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Abstract In this paper, the authors propose Neumann series neural operator (NSNO) to learn the

solution operator of Helmholtz equation from inhomogeneity coefficients and source terms to solutions.

Helmholtz equation is a crucial partial differential equation (PDE) with applications in various scientific

and engineering fields. However, efficient solver of Helmholtz equation is still a big challenge especially

in the case of high wavenumber. Recently, deep learning has shown great potential in solving PDEs

especially in learning solution operators. Inspired by Neumann series in Helmholtz equation, the

authors design a novel network architecture in which U-Net is embedded inside to capture the multiscale

feature. Extensive experiments show that the proposed NSNO significantly outperforms the state-of-

the-art FNO with at least 60% lower relative L2-error, especially in the large wavenumber case, and

has 50% lower computational cost and less data requirement. Moreover, NSNO can be used as the

surrogate model in inverse scattering problems. Numerical tests show that NSNO is able to give

comparable results with traditional finite difference forward solver while the computational cost is

reduced tremendously.
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1 Introduction

Helmholtz equation is a fundamental partial differential equation (PDE) describing wave
propagation in many areas of physics and engineering such as acoustics, electromagnetics[1],
and medical imaging[2]. One of the most common scenarios is the propagation of waves in
medium with spatially varying properties, which frequently occurs in the scattering of acoustic
and electromagnetic waves[3], such that the governing equation is given by

Δu + k2(1 + q(x))u = f(x), (1)

where u is the scalar field representing the wave, f(x) is the source term, q(x) is the coefficient
representing the inhomogeneity, which is usually compactly supported.

Traditional numerical methods for solving Helmholtz equation in inhomogeneous medium
numerically such as finite difference method (FDM)[4] and finite element method (FEM)[5]

require a fine grid or mesh to capture the high-frequency components of the solution when the
wavenumber is large, which leads to a large scale indefinite linear system. Modern methods
such as Krylov subspace methods[6] for solving large indefinte linear systems are known to have
a slow convergence rate for Helmholtz problem, especially in inhomogeneous medium case[7].
Moreover, in inverse scattering problems, the Helmholtz equation (1) has to be solved repeatedly
with different coefficients q and source terms f , which will be computationally intolerable if these
equations are solved separately. Therefore, solving the inhomogeneous Helmholtz equation still
remains a challenging task and it is of significant importance to seek for the solution operator
mapping the coefficient q and source term f simultaneously to the solution to the Helmholtz
equation (1).

Benefiting from the attractive capability of neural networks in approximating functions[8],
deep learning has made remarkable progress in areas such as image recognition and natural
language processing[9, 10]. Therefore, deep learning is recognized as a promising solution to
solve partial differential equations and the solution operator from the parameter space to the
solution space[11, 12]. By using neural networks with numerous learnable parameters as an
ansatz to represent the solution or the solution operator, and training neural networks based
on properly designed loss functions, the neural network is able to approximate the required
solution or the solution operator.

In the literature, both solving a single PDE and PDE solution operators have attracted
wide attention. In [13], the physics-informed neural network (PINN) taking the residual of the
PDEs as the loss function to train the neural network is presented. Based on PINN, a neural
network based solver for Helmholtz equations in homogeneous background has been proposed
in [14], while plane wave activation functions are utilized in [15] to further improve accuracy.
For PDE solution operators, two general neural operator framework named DeepONet and
Fourier neural operator (FNO) have been developed in [16–18]. In DeepONet, the features
in spatial coordinates and differential equation parameters are extracted separately by the
trunk net and the branch net, and are then combined by dot product, while in FNO, the
mapping from parameter space to solution space is formulated as an iterative integral, where
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the integral kernel is parameterized in Fourier space. Furthermore, physics-informed loss is
incorporate with DeepONet and FNO in [19] and [20], respectively, to explore the possibility of
unsupervised solution operator learning. A solution operator to the heterogeneous Helmholtz
equation mapping the sound speed distribution to the acoustic wavefield is approximated by
neural networks based on an iterative scheme in [21].

However, two important issues are not fully considered in existing neural network based
methods. For one thing, most existing solution operators either map the coefficient in the
differential operator or the source term only to the solution. Since the coefficient q and the
source term f in the Helmholtz equation (1) belong to different function spaces, it is a non-trival
task to learn the solution operator mapping q and f simultaneously to u. For the other, fitting
the high oscillations in the solution to the Helmholtz equation with large wavenumber always
leads to unstable or even divergent training process[22]. Therefore, new network architecture
should be designed to capture the multi-scale features in the solution to Helmholtz equations.

To address the two issues above, in the paper, we propose Neumann series neural operator
(NSNO). Specifically, the solution to Helmholtz equation is rewritten in the form of a Neumann
series. Each term in the Neumann series is the solution to a Helmholtz equation in homogeneous
medium subject to different source terms. For the Helmholtz equation corresponding to the first
term, the source term is exactly f , while q only appears in the source terms of the Helmholtz
equations corresponding to the remaining terms, such that q and f are fully decoupled. More-
over, based on the Neumann series, we only need to solve the operator from the source term
to the solution of Helmholtz equation in homogeneous medium. Instead of using the Fourier
neural operator (FNO) directly to approximate the operator, we propose a novel network archi-
tecture combining FNO and U-Net[23] named UNO to capture the multi-scale property of the
solution. By extracting and fusing information from different spatial resolutions, the proposed
UNO is able to approximate the solution accurately even in cases of large wavenumbers. Our
main contributions can be summarized as follows:

• We propose NSNO, a novel framework for neural operators mapping inhomogeneity co-
efficients and source terms simultaneously to the solution to Helmholtz equation in in-
homogeneous medium based on Neumann series. To capture the multi-scale properties
of Helmholtz equation, a novel network architecture UNO combining FNO and U-Net is
also proposed as the building blocks of NSNO.

• Extensive numerical experiments show that NSNO significantly outperforms the state-of-
the-art FNO with at least 60% lower L2-error. The results also show that compared with
FNO, the proposed UNO architecture is more efficient (50% less in computational cost),
more accurate on multi-scale problems and has less training data requirement.

• We use NSNO as the surrogate model for the forward operator in inverse scattering
problem where the scatterer is sampled from the MNIST dataset. NSNO is able to give
comparable results with the traditional finite difference forward solver with over 20 times
faster in speed.
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The rest of this paper is organized as follows. The operator learning problem is setup in
Section 2. In Section 3, we show the Neumann series reformulation and analyze the convergence
of the Neumann series. The detailed network architecture and training process is presented in
Section 4. Numerical experiments are shown in Section 5, and the application of NSNO in
inverse scattering problem is given in Section 6. At last, conclusion remarks are made in
Section 7.

2 Problem Setup

Consider the 2-dimensional Helmholtz equation in inhomogeneous medium subject to the
Sommerfeld radiation condition at infinity[1],

Δu + k2(1 + q(x))u = f(x), x ∈ R
2, (2)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0, r = |x|, (3)

where k is the wavenumber, i =
√−1 is the imaginary unit, q(x) is the compactly supported

coefficient representing the inhomogeneity, and f(x) is the source term. In practice, the problem
is usually reduced to a bounded domain Ω containing the support of q by introducing an artificial
surface. For simplicity, we take Ω as a rectangle and employ the first-order absorbing boundary
condition[24]:

∂u

∂n
− iku = 0, on ∂Ω. (4)

Note that in applications such as the inverse scattering problem, we normally needs multiple
incident fields to reconstruct the scatterer q better, which can be computational expensive if
the forward equations are solved case-by-case. Therefore, in this paper, we aim to learn the
following operator:

S : L∞(Ω) × L2(Ω) → L2(Ω),

(q, f) �→ u,
(5)

where u is the solution to

Δu + k2(1 + q(x))u = f(x), in Ω, (6)
∂u

∂n
− iku = 0, on ∂Ω. (7)

3 Neumann Series

Note that for the solution operator S, the input q and f belonging to different function
spaces are coupled together, making it difficult to solve the solution operator mapping q and
f simultaneously to u. Therefore, we consider utilizing the Neumann series to decouple q

and f , such that the solution operator S is transformed into another operator G mapping the
source term only to the solution. In this section, we first present some preliminary results on
the variational formulation and stability estimate of Helmholtz equation, based on that the
Neumann series is defined and its convergence property is analyzed.
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3.1 Preliminaries

Suppose Ω is a rectangle in R
2. Consider the Helmholtz equation

Δu + k2u = g(x), in Ω,

∂u

∂n
− iku = 0, on ∂Ω.

(8)

Its variational formulation is defined as

Find u ∈ H1(Ω) such that

a(u, v) = (g, v), ∀v ∈ H1(Ω),
(9)

where
a(u, v) = (∇u,∇v) − k2(u, v) − ik〈u, v〉, (10)

(·, ·) and 〈·, ·〉 denote the L2-inner product on Ω and ∂Ω, respectively.
The existence of the solution to the variational problem (9) and the corresponding stability

estimate are presented in the following theorem.

Theorem 3.1 The variation problem (9) has a unique solution in H1(Ω). Moreover, if
the wavenumber k > 1, there exists a constant C, which only depends on the domain Ω, such
that for any f ∈ L2(Ω), the solution to the problem (9) satisfies

k‖u‖L2(Ω) ≤ C‖g‖L2(Ω). (11)

The proof of Theorem 3.1 can be found in [25]. Based on Theorem 3.1, we can define an
operator G by

G : L2(Ω) → H1(Ω) ⊂ L2(Ω),

g �→ u,
(12)

such that u is the solution to the variational problem (9), i.e., the weak solution to the original
Helmholtz equation. It can be seen that G is linear and bounded in L2(Ω) with ‖G‖L2(Ω) ≤ C/k.

3.2 Neumann Series

Note that the Helmholtz equation (6) can be rewritten as Δu + k2u = f − k2qu, which
inspires the following iterative scheme

Δun+1 + k2un+1 = f − k2qun. (13)

By the definition and linearity of G, the iterative scheme can be rewritten as

un+1 = G(f − k2qun) = G(f) + G(−k2qun) = u0 − (k2Gq)un, (14)

where u0 = G(f). By using the iterative scheme (13) recursively for N steps, we obtain the
Neumann series

uN = u0 − (k2Gq)u0 + (k2Gq)(k2Gq)u0 + · · · + (−k2Gq)Nu0. (15)

The convergence of this Neumann series is presented in the following theorem.
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Theorem 3.2 (Convergence of Neumann series) When ‖q‖L∞(Ω) is sufficiently small, the
Neumann series (15) converges in L2(Ω) as N → ∞.

Proof It suffices to prove ‖ − k2Gq‖L2(Ω) < 1. Note that

‖ − k2Gq‖L2(Ω) = sup
g∈L2(Ω)

‖ − k2G(qg)‖L2(Ω)

‖g‖L2(Ω)
≤ sup

g∈L2(Ω)

Ck‖qg‖L2(Ω)

‖g‖L2(Ω)
≤ Ck‖q‖L∞(Ω). (16)

It can be seen that the Neumann series converges as long as ‖q‖L∞(Ω) < 1
Ck .

Therefore, based on the Neumann series (15), solving the solution operator S from (q, f) to
u can be transformed into solving G, which is the solution operator from the source term only
to the solution of Helmholtz equation.

4 Network Architecture and Training Process

In this section, we first give an overall illustration of the overall network architecture based on
the Neumann series (15). Following that, we further elaborate on the approximation of operator
G by neural networks. Finally, we discuss the training process, where physical-informed loss is
utilized to further improve the performance of the learned operator.

4.1 Network Architecture

Figure 1 shows the overall network architecture of the proposed Neumann series neural op-
erator, referred to as NSNO, where the Neumann series is truncated to N + 1 items†. The
operator G is approximated by N +1 separate neural networks Gθ = {Gθ0 , Gθ1 , · · · , GθN } with
learnable parameters θ = {θ0, θ1, · · · , θN}, respectively. Note that although the neural net-
works {Gθ0 , Gθ1 , · · · , GθN } are all approximation of the same operator G, we still use different
parameters since compared with the neural network reusing the same parameter multiple times,
using different parameters gives the neural network stronger representation ability. The first
neural network takes f as the input and outputs the approximation of the first item v0 ≈ u0

in Neumann series (15). For the rest N neural networks, Gθn takes the multiplication of −k2q

and the output of the last neural network vn−1 as the input, and outputs the approximation of
the (n + 1)-th item vn ≈ (−k2Gq)nu0 in Neumann series (15).

Figure 1 Overall network architecture of NSNO
†In the experiments, we have found that N = 2, i.e., only three items to construct the Neumann series, is

sufficient to give an accurate result, as will be discussed in Subsection 5.5.
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In practice, the domain Ω ∈ R
2 is discretized by a regularly spaced Cartesian grid of

dimension H × W such that functions defined on Ω can be represented by tensors. The input
and output of Gθ has the same spatial dimensions as the grid and has two channels in most
cases representing the real and imaginary parts. For Gθ0 the input has only one channel if f is
real. The detailed structure of Gθ will be specified in Subsection 4.2.

In summary, NSNO takes the tuple (q, f) as input, where f will only be fed into Gθ0 ,
while −k2q will be multiplied with the outputs of Gθ0 , Gθ1 , · · · , GθN−1. In this way, q and f

belonging to different function spaces can be fully decoupled. The output of NSNO is the sum of
the outputs of the N +1 neural networks Gθ. Besides, the intermediate results u0, u1, · · · , uN−1

can also be output if required, adding more flexibility to NSNO.

4.2 Network Architecture of Gθ

In this subsection, we introduce two types of network architecture for Gθ, i.e., the Fourier
neural operator (FNO), which is a direct application of [17], and the U-shaped neural operator,
which is a combination of the UNet architecture[23] and the FNO.

4.2.1 Fourier Neural Operator

One natural idea is to choose Gθ as the Fourier neural operator (FNO) directly. As is shown
in Figure 2, the architecture of FNO starts with a lifting layer, followed by a series of Fourier
layers, and is ended with a projection layer.

Figure 2 Network architecture of FNO

The lifting layer lifts the input to a higher dimension by a fully connected neural network
P such that z0 takes values in R

C . A series of iterative Fourier layers is then applied to z0,
resulting in a sequence of functions z0 �→ z1 �→ · · · �→ zL taking values in R

C . Specifically, the
iterative scheme is given by

zl+1(x) = σ

(∫
Ω

κl(x, y)zl(y)dy + Wlzl(x) + bl

)
, l = 0, 1, · · · , L − 1, (17)

where κl is an integral kernel, Wl is a linear transform, bl is the bias, which are all learnable, and
σ is a nonlinear activation function. By letting κl(x, y) = κl(x − y) and using the convolution
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therorem, the kernel integral in (17) can be rewritten as∫
Ω

κl(x, y)zl(y)dy = F−1 (F(κl) · F(zl)) (x) := F−1 (Rφ · F(zl)) (x), (18)

where F and F−1 are the Fourier transform and its inverse, respectively, Rφ := F(κl) is the
parameterization of κl in the Fourier space with parameters φ. In the discrete case, the Fourier
series is truncated such that higher modes are filtered and only kmax modes are reserved.
Therefore, Rφ can be directly parameterized as a complex-valued kmax ×C ×C tensor. Finally,
zL is projected back to the output space with required dimension with another fully connected
neural network Q.

4.2.2 U-Shaped Neural Operator

The architecture of FNO enables its superior accuracy in various applications, such as
Burger’s equation, Darcy flow, and so on. However, new challenges arise in solving Helmholtz
equations with multi-scale features, especially in the high wavenumber regime due to the couple
between the high frequency wave solutions and the numerical grid[26]. Building on global Fourier
transform filtering higher frequency modes, FNO tends to learn an over-smooth solution. In
multi-scale problems, FNO fails in capturing the intrinsic multis-cale features in the solution,
leading to poor performance.

To address this issue, we utilize the U-Net structure widely used in image processing and
computer vision[27, 28]. By using a hierarchical encoder-decoder structure and skip connections,
U-Net is able to effectively capture and merge information at different scales, thus having
capability to solve multi-scale problems. Therefore, we design a novel network architecture for
Gθ combining both U-Net and FNO structure termed UNO, where U-Net exploits the multi-
scale structure of the solutions, while FNO achieves the transformation from the source term
space to the solution space. Specifically, as is shown in Figure 3, UNO consists of three modules,
i.e., the multiple-input multiple-output (MIMO) encoder, Fourier layers as skip connections and
the multiple-input single-output (MISO) decoder, which will be detailed below.

Figure 3 Network architecture of UNO

Multiple-Input Multiple-Output (MIMO) Encoder In the MIMO encoder module,
we firstly downsample the input twice to spatial dimensions H

2 × W
2 and H

4 × W
4 , respectively.
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The original input and the two downsampled inputs are fed into three encoding blocks to extract
features from different scales. As is shown in Figure 4, in the encoding blocks, the input is firstly
fed into a double convolution module consists of two 3 × 3 convolution layers interleaved by a
non-linear activation function, for which we choose GELU[29] in this paper. The output of the
double convolution module is concatenated with the positional encoding, for which we simply
take the Cartesian coordinates of the grid, and then passed to a shallow convolution module
(SCM), in which we use two stacks of 3 × 3 and 1 × 1 convolutional layers[30].

Figure 4 Network architecture of the encoding block in UNO

Moreover, the output of the EB block is combined with the feature extracted from the
downsampled input, realizing the fusion of features in different scales. Specifically, the output
of the EB block at the (k−1)-th level EBout

k−1 is fed to a convolution layer with a stride of 2 and
a doubled number of output channel, resulting in (EBout

k−1)
↓, which is of the same size as EBout

k

at the k-th level. The two tensors (EBout
k−1)↓ and EBout

k are thus concatenated and passed to a
1 × 1 convolution layer, realizing the integration of the feature extracted from both scales.

Fourier Layers Three separate Fourier layers defined in (17) serve as the skip connections
in UNO, transforming the outputs of the MIMO encoder at different scales from the source
term space to the solution space. Note that the channel dimension C differs in the three scales.
The scale with finer mesh corresponds to fewer channels, which further improves efficiency by
reducing the memory usage and computation cost in larger scales.

Multiple-Input Single-Output (MISO) Decoder The MISO decoder module takes
the three outputs from the Fourier layers at different scales as input. The output of the Fourier
layers at the k-th level FLout

k is fed to a convolution transpose layer with a stride of 2 and a
halved number of output channel, resulting in (FLout

k−1)↑, which is of the same size as FLout
k−1 at

the (k − 1)-th level. The two tensors (FLout
k )↑ and FLout

k−1 are then concatenated and passed
to a 1 × 1 convolution layer. In this way, the features extracted at different scales are merged
together and finally passed to a decoding block, for which we simply choose a 3× 3 convolution
layer in this paper.
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4.3 Training Process

In the training process, suppose that the training set contains Ntrain tuples of (q, f, u)
sampled from the same distribution. The data loss function evaluates the discrepancy between
the exact solution and the solution obtained by NSNO, which is given by

Ldata =
1

Ntrain

Ntrain∑
i=1

‖ui − ûi‖L2(Ω), (19)

where ui = S(qi, fi) is the exact solution to (6) corresponding to (qi, fi), and ûi = NSNO(qi, fi)
is the numerical solution obtained by the proposed NSNO. Furthermore, to avoid overfitting
and improve the generalization ability of the model, we also introduce the physics-informed loss
to minimize the violation of the Helmholtz equation (6):

Lpde =
1

Ntrain

Ntrain∑
i=1

‖Δûi + k2(1 + qi)ûi − fi‖L2(Ω), (20)

where Δûi is computed by a five-point finite difference scheme. The total loss function for
training the propsed NSNO is defined as

Ltotal = Ldata + λLpde, (21)

where λ is the weight balancing the two loss functions.

5 Experiments

In this section, a series of experiments are conducted under various data distributions and
parameters settings to evaluate the performance of the proposed NSNO. Firstly we present the
experiment setup and dataset generation. Following that, we show the benchmark results on
the Helmholtz equation solution operator learning problem to demonstrate the effectiveness of
the proposed NSNO. Besides, we discuss the necessity of introducing the physics-informed loss
and the convergence properties of the Neumann series.

5.1 Experiment Setup

The basic settings of our experiments are listed below.

• Domain discretization In the experiments, the spatial domain Ω is set as Ω= [0, 1]2

and is discretized uniformly to a 256× 256 grid.

• Model hyperparameters Unless otherwise specified, for the Fourier layers in FNO, we
set kmax = 12 and channel dimension C = 32 as is in the original FNO paper, and the
number of iterations is set as L = 4. For the three Fourier layers at different scales in
UNO, we also set kmax = 12 while the channel dimension is set as C = 8, 16, 32 from the
fine level to the coarse level, respectively. Besides, the number of iterations is set as L = 3
such that UNO has similar number of parameters as FNO. We have also found that using
only three Neumann iterations steps is sufficient to give a satisfactory result.
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• Training hyperparamters Unless otherwise specified, the training set has 1000 in-
stances while the test set has 100 testing instances. We use the Adam optimizer[31] to
train the neural network for 500 epochs with an initial learning rate of 0.001 that is halved
every 100 epochs. The batchsize is set as 20. The weight λ in the loss function (21) is
set as 0.05. All the experiments are conducted on a single Nvidia V100 GPU with 32 GB
memory.

• Performance evaluation We use the average relative L2-error on test sets defined as
1

Ntest

∑Ntest
i=1

‖ui−ûi‖L2(Ω)

‖ui‖L2(Ω)
to evaluate the performance of the neural operators, where ui =

S(qi, fi) is the exact solution and ûi = NSNO(qi, fi) is the numerical solution.

5.2 Benchmark Models and Dataset Generation

5.2.1 Benchmark Models

Note that instead of using the Neumann series to decouple q and f , another way is to directly
use FNO or UNO to solve the solution operator mapping the tuple (q, f) to u. Therefore, by
choosing whether to use the Neumann series and the proposed UNO architecture, the following
four models are considered.

• FNO: Directly use FNO to learn the mapping from (q, f) to u.

• UNO: Directly use UNO to learn the mapping from (q, f) to u.

• NS-FNO: NSNO with Gθ chosen as FNO.

• NS-UNO: NSNO with Gθ chosen as UNO.

5.2.2 Dataset Generation

We generate various datasets for the coefficient q and source field f to give a thorough
evaluation on the performance of the proposed models. For each dataset, we generate q and f

separately from one of the following distributions.
The three distributions for q are listed below, along with examples sampled from each

distribution shown in Figure 5.

x
1

x
2

x
4

x
3

y
1

y
2

y
3

(a) Illustration of the T-shaped q (b) T-shaped, example 1 (c) T-shaped, example 2
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(d) Random Circle, example 1 (e) Random Circle, example 2 (f) Random Circle, example 3

(g) Smoothed Circle, example 1 (h) Smoothed Circle, example 2 (i) Smoothed Circle, example 3

Figure 5 Examples of q. (a)–(c): T-shaped distribution. (d)–(f): Random circle distri-
bution with the number of circles from 1 to 3. (g)–(i): Smoothed random circle
distribution with the number of circles from 1 to 3

• T-shaped: As is illustrated in Figure 5(a), for T-shaped distribution, q is compactly sup-
ported with randomly generated T-shaped support. Specifically, four points are generated
uniformly in [0.05, 0.95] and sorted, denoted as x1 < x2 < x3 < x4 as the coordinates
of boundary points in the x-direction, then three points are generated uniformly in [0.05,
0.95] and sorted, denoted as y1 < y2 < y3 as the coordinates of boundary points in the
y-direction. The support of q is then taken as [x2, x3] × [y1, y2] ∪ [x1, x4] × [y2, y3]. Fi-
nally, we rotate q by an angle chosen randomly in {0, π

2 , π, 3π
2 }. The function value in the

T-shaped support is fixed as 0.1.

• Random circle[32]: For the random circle distribution, q is piecewise constant with the
support taken as the union of randomly 1–3 circles. Specifically,

q =
Nc∑
i=1

μiχDi , Di = {(x, y) : (x − xi)2 + (y − yi)2 ≤ r2
i }, Nc ∈ {1, 2, 3}, (22)

where χDi is the indicator function on Di, xi, yi ∼ U [0.2, 0.8], ri ∼ U [0.05, 0.2], μi ∼
U [−1, 1]. Finally, q is normalized such that ‖q‖L∞(Ω) = 0.1. Note that the circles are
allowed to overlap with each other.

• Smoothed circle: The smoothed circle distribution is the smoothed version of the ran-
dom circle distribution such that q ∈ C∞

0 (Ω). Specifically,

q =
Nc∑
i=1

μiχDi exp

⎡
⎣− 1

1 − (x−xi)2+(y−yi)2

r2
i

⎤
⎦ , (23)
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where Di, Nc, χDi , xi, yi, ri, and μi are defined the same as the random circle distribution.
Finally, q is also normalized such that ‖q‖L∞(Ω) = 0.1.

The three distributions for f are listed below, along with examples sampled from each
distribution shown in Figure 6. We normalize each f such that ‖f‖L∞(Ω) = 1.

(a) Gaussian(10) (b) Gaussian(30) (c) Gaussian(50)

(d) GRF (e) Waves (f) Waves

Figure 6 Examples of f . (a)–(c): Gaussian distribution with different rates of decay.
(d): One example sampled from the Gaussian random field (GRF) distribution.
(e)–(f): Two examples sampled from the wave distribution

• Gaussian(R)[33]: f is taken as the sum of nine Gaussians. The centers of the Gaussians
are fixed as ci,j =

(
3i−1
10 , 3j−1

10

)
, i, j = 1, 2, 3. The decay rates of the Gaussians are uni-

formly sampled from [R, 2R], where R is an adjustable hyperparameter. Three examples
with different decay rates are shown in Figures 6(a)–(c). It can be seen that the larger
the decat rates are, the more compactly supported f is.

• GRF[17]: f is generated according to the Gaussian random field (GRF) N (0, (−Δ+9I)−2)
with zero Neumann boundary conditions on the Laplacian.

• Wave: The wave distribution is the weighted sum of six planar waves at different fre-
quencies given as:

f(x, y) =
6∑

i=1

1
μi

cos[πμi(x cos θi + y sin θi)], (24)

where μi ∼ U [2i−1, 1.5 × 2i−1], θi ∼ U [0, 2π]. Examples sampled from this distribution
have explicit multi-scale property resulted from the superposition of waves at different
frequencies.
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After the coefficients q and source term f are generated, the corresponding exact solu-
tions are then computed by finite difference method where the large linear system is solved by
MUMPS[35].

5.3 Experiment Results

In this subsection, we first present the benchmark results for k = 20. Following that,
further experiments are carried out to further show the advantages of the NS-UNO in higher
wavenumber scenario, data efficiency and computational cost.

5.3.1 Benchmark Results

By combining the distributions for coefficient q and source term f , we present the benchmark
results on the following six datasets as is shown in Table 1. It can be seen that compared
with FNO and UNO, both NS-FNO and NS-UNO have lower relative L2-error on the test
sets, indicating the effectiveness of the proposed Neumann series based framework. Besides,
among the four models, NS-UNO achieves the highest accuracy over all datasets, especially
on the datasets where f has strong multi-scale characteristics, such as the GRF distribution.
Compared with the state-of-the-art FNO, NS-UNO achieves at least 60% reduction of relative
error. Therefore, the proposed NS-UNO network architecture cam better capture the multi-
scale features of the solution the Helmholtz equations.

Table 1 Benchmark relative L2-error (×10−2) for k = 20

q f FNO UNO NS-FNO NS-UNO

T-shaped

Gaussian(50) 3.22 2.80 1.34 1.26

Gaussian(30) 4.78 3.10 1.72 1.30

Gaussian(10) 10.23 3.36 4.82 1.36

T-shaped GRF 16.80 15.94 4.87 2.04

Random circle GRF 14.43 11.27 5.48 1.54

Smoothed circle Waves 7.68 6.15 3.08 1.43

Moereover, we observe that as the decay rate of the Gaussians in the Gaussian dataset for
f decreasing, the L2-error of FNO-based methods significantly increases, while that of UNO-
based methods only slightly increases. The reason is that for f consists of Gaussians with
smaller decay rates, the Gaussians decaying at different rates will overlap with each other, as
can be seen from Figures 6(a)–(c), adding more multi-scale features to f . Therefore, UNO-
based methods which are more capable of handling multi-scale inputs outperform FNO-based
methods when the decay rate decreases.

In Figure 7 and Figure 8, we showcase the exact solution and the numerical solution obtained
by the four benchmark models for the dataset with T-shaped q and f generated by GRF as
well as the dataset with smooth circles q and f generated by the wave distribution, respectively.
The first row presents the real and imaginary parts of the exact solution and the corresponding
parameters (q, f), respectively. The real and imaginary parts and the absolute error of FNO,
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UNO, NS-FNO and NS-UNO are listed in the second to the fifth row in Figure 7 and Figure 8,
respectively. It can be seen that in both datasets NS-UNO has the best accuracy. Compared
with the other three models, the error is uniformly small, i.e., the numerical solution only
largely deviates from the exact solution at few points, further indicating the effectiveness of the
proposed NS-UNO.

(a) Ground truth, real part (b) Ground truth, imaginary part (c) q (top left) and f

(d) FNO, real part (e) FNO, imaginary part (f) FNO, error, 16.26%

(g) UNO, real part (h) UNO, imaginary part (i) UNO, error, 15.45%

(j) NS-FNO, real part (k) NS-FNO, imaginary part (l) NS-FNO, error, 5.11%
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(m) NS-UNO, real part (n) NS-UNO, imaginary part (o) NS-UNO, error, 1.94%

Figure 7 Examples of exact solution, numerical solutions and absolute error for dataset
with T-shaped q and GRF f when k = 20

(a) Ground truth, real part (b) Ground truth, imaginary part (c) q (top left) and f

(d) FNO, real part (e) FNO, imaginary part (f) FNO, error, 9.57%

(g) UNO, real part (h) UNO, imaginary part (i) UNO, error, 7.70%
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(j) NS-FNO, real part (k) NS-FNO, imaginary part (l) NS-FNO, error, 2.70%

(m) NS-UNO, real part (n) NS-UNO, imaginary part (o) NS-UNO, error, 1.32%

Figure 8 Examples of exact solution, numerical solutions and absolute error for dataset
with smooth circle q and waves f when k = 20

5.3.2 Higher Wavenumber Scenario

To further test the performance of the models on multi-scale problems, we further present
the results for k = 40, 60 in Figure 9. It can be seen that among the four models, NS-UNO
has the lowest relative error, followed by NS-FNO, indicating the effectiveness of the proposed
NSNO. Besides, for the datasets with f sampled from Gaussian random field or superposition of
planar waves, which have significant multi-scale properties, NS-UNO shows superior advantage
over the other models with nearly one order of magnitude lower relative error, which further
reveals the potential of UNO architecture in dealing with multi-scale problems.

(a) q T-shaped, f Gaussian (30) (b) q T-shaped, f GRF
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(c) q random circles, f GRF (d) q smoothed circles, f wave

Figure 9 Relative L2-error of FNO, UNO, NS-FNO and NS-UNO on four datasets spec-
ified in the subcaptions for wavenumber k = 20, 40, 60

An example taken from the dataset with q being smooth circles and f being waves is shown
in Figure 10 for k = 60. It can be seen that compared with the k = 20 cases shown in Figure 7
and Figure 8, the solutions are more complicated and oscillatory. However, the proposed NS-
UNO is still able to learn the solutions with uniformly small error, showing superior power in
capturing the multi-scale features of the solution the Helmholtz equations.

(a) Ground truth, real part (b) Groundtruth,imaginary part (c) q (top left) and f

(d) FNO, real part (e) FNO, imaginary part (f) FNO, error, 42.10%

(g) UNO, real part (h) UNO, imaginary part (i) UNO, error, 36.42%
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(j) NS-FNO, real part (k) NS-FNO, imaginary part (l) NS-FNO, error, 17.82%

(m) NS-UNO, real part (n) NS-UNO, imaginary part (o) NS-UNO, error, 5.40%

Figure 10 Examples of exact solution, numerical solutions and absolute error for dataset
with T-shaped q and GRF f when k = 60

5.3.3 Less Training Data

Figure 11 shows the relative error on test sets when we reduce the size of the training set
to 800, 600, and 400. It can be seen that NS-UNO still significantly outperforms the other
three models when less data is available, showing that NS-UNO has good data efficiency. We
also observe that when there is insufficient data, UNO has lower relative error than NS-FNO,
while NS-FNO outperforms UNO with the increase of training samples. This reveals that the
difficulty in handling multi-scale problems can be alleviated by increasing the number of training
data.

(a) q T-shaped, f Gaussian (30) (b) q smoothed circles, f wave

Figure 11 Relative L2-error of FNO, UNO, NS-FNO and NS-UNO on two datasets
specified in the subcaptions with the number of training samples N =
400, 600, 800, 1000



432 CHEN FUKAI, et al.

5.3.4 Training Computational Cost

A comparison of the training computational costs for NS-FNO and NS-UNO is given in
Table 2. It can be seen that with similar number of parameters, NS-UNO has 50% lower
computational cost than NS-FNO. This is because the number of channels in the finest level in
UNO is a quarter of the number of channels in FNO, which largely reduces the size of tensors,
leading to less memory usage and less training time. Therefore, NS-UNO is able to give more
accurate results with less computational cost.

Table 2 Training computational costs for NS-FNO and NS-UNO

Model Iters/sec Memory (GB) # of param (M)

NS-FNO 26 12.64 3.56

NS-UNO 12 5.94 3.55

5.4 Necessity of Physics-Informed Loss

In this section, we conducted tests on the weights for the physics-informed loss using the
dataset where q is random circle and f ∼ N (0, (−Δ + 9I)−2). As is shown in Table 3, the
optimal λ is 0.05, which coincides the choice of λ given in Subsection 5.1. When λ = 0, i.e.,
there is no physics-informed loss, both relative error on training and test sets are significantly
higher than those with physics-informed loss, showing the necessity of physics-informed loss.

Table 3 Relative L2-error (×10−2) of NS-UNO versus weight for the physics-informed loss

λ 0 0.01 0.05 0.1 0.15 0.2

Training error 3.09 1.10 1.07 1.24 1.89 1.96

Test error 8.85 1.73 1.54 1.68 2.21 2.29

Generalization error 11.64 2.57 2.42 2.65 3.01 3.07

Moreover, we observe that the gap between training error and test error is considerably
narrowed with the presence of physics-informed loss, indicating that the introduction of physics-
informed loss can improve the generalization ability. To further investigate on the generalization
ability, we test the generalization error of the learned models on a new dataset with f ∼
N (

0, (−Δ + 9I)−
3
2
)
. It can be seen that the although the generalization error is larger than

the test error, the increment from test error to generalization error is larger in the case without
physics-informed loss.

5.5 Influence of the Number of Items in Neumann Series

The relative L2-error versus the number of items to construct the Neumann series is plotted
in Figure 12. It can be seen that three items is sufficient to give an accurate result, and the
relative error of the model with four items is almost the same as the model with three items.
This is because as the depth of the network increases, the gradient backpropagation has to go
through a longer path, leading to gradient vanishing problems[34]. The result also indicates
that one Neumann series block in the neural network actually does not correspond to a single
step in the exact Neumann series.
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Figure 12 Relative L2-error versus the number of items in Neumann series

5.6 Beyond Convergence of Neumann Series

As discussed in (16) in the proof of the convergence of Neumann series, the convergence rate
is associated with the norm of the operator −k2Gq, which is proportional to k and ‖q‖L∞(Ω).
Overly large k and ‖q‖L∞(Ω) will lead to slow convergence and even divergence of the Neumann
series. Surprisingly, we found that the proposed NS-UNO is able to break through this theo-
retical limitation and still gives reasonable results even the exact Neumann series diverges, as
shown in Table 4.

Table 4 Relative L2-error (×10−2) of NS-UNO and Exact Neumann series (NS)

wavenumber ‖q‖L∞(Ω) NS (3 terms) NS (10 terms) FNO NS-UNO

k = 20
0.35 24.39 6.85 10.56 6.42

0.4 44.11 57.12 17.90 9.83

k = 40
0.2 12.42 3.10 17.27 2.92

0.25 25.16 35.52 20.19 4.28

Specifically, we use the dataset where q is T-shaped and f is sampled from Gaussian(30).
We take k = 20 and k = 40, and compute the exact Neumann series by MUMPS. It can
be seen that for k = 20, ‖q‖L∞(Ω) = 0.35 and k = 40, ‖q‖L∞(Ω) = 0.2, the Neumann series
exhibits a slow convergence, while for k = 20, ‖q‖L∞(Ω) = 0.4 and k = 40, ‖q‖L∞(Ω) = 0.25,
the Neumann series diverges, which coincides with the theoretical discussion in Subsection 3.2.
However, the proposed NS-UNO outperforms the exact Neumann series with 10 terms using
only three iteration steps, and can still maintain a relatively low L2-error even the Neumann
series diverges. Besides, NS-UNO still outperforms FNO for large k and ‖q‖L∞(Ω), which is not
affected by this theoretical limitation of Neumann series.

6 Application in Inverse Scattering Problem

In this section, we solve an inverse scattering problem using the learned NSNO as the
forward solver. We first demonstrate the setups for the inverse problem, including the governing
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equation and data measurement. Traditional and neural network-based methods for solving
the inverse problem are then introduced. Following that, we show the reconstructed results
using traditional finite difference method and the proposed NS-UNO as the forward solver,
respectively.

6.1 Problem Setup

We set the incident field as the plane wave uin = eikx·d, where d denotes the incoming
direction. In our experiments, we discrete Ω to a 128×128 grid and generate plane waves from
M = 32 different directions uniformly. Based on (6), the scattered field satisfies

Δus + k2(1 + q(x))us = −k2q(x)uin. (25)

The mapping from the scatter q to the scattered field us can then be given by the solution
operator defined in (5) as q �→ S(q,−k2quin).

As for data, sensors are placed on each grid on the boundary of Ω = [0, 1]2 to collect the
wave field data dm for each incident wave uin

m , m = 1, 2, · · · , M . Therefore, the forward operator
maps to scatter q to the data collected on the boundary Fm(q) = T ◦ S(q,−k2quin

m), where T

denotes the trace operator restricting the wave field on the boundary. The inverse problem is to
reconstruct the scatterer q from the measured data. We generate the wave field measurement
with a fine grid to avoid the inverse crime.

6.2 Solving the Inverse Problem

We solve the inverse problem by the traditional optimization approach, which means recov-
ering an approximation of q by solving the following optimization problem:

argmin
q

J(q) =
M∑

m=1

Jj(q) =
M∑

m=1

1
2
‖Fm(q) − dm‖2

2. (26)

We employ the L-BFGS algorithm[36] to address the minimization problem, initializing the
iterative process with a value of 0. The gradient of the loss with respect to the model is computed
using the adjoint state method[37], which will be detailed in the appendix. Our objective is to
evaluate the effectiveness of utilizing a pre-trained neural network embedded as a forward solver
within the optimization framework, as opposed to the conventional numerical solvers, for which
we choose the finite difference method (FDM). For the relevant finite difference matrix, we
select MUMPS as the direct solver.

The neural network training process is outlined below. The dataset consists of scatterer
samples q, which are extracted from the large MNIST dataset[38]. Specifically, these scatterer
samples are initially resized to a resolution of 112 × 112 from the original MNIST dataset[39]

and further padded to 128× 128. To construct the training/test sets, we select 100/10 samples
for each digit in the ranges 0–9. During the training process, only four plane waves with
directions 0, π

2 , π, 3π
2 are employed. The neural network is trained for a total of 1000 epochs

with the learning rate initialized as 0.001 and halved every 200 epochs. The weight λ in the
loss function (21) is set as 0.1. After the training is completed, the pre-trained neural network
is evaluated on the test set and achieves an average relative L2-error of 1.34%.
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6.3 Reconstructing Results

The reconstruction results obtained with the Finite difference method (FDM) and NS-
UNO as the forward solver are depicted in Figure 13. The visual comparison demonstrates
that NS-UNO produces results on par with the finite difference method, with only a slight 2%
increase in relative L2-error attributed to the inherent error of neural networks in solving forward
problems. However, the key advantage of NS-UNO lies in its remarkable speed improvement.
The neural network’s capability to simultaneously solve all the forward problems essential for
gradient computation results in NS-UNO being more than 20 times faster than the FDM with
MUMPS. As a consequence, the adoption of NS-UNO as a surrogate model for the forward
problem represents a significant enhancement in efficiency without causing substantial damage
to accuracy.

(a) Ground truth (b) FDM, 9.67%, 25.1 s (c) NS-UNO, 11.48%, 1.21 s

(d) Ground truth (e) FDM, 10.41%, 38.4 s (f) NS-UNO, 12.43%, 1.31 s

(g) Ground truth (h) FDM, 11.13%, 51.83 s (i) NS-UNO, 13.38%, 1.11 s

Figure 13 Relative L2-error and reconstruction time of scatterer q using FDM and NS-
UNO as the forward solver

To further show the generalization ability of the proposed NS-UNO, we directly use the
neural network trained with MNIST dataset to recover q from T-shaped and random circle
datasets, as is shown in Figure 14. It can be seen that the shape of the scatterer is accurately
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reconstructed by NS-UNO, and the relative error is also comparable to the finite difference
method.

(a) Ground truth (b) FDM, 22.68%, 29.81 s (c) NS-UNO, 25.25%, 2.76 s

(d) Ground truth (e) FDM, 20.61%, 41.56 s (f) NS-UNO, 26.40%, 1.28 s

Figure 14 Relative L2-error and reconstruction time of scatterer q from T-shaped and ran-
dom circle datasets using MUMPS and NS-UNO trained with MNIST dataset
as the forward solver

7 Conclusions

In this paper, we propose a novel Neumann series neural operator (NSNO) to learn the
solution operator of Helmholtz equation from inhomogeneity coefficients and source term to
solutions. Specifically, by utilizing the Neumann series representation of the solution to the
Helmholtz equation, the solution operator from both inhomogeneity coefficients and source
terms to solutions can be decomposed into the solution operator from only source terms to so-
lutions. A novel network architecture integrating U-Net structure has been designed to capture
the multi-scale features in the solution to the Helmholtz equation.

Extensive experiments have been conducted to test the performance of NSNO. The results
show that NSNO has superior accuracy compared to the state-of-the-art FNO especially in
the large wavenumber case, and has lower computational cost and less data requirement. The
application of NSNO in inverse scattering problem have also been discussed. We have shown
that the proposed NSNO is able to serve as the surrogate model and give competitive results to
traditional finite difference forward solver while the computational cost is reduced significantly.

The major limitation of our work is that the restriction on the maximum value of the inho-
mogeneity coefficients to guarantee the convergence of Neumann series hinders the application
of NSNO in high-contrast medium. In addition, the proposed Neumann series is based on the
specific form of Helmholtz equation. It still remains a challenge to extend NSNO to other



NEUMANN SERIES NEURAL OPERATOR FOR HELMHOLTZ EQUATIONS 437

partial differential equations. For future work, we will try to address these issues by exploring
more efficient network architecture to enlarge the application scope of NSNO, and developing
alternative iterative schemes to deal with the solution operator to other partial differential
equations.
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Appendix

Adjoint State Method

Without loss of generality, we consider the model with one incident wave denoted as u0.
The optimization problem is then given as

min
q

J(q) =
1
2
‖Tu(q)− d‖2

2 (27)

s.t. Δu + k2(1 + q)u = −k2qu0, in Ω, (28)

∂u

∂n
= iku, on ∂Ω, (29)

where T denotes the trace operator restricting the wave field on the boundary. In order to
derive ∂J

∂q , we apply the Lagrange multiplier method. Define the Lagrangian as

L(u, λ, q) = J(q) − (λ, Δu + k2(1 + q)u + k2qu0), (30)

where (f, g) = Re
∫

Ω fg denotes the real part of the inner product in L2(Ω). After two inte-
grations by part we obtain

L(u, λ, q)

=J(q) −
〈

λ,
∂u

∂n

〉
+

〈
∂λ

∂n
, u

〉
− (Δλ, u) − (λ, k2(1 + q)u) − (λ, k2qu0)

=J(q) +
〈

∂λ

∂n
+ ikλ, u

〉
− (Δλ + k2(1 + q)λ, u) − (λ, k2qu0),

(31)

where 〈f, g〉 = Re
∫

Ω
fg denotes the real part of the inner product in L2(∂Ω). Therefore,

∂L
∂q

(q) =
(

T ∗(Tu − d),
∂u

∂q
(q)

)
+

〈
∂λ

∂n
+ ikλ,

∂u

∂q
(q)

〉

−
(

Δλ + k2(1 + q)λ,
∂u

∂q
(q)

)
− (k2λ, u) − (λ, k2u0).

(32)

To eliminate ∂u
∂q (q), we choose λ to satisfy

Δλ + k2(1 + q)λ = T ∗(Tu − d), in Ω,

∂λ

∂n
+ ikλ = 0, on ∂Ω,

(33)
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or equivalently we solve the conjugate of λ satisfying

Δλ + k2(1 + q)λ = T ∗(Tu − d), in Ω,

∂λ

∂n
= ikλ, on ∂Ω.

(34)

The gradient of J with respect to q can then be obtained by

∂J(q)
∂q

=
∂L(q)

∂q
= −k2(λ, u + u0). (35)

The process to compute the gradient of J with respect to q is summarized as follows, where the
forward solver is called twice:

• Solve u satisfying (28) and (29).

• Solve λ satisfying (34).

• Compute the gradient by (35).


