is an unknown positive constant.

2.2 Vision-Based Measurement

Inspired by the vision-based methods of [6, 18], the UAV obtains the uncooperative target
information using a vision sensor. The vision sensor is attached to the gimbal of the UAV, thus
ensuring that the optical center coincides with the OB and that the optical axis of vision sensor
is parallel to the XB. Projection model of the vision-based measurement is shown in Figure 2,
where p indicates the focal length of the vision sensor.

Figure 2 Vision-based measurement

Let lp = [p, yp, zp]
T denote the coordinates of the target’s center of gravity in the imaging

plane, which is provided by the image processing algorithm associated with the vision sensor
in real time. Therefore, the deflection φ and pitch ψ angle from the target to the tracker can
be obtained as follows:

tanφ =
yp
p
, tanψ =

zp√
p2 + y2

p

. (4)
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According to the principle of pinhole imaging, we can get

‖lp‖
‖l‖ =

sp
s
, (5)

where sp and s are parameters associated with the size of the target in the imaging plane and in

reality, respectively. ‖lp‖ =
√
p2 + y2

p + z2
p represents the distance between the optical center

in frame B and the target’s center of gravity in the imaging plane. ‖l‖ =
√
l21 + l22 + l23 denotes

the distance between the target and the tracker.
Based on (4), the relative position between UAV and target in frame B can be written as

lB = ‖l‖ [CψCφ, CψSφ, −Sψ]T, (6)

where C∗ = cos(∗) and S∗ = sin(∗).
According to the rotation matrix RIB, the following relative position in frame I can be

obtained

l = RIBlB =
s

sp
‖lp‖RIB[CψCφ, CψSφ, −Sψ]T. (7)

It is noted that there is an unknown parameter s in the relative position, so we adopt the
scaled relative position r = l/s.

ṙ = v, v̇ =
1
s

(at − v̇f ) , r (0) = r0, v (0) = v0, (8)

where v denotes the scaled relative velocity. smin ≤ s ≤ smax, smin and smax are positive
parameters.

In the light of a vision sensor, the problem of an uncooperative target tracking by a UAV is
reduced to the stability problem of the second-order system (8) under parameter uncertainties
and unknown disturbances.

Remark 2.3 Compared with [6, 18], this paper considers a more challenging case for
uncooperative target tracking control, since it involves parameter uncertainties, performance
constraint, and convergence rate.

Define the scaled position error e = r − rd with e = [e1, e2, e3]T and rd = [rd,1, rd,2, rd,3]T.
rd represents the desired scaled relative position. ld = s ∗ rd is the desired relative position.
Meanwhile, considering the physical constraints and Assumption 2.2, the scaled relative velocity
v is required to be constrained.

The control goal of this paper is to develop a control scheme for the system (8) under
the performance constraint, scaled relative velocity constraint, parameter uncertainties, and
unknown disturbances, so that the UAV can follow the uncooperative target at a desired relative
position within the prescribed settling time.

Then, the following lemmas are required.

Lemma 2.4 (see [49]) Considering the system ẋ(t) = f (x(t), t), the origin of system
is practically prescribed-time stable (PPTS) if there exists a continuous-differential function
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Γ (x(t), t) ≥ 0, and the following inequality is satisfied

Γ̇ ≤ −kΓ − 2
|γ̇|
γ

Γ +
ρ

γ
+ c,

where k > 0, 0 ≤ ρ < +∞, and 0 ≤ c < +∞ are scalars. γ is a piecewise time-varying function,
which is given by

γ =

⎧
⎨

⎩
exp (o1 (Tγ − t)) − 1, t ∈ [0, Tγ) ,

o2 − o2 tanh (o1 (t− Tγ)) , t ∈ [Tγ ,∞) ,
(9)

where o1 and o2 are positive tunable parameters. By selecting appropriate parameters, the sys-
tem trajectory will converge to the region Ω= {x|Γ (x) ≤ ρ/o1} for t ≥ Tγ. For implementation,
the right-hand derivative of γ at t = Tγ is given as γ̇.

Remark 2.5 As shown in (9), the parameters Tγ , o1, and o2 are used to describe the
control performance. The parameter Tγ presents the convergence time, which is not related to
initial values or design parameters. The user can define the convergence time and convergence
region according to the practical tasks. Furthermore, it can be seen that the convergence region
Ω of the system is related to o1, i.e., the larger o1 the smaller the convergence region. However,
an excessively large o1 will result in an excessive control signal, so that a trade-off needs to
be made between system performance and physically achievable ranges. According to [49], the
parameters are set as o1 ∈ (0.5, 1) and o2 = 1, which guarantees the continuity of the γ̇.

Lemma 2.6 (see [33]) For any positive constants h, b and scalar x, the following function

H (x) =

√
bx√

h2 − x2

is increasing strictly monotonically in the interval (−h, h).

Lemma 2.7 (see [45]) Considering x ∈ R, for any δ > 0, the following inequality hold

0 ≤ |x| < δ +
x2

√
x2 + δ2

.

3 Prescribed Performance Constraint

The transient and steady-state characterizations are essential performance indicators of the
control system. In order to predefine certain behaviors of the scaled position error e, we further
restrict e to evolve within a specified range.

To reach the desired steady-state performance within a prescribed time, the following time-
varying constraining function is developed

μ1,i(t) =

⎧
⎪⎨

⎪⎩

(μ0,i − μ∞,i) exp
( −t
Tμ − t

)
+ μ∞,i, t ∈ [0, Tμ),

μ∞,i, t ∈ [Tμ,∞),
(10)
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where i = 1, 2, 3 and μ0,i > μ∞,i > 0. Define μ0 = [μ0,1, μ0,2, μ0,3]T, μ∞ = [μ∞,1, μ∞,2, μ∞,3]T

and μ1 = [μ1,1, μ1,2, μ1,3]T. Note that μ1,i(t) is monotonically decreasing and μ1,i (0) = μ0,i.
Tμ ∈ (0,∞) is a prescribed settling time, that is, limt→Tµμ1,i (t) = μ∞,i.

Upon utilizing (10), the prescribed performance function is as follows:

H (μ1,i) =
√
biμ1,i√

μ2
0,i − μ2

1,i

, (11)

where bi = μ2
0,i − μ2

∞,i. Then one has H (μ0,i) = ∞ and limt→TµH (μ1,i) = μ∞,i.
The prescribed performance constraint on the scaled distance error ei is as follows

−H (μ1,i) < ei < H (μ1,i) , (12)

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∞ < ei <∞, t = 0,

−
√
biμ1,i√

μ2
0,i − μ2

1,i

< ei <

√
biμ1,i√

μ2
0,i − μ2

1,i

, t ∈ (0, Tμ) ,

−μ∞,i < ei < μ∞,i, t ∈ [Tμ,∞).

(13)

Remark 3.1 In [24], the traditional prescribed performance function is selected as hi(t) =
(h0,i − h∞,i)exp(−ıt) + h∞,i, which only ensures that the tracking error enters into the pre-
determined region (−h∞,i, h∞,i) as the time t tends to infinity. Besides, this method requires
the initial value of tracking error to meet the condition −hi(0) < ei(0) < hi(0). Thus, an
improved prescribed performance function (11) is proposed in this paper. If (12) holds, the
scaled distance error ei will converge to a prescribed region (−μ∞,i, μ∞,i) within a prescribed
time Tμ and removes the restriction on ei(0).

As shown in (12), the restriction on the initial value is eliminated. To ensure the prescribed
performance, the following nonlinear shifting function is adopted

G (ei) =
μ0,iei√
e2i + bi

, (14)

where G (ei) ∈ (−μ0,i, μ0,i). The derivative of G (ei) is Ġ (ei)=μ0,ibiėi
/(
e2i + bi

)3/2. Note that
the monotonicity of G (ei) is related to ei. When G (ei) → ±μ0,i, we can obtain ei → ±∞. The
initial value ei(0) can be arbitrarily chosen.

With the help of (10) and (14), we define a transformation function as

ξ1,i =
G (ei)
μ1,i

, (15)

where ξ1,i (0) = G (ei (0))/μ0,i ∈ (−1, 1), indicating that the initial value ξ1,i(0) is explicit. In
addition, ξ̇1,i = Ġ (ei)/μ1,i −G (ei) μ̇1,i/μ

2
1,i.

Lemma 3.2 If there exists a constant 0 < ξ1,i < 1 with |ξ1,i| < ξ1,i, the prescribed
performance (12) is satisfied.
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Proof Suppose that |ξ1,i| < ξ1,i, such that

−μ1,i < −ξ1,iμ1,i < G (ei) < ξ1,iμ1,i < μ1,i.

From the definition of H (x), one obtains

−H (μ1,i) < H (G (ei)) < H (μ1,i) .

Based on (14), the scaled distance error can be written as

ei =
√
biG (ei)√

μ2
0,i −G2 (ei)

= H (G (ei)) .

Hence, (12) holds. The proof is completed.
Then, the tracking control problem with prescribed performance can be achieved simul-

taneously as long as |ξ1,i| < ξ1,i < 1 is satisfied. In addition, the scaled relative velocity is
constrained by the time-varying positive functions μ2,i and μ

2,i
, that is, −μ

2,i
< vi < μ2,i.

4 Controller Design

4.1 System Transformation

The problem of constraints is far from trivial, especially when the boundaries of the con-
straints are asymmetrical and time-varying. A time-varying nonlinear function is introduced to
tackle the issue of state constraints. By means of this transformation function, the constrained
system (8) is reformulated as an unconstrained system whose stability ensures the constraints
of the ξ1,i and vi.

Consider the following time-varying nonlinear transformed function

χ1,i =
ξ1,i

1 − ξ21,i
, (16)

χ2,i =
viμ2,iμ2,i(

μ
2,i

+ vi

) (
μ2,i − vi

) . (17)

Thus, the problem of constraints is transformed into ensuring the boundedness of χj,i, j =
1, 2.

Remark 4.1 It is worth noticing that the time-varying nonlinear transformed function
in χ2,i is characterized by a finite escape as the vi approaches the defined error bounds −μ

2,i

or μ2,i, that is, limvi→μ2,i
χ2,i=∞ and limvi→−μ

2,i
χ2,i= −∞. Furthermore, if the transformed

errors are unconstrained, one can obtain limμ2,i=μ2,i
→∞χ2,i=vi. As a result, it is concluded

that the proposed time-varying nonlinear transformed function can cope with symmetric or
asymmetric constraints, and it can be used for systems without constraint requirements.

From (17), one obtains vi = η2,iχ2,i with η2,i = (μ
2,i

+ vi)(μ2,i − vi)/(μ2,i
μ2,i) being a

positive function. There exists a positive constant η2,i such that 0 < η2,i < η2,i <∞.
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Based on (16) and (17), the time derivatives of χ1,i and χ2,i are given by

χ̇1,i = χ11,iėi + χ12,i, χ̇2,i = χ21,iv̇i + χ22,i, (18)

with

χ11,i =

(
1 + ξ21,i

)
G1,i(

1 − ξ21,i
)
μ1,i

,

χ12,i = −
(
1 + ξ21,i

)
μ̇1,iξ1,i(

1 − ξ21,i
)
μ1,i

,

χ21,i =
μ

2,i
μ2,i

(
μ

2,i
μ2,i + v2

i

)

(
μ

2,i
+ vi

)2(
μ2,i − vi

)2
,

χ22,i =
v2
i

(
μ̇

2,i
μ2

2,i − μ2
2,i
μ̇2,i

)
− v3

i

(
μ̇

2,i
μ2,i + μ

2,i
μ̇2,i

)

(
μ

2,i
+ vi

)2(
μ2,i − vi

)2
,

where G1,i = μ0,ibi/
(
e2i + bi

)3/2, μ
2,i
> 0 and μ2,i > 0. Then, we have χ11,i > 0 and χ21,i > 0.

Substituting (8) into (18), the newly transformed system can be presented as

χ̇1,i = χ11,iη2,iχ2,i + χ12,i,

χ̇2,i =
χ21,i

s
(at,i − uf,i − gi − di) + χ22,i. (19)

Therefore, the prescribed performance constraint problem for ei and the constraint problem
for vi are transformed into the problem of making the states χ1,i and χ2,i bounded. Then, the
goal of this paper is to stabilize the transformed system (19) by the design of the controller
uf,i.

4.2 Controller Design

An adaptive prescribed-time controller is developed for the transformed system (19) with
unknown disturbances and parameter uncertainties within the backstepping framework.

According to (19), the coordinate transformations are constructed as

z1,i=χ1,i,

z1,i=χ2,i − ω1f,i, (20)

with ω1f,i being the output of first-order filter, which is given as follows:

ωs,iω̇1f,i + ω1f,i = η−1
2,i ω1,i, (21)

where ωs,i is a positive constant. Define the boundary layer error eω,i = ω1f,i − η−1
2,iω1,i. The

intermediate control function ω1,i is designed as

ω1,i = − z1,iω
2
1,i

χ11,i

√
z2
1,iω

2
1,i + τ2

1,i

,

ω1,i = z1,iχ
2
11,i + χ12,i +

1
2
α1,iz1,i − h (z1,i)

ρi
γ
, (22)
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where α1,i = k1,i + 2|γ̇|
γ . k1,i, τ1,i, and ρi are positive design parameters. γ is designed from

Lemma 2.4. For arbitrary small δ1 > 0, we have h (z1,i) = ξ (z1,i)/z1,i with

ξ (z1,i) =

⎧
⎪⎨

⎪⎩

sin
(
π |z1,i|

2δ

)
, |z1,i| ≤ δ1,

1, else.

Remark 4.2 According to L’Hopital rule, the switching property of ξ (zi) ensures the
smoothness characteristic of h (zi), that is, limzi→0+h (zi) = π/2δ1 and limzi→0−h (zi) =
−π/2δ1.

The actual controller is constructed as

uf,i =
smaxz2,iω

2
2,i

χ21,i

√
z2
2,iω

2
2,i + τ2

2,i

,

ω2,i =
θ̂1,iz2,iχ

2
21,i

2q21,is
2
min

+
z2,iχ

2
21,ig

2
i

smax

√
z2
2,iχ

2
21,ig

2
i + σ2

i

+ χ22,i − ω̇1f,i +
η2
2,iz2,i

2
+

1
2
α2,iz2,i, (23)

where α2,i = k2,i + 2|γ̇|
γ . k2,i, τ2,i, q1,i, and σi are positive parameters. θ̂1,i denotes the estima-

tion of θ1,i, which is updated by

˙̂
θ1,i =

r1,iz
2
2,iχ

2
21,i

2q21,is
2
min

− α3,iθ̂1,i, (24)

with α3,i = k3,i + 2|γ̇|
γ . r1,i and k3,i being positive parameters.

Remark 4.3 The PPTS is achieved by employing a control gain that will reach ∞ as
t → Tγ , while ensuring that the states of system are bounded. Exploiting unbounded control
gain can be traced to early research in terminal sliding mode methods, optimal control and
time-based generators[21–23]. For implementation purposes, several solutions can be used, such
as adding a small constant γ2

l to the denominator of 1/γ to avoid the singularity when t→ Tγ

or using the dynamic damping reciprocal (DDR) method[50].

Then, the main results are recapitulated in Theorem 4.4.

Theorem 4.4 Consider the tracker-target system (8) under prescribed performance con-
straint (12), scaled relative velocity constraints, parameter uncertainties, and unknown dis-
turbances. The proposed control strategies (22)–(24) can guarantee that 1) all signals of the
closed-loop system are bounded; 2) the constraints of ξ1,i and vi are not violated all the time;
3) the scaled distance error ei evolves strictly within the prescribed performance range given
by (12) and converges to prescribed region within the prescribed time; 4) the tracker UAV tracks
the uncooperative target with a desired position.

Proof Step 1 Define the Lyapunov function candidate as Γ1,i = 0.5z2
1,i, and its derivative

with respect to time is

Γ̇1,i = z1,i (χ11,iη2,iχ2,i + χ12,i) . (25)
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Based on (20) and eω,i, (25) can be written as

Γ̇1,i = z1,i
(
χ11,iη2,i

(
z2,i + eω,i + η−1

2,iω1,i

)
+ χ12,i

)
. (26)

According to Young’s inequality, one obtains

z1,iχ11,iη2,iz2,i ≤
z2
1,iχ

2
11,i

2
+
η2
2,iz

2
2,i

2
,

z1,iχ11,iη2,ieω,i ≤
z2
1,iχ

2
11,i

2
+
η2
2,ie

2
ω,i

2
. (27)

Then, we have

Γ̇1,i ≤z1,i
(
χ2

11,iz1,i + χ11,iω1,i + χ12,i

)
+
η2
2,iz

2
2,i

2
+
η2
2,ie

2
ω,i

2
. (28)

From Lemma 2.7 and (22), one has

z1,iχ11,iω1,i ≤τ1,i − z2
1,iχ

2
11,i − z1,iχ12,i − 1

2
α1,iz

2
1,i +

ρi
γ
. (29)

Substituting (29) into (28) yields

Γ̇1,i ≤ −1
2
α1,iz

2
1,i +

ρi
γ

+τ1,i +
η2
2,iz

2
2,i

2
+
η2
2,ie

2
ω,i

2
. (30)

Then, from (30) and Lemma 2.4, it can be seen that the PPTS property of z1,i can be
ensured if z2,i and eω,i are stabilized.

Step 2 Construct the following Lyapunov function

Γ2,i = Γ1,i +
1
2
z2
2,i +

1
2r1,i

θ̃21,i +
1
2
e2ω,i, (31)

where θ̃1,i = θ1,i − θ̂1,i is estimation error. Based on (20), Γ̇2,i can be calculated as

Γ̇2,i = Γ̇1,i + z2,i (χ̇2,i − ω̇1f,i) − θ̃1,i
˙̂
θ1,i

r1,i
+eω,iėω,i. (32)

According to (19) and (20), it follows from (32) that

Γ̇2,i =Γ̇1,i + z2,i

(
χ21,iv̇i + χ22,i − ω̇1f,i +

η2
2,iz2,i

2

)
− 1
r1,i

θ̃1,i
˙̂
θ1,i −

η2
2,iz

2
2,i

2
+eω,iėω,i

=Γ̇1,i −
η2
2,iz

2
2,i

2
+ z2,i

(
χ21,i (at,i − di)

s
− χ21,iuf,i

s
− χ21,igi

s
− ω̇1f,i + χ22,i +

η2
2,iz2,i

2

)

− 1
r1,i

θ̃1,i
˙̂
θ1,i+eω,iėω,i. (33)

Based on (21) and the definition of eω,i, one obtains ėω,i = −ω−1
s,i eω,i+ ςi, ςi = η−2

2,iω1,iη̇2,i−
η−1
2,i ω̇1,i and ω̇1,i = (χ11,iη2,iχ2,i + χ12,i) ∂ω1,i/∂χ1,i+ξ̇1,i∂ω1,i/∂ξ1,i+μ̇1,i∂ω1,i/∂μ1,i+ėi∂ω1,i/∂ei.

Then, we have

eω,iėω,i ≤
(

1
4
− 1
ωs,i

)
e2ω,i + ς2i . (34)
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With the help of Assumptions 2.1 and 2.2, and Young’s inequality, we have

z2,iχ21,iai
s

≤ z2
2,iχ

2
21,ia

2
i

2q21,is2
+
q21,i
2

≤ z2
2,iχ

2
21,ia

2
imax

2q21,is
2
min

+
q21,i
2
,

−z2,iχ21,idi
s

≤ z2
2,iχ

2
21,id

2
i

2q21,is2
+
q21,i
2

≤ z2
2,iχ

2
21,id

2
imax

2q21,is
2
min

+
q21,i
2
. (35)

Applying Lemma 2.7, one can obtain

−z2,iχ21,igi
s

≤ z2
2,iχ

2
21,ig

2
i

smax

√
z2
2,iχ

2
21,ig

2
i + σ2

i

+
σi
smax

. (36)

Substituting (34) and (36) into (33) yields

Γ̇2,i ≤Γ̇1,i + z2,i

⎛

⎝z2,iχ
2
21,i

(
a2
imax + d2

imax

)

2q21,is
2
min

+
z2,iχ

2
21,ig

2
i

smax

√
z2
2,iχ

2
21,ig

2
i + σ2

i

− χ21,iuf,i
s

+ χ22,i

−ω̇1f,i +
η2
2,iz2,i

2

)

+

(
1
4
− 1
ωs,i

+
η2
2,i

2

)

e2ω,i −
1
r1,i

θ̃1,i
˙̂
θ1,i −

η2
2,iz

2
2,i

2
− η2

2,ie
2
ω,i

2
+

σi
smax

+ ς2i + q21,i. (37)

Define θ1,i = a2
imax + d2

imax and c1,i = q21,i+σi/smax+ς2i . In addition, 1
ωs,i

≥ 1
4 + η2

2,i

2 + 1
2α4,i

with α4,i = k4,i + 2|γ̇|
γ . Then (37) can be written as

Γ̇2,i ≤Γ̇1,i + z2,i

⎛

⎝ θ̂1,iz2,iχ
2
21,i

2q21,is
2
min

− ω̇1f,i +
η2
2,iz2,i

2
+

z2,iχ
2
21,ig

2
i

smax

√
z2
2,iχ

2
21,ig

2
i + σ2

i

− χ21,iuf,i
s

+ χ22,i

⎞

⎠

− θ̃1,i
r1,i

(
r1,iz

2
2,iχ

2
21,i

2q21,is
2
min

− ˙̂
θ1,i

)

− 1
2
α4,ie

2
ω,i −

η2
2,iz

2
2,i

2
− η2

2,ie
2
ω,i

2
+ c1,i. (38)

From (23), one obtains

− χ21,iuf,i
s

≤− z2
2,iω

2
2,i√

z2
2,iω

2
2,i + τ2

2,i

(39)

≤τ2,i −
θ̂1,iz

2
2,iχ

2
21,i

2q21,is
2
min

− z2
2,iχ

2
21,ig

2
i

smax

√
z2
2,iχ

2
21,ig

2
i + σ2

i

− 1
2
α2,iz

2
2,i − z2,iχ22,i + z2,iω̇1f,i −

η2
2,iz

2
2,i

2
.

Based on (24), (30), and (39), we get from (38) that

Γ̇2,i ≤− 1
2
α1,iz

2
1,i −

1
2
α2,iz

2
2,i +

1
r1,i

α3,iθ̃1,iθ̂1,i − 1
2
α4,ie

2
ω,i +

ρi
γ

+ c1,i + τ1,i + τ2,i. (40)
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Using Young’s inequality, one has

θ̃1,iθ̂1,i ≤1
2
θ21,i −

1
2
θ̃21,i. (41)

Substituting (41) into (40) yields

Γ̇2,i ≤ − α1,i
1
2
z2
1,i +

ρi
γ

− α2,i
1
2
z2
2,i − α3,i

1
2r1,i

θ̃21,i − α4,i
1
2
e2ω,i + c2,i, (42)

with

c2,i =
1

2r1,i
α3,iθ

2
1,i + c1,i + τ1,i + τ2,i.

Note that the overall Lyapunov function is Γ2=
∑3

i Γ2,i and its derivative is as

Γ̇2 ≤ −
(
k +

2 |γ̇|
γ

)
Γ2 +

ρ

γ
+ c, (43)

where c =
∑3

i=1 c2,i, i = 1, 2, 3, ρ = max{ρi}, and k = min {k1,i, k2,i, k3,i}.
Theorem 4.4 can be obtained and verified as follows:
1) In the view of Lemma 2.4, the PPTS characteristic of the closed-loop system is expressed,

which means the boundedness of z1,i = χ1,i, z2,i, eω,i, and θ̃1,i can be guaranteed over the
interval t ∈ [0, Tγ). When t ≥ Tγ , the trajectory of the system converges to a prescribed region
such that Γ1 < Γ2 ≤ ρ/o1 = Γ 2. From (16), the boundary of ξ1,i can be further reduced

as |ξ1,i| < ξ1,i with ξ1,i ≤
√

2Γ2

1+2Γ2
. Since z1,i, eω,i, ξ1,i, μ1,i, and η−1

2,i are bounded, it is not
difficult to get that ω1,i and ω1f,i are bounded.

2) According to the definition of ξ1,i in (10), it can be concluded that ei will strictly evolve
within the prescribed performance range given by (12). Then, it can be concluded that the
scaled distance errors reach the steady-state boundary Ω1 = {−μ∞,i < ei < μ∞,i, i = 1, 2, 3}
within a prescribed time Tμ satisfied Tμ < Tγ . Since z2,i, μ2,i, μ2,i

, ω1f,i, η2,i are bounded, χ2,i

and uf,i are bounded and vi is no violating state constraint −μ
2,i
< vi < μ2,i.

3) Under the proposed control scheme, the tracker UAV tracks the uncooperative target
within prescribed performance while maintaining the desired relative position.

For readability purposes, the proposed vision-based adaptive prescribed-time control block
diagram is depicted in Figure 3. Defined ξ1 = [ξ1,1, ξ1,2, ξ1,3]

T, χ1 = [χ1,1, χ1,2, χ1,3]
T, χ2 =

[χ2,1, χ2,2, χ2,3]
T, θ1 = [θ1,1, θ1,2, θ1,3]

T, ω1f = [ω1f,1, ω1f,2, ω1f,3]
T, and ω1 = [ω1,1, ω1,2, ω1,3]

T.

Figure 3 Block diagram of the proposed vision-based adaptive prescribed-time control scheme
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5 Simulation

To demonstrate the effectiveness of the vision-based adaptive prescribed-time control scheme
with prescribed performance, the simulation examples are carried out. Some parameters of UAV
and target are listed in Table 1.

Table 1 Parameter setting

Parameter Value

Initial values lt(0) = [50, 30, 4]T m,

of target vt(0) = [4, 2, 1]T m/s

Initial values lf (0) = [0, 0, 0]T m,

of tracker vf (0) = [0, 0, 0]T m/s

Focal length of the camera p = 12 mm

Size of the target s = 0.7 m

Desired scaled relative position rd = [2.1, 0, 0]T m

Model nonlinearity gi = vf,i sin (lf,i)

Disturbances di = 2 sin(t)

Parameters of PPTS o1 = 0.6, o2 = 1, ρ = 0.001, Tγ = 15 s

k1 = [2, 8, 0.1, 5]T

k2 = [1, 8, 0.1, 5]T

Parameters of controller k3 = [1.2, 8, 0.1, 5]T

r1,i = 0.1, τ1,i = τ2,i = 0.001

q1 = [10, 10, 10]T, δ1 = 0.01

By taking into account the arbitrary maneuvering of the uncooperative target, the acceler-
ation of the target is set as a segmentation function at = a0 + Δ, where

a0 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[1,−0.2, 0.2]T m/s2, 0 s ≤ t < 5 s,

[−0.2, 1.4,−0.5]T m/s2, 18 s ≤ t < 20 s,

[0,−1.4, 0]T m/s2, 28 s ≤ t < 30 s,

[0, 0, 0]T m/s2, else,

Δ = 0.05
[
sin
(
πt

30

)
, sin

(
πt

30

)
, sin

(
πt

30

)]T
m/s2.

Set the parameters of the prescribed performance as μ0 = [47, 30, 13]T m, Tμ = 5 s
and μ∞ = [0.5, 0.5, 0.5]T m. The constraints on the scaled relative velocities are defined as
μ

2,i
= 50 − 20 sin (t) and μ2,i = 140 − 56 sin (t). A pinhole camera is used to provide tar-

get information through the associated image processing algorithm. The visual processing and
tracking algorithm are set at rates of 30 Hz and 100 Hz, respectively. Note that the vision
processing detection and tracking algorithms have different frame rates in practice, which can
be handled by linear interpolation.

The results of the simulation are presented in Figures 4–9. Figure 4 and Figure 5 repre-
sent the tracker-target trajectories in the two-dimensional plane and three-dimensional plane,
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respectively. The curves of relative distance and relative velocity are plotted in Figure 6 and
Figure 7, respectively. As shown in Figures 4–7, it can be concluded that the relative position
l and the relative velocity lv arrive within a very small region of the desired value in time
Tγ . The scaled distance errors ei under the proposed controller are shown in Figure 8 with
the prescribed performance function μ1,i, where ei evolves within the prescribed performance
range and converges to Ω1 = {−0.5 < ei < 0.5, i = 1, 2, 3} within Tμ = 5 s. Figure 9 shows the
trajectories of vi with asymmetric constraints, which confirms that the scaled relative velocities
are confined within the prescribed region. As a result, the UAV follows the target at the desired
relative position ld = [2, 0, 0]T m within the prescribed time Tγ = 15 s.

0 10 20 30 40 50 60
0

250
500

0 10 20 30 40 50 60
0

100
150

0 10 20 30 40 50 60
Time(sec)

0

50

100

Figure 4 Trajectories of tracker and target in two-dimensional plane

Figure 5 Trajectories of tracker and target in a three-dimensional plane
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Figure 6 Relative distances between target and tracker
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Figure 7 Relative velocities between target and tracker

Figure 8 Tracking performance of scaled distance errors
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Figure 9 The scaled relative velocities under constraints

The comparative simulations are performed to prove the performance of the proposed control
scheme in this paper.

Case 1 The proposed performance function is compared with the traditional performance
function in [24], which is set to be h1,i = 97exp(−0.01t) + 0.5 and −h1,i < ei < h1,i for
any time. The trajectories of ei under different performance functions are shown in Figure 10.
From Figure 10, the performance functions guarantee that the scaled distance error ei converges
to [−0.5, 0.5]. Compared to the result of [24], the performance function (11) has a faster
convergence rate, which guarantees that ei converges within predefined bounds at time Tμ = 5 s.
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Figure 10 Comparative results of tracking performance under the proposed PPF

and the conventional PPF in [24]

Case 2 In order to make a fair comparison between the designed controller and the fixed-
time controller in [45], the other settings are the same except for the controller. With the same
initial states, the trajectories of the relative distances and velocities under two controllers are
depicted in Figures 11 and 12. Compared to the fixed-time controller in [45], the designed con-
troller implements the characteristics of PPTS without oscillation and prescribed performance
convergence.
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Figure 11 Comparative results of relative distances under the designed controller

and the fixed-time controller in [45]
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Figure 12 Comparative results of relative velocities under the designed controller

and the fixed-time controller in [45]
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6 Conclusions

This paper proposed a vision-based adaptive prescribed-time control strategy to guarantee
the prescribed transient behavior and steady-state performance for uncooperative target track-
ing of UAV. A prescribed performance function with an unlimited initial value was constructed
to ensure the prescribed-time tracking with the prescribed transient response. Based on the
time-varying nonlinear transformation, the problems of performance constraint and scaled rela-
tive velocity constraint were transformed into a stability problem for the unconstrained system.
Then, an adaptive prescribed-time controller guarantees that all states of the unconstrained sys-
tem were bounded. In the future, we will focus on extending the work to the case of multiple
UAVs.
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