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Abstract In recent years, there has been a growing focus on high-reliability products in industrial

and military fields. Storage plays a crucial role in these products, and as a result, research on storage

reliability has gained more attention. This paper specifically targets a class of products with com-

plex structures that require long-term storage, regular testing, and maintenance. Firstly, an expression

method for system availability is provided based on the reliability structure of the system and the main-

tenance situation of the constituent equipment in storage. Since the expression of system availability

is typically complex and difficult to compute, and the storage life of the system cannot be represented

as an explicit function of the reliability indicators of the constituent equipment, it is challenging to

evaluate the availability and storage life of repairable systems. To address this, the paper proposes a

comprehensive evaluation methodology for assessing the storage reliability of complex repairable sys-

tems based on fiducial inference. This approach is employed to derive point estimates and determine

the lower fiducial limits for both system availability and storage life. Furthermore, simulation results

demonstrate that this comprehensive evaluation method for storage reliability of complex repairable

systems is not only convenient but also highly effective.

Keywords Availability, fiducial method, repairable system, storage life.

1 Introduction

In practical applications, numerous high-reliability products (such as various medical emer-
gency equipment, weaponry, and ammunition) utilized across industrial, commercial, and mili-
tary domains are not immediately put into use upon production. Instead, they are subject to
prolonged storage under specific environmental conditions until required for use. Consequently,
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the assessment of storage reliability represents a crucial quality criterion for such products,
garnering increasing attention[1]. These products typically possess intricate configurations,
comprising diverse equipment components integrated into a cohesive whole. To enhance the
future reliability of these products during their eventual utilization, regular inspections and cor-
responding maintenance are conducted on the constituent equipment throughout the storage
process[2]. Regarding the storage reliability of such complex repairable systems, key indica-
tors reside in system availability and storage life[3]. This paper will delve into a discussion
surrounding these two metrics.

Numerous scholars have dedicated their efforts to exploring the storage reliability of re-
pairable systems. Existing literature primarily focuses on two aspects: The maintenance time
interval and the number of maintenance occurrences within a specific period[4]. The discus-
sion regarding availability primarily focuses on the inference of steady-state availability, while
the discussion regarding instantaneous availability addresses the availability of individual re-
pairable equipment at a given moment[5]. In contrast, there is a dearth of research concerning
the evaluation of storage life for systems. One contributing factor to this situation is the lack
of a unified definition for the storage life of systems at present. One definition hinges on the
longest duration during which the system can meet a specific performance index[6], while an-
other associates it with the life expectancy of the component possessing the shortest life within
the system[3]. Furthermore, most existing methods solely pertain to the assessment of system
availability[7]. Rendering them inadequate for evaluating the storage life of the system, as it
cannot be expressed explicitly as a function of equipment reliability indices[8]. Additionally,
for reliability assessment problems that require considering the actual conditions of equipment
detection and maintenance during storage, the established mathematical models for system re-
liability become more complex, leading to significant challenges in statistical and mathematical
processing[9]. Therefore, in existing literature, the system is often treated as a whole, analyzing
the mechanism of storage reliability variation and establishing predictive models to estimate
the storage life[10]. Furthermore, the previous approach of indirectly obtaining the evaluation
of storage life through comprehensive reliability assessment results lacks specificity and fails to
fully utilize relevant data information from the perspective of storage life itself. As a result, it
introduces significant uncertainties and randomness, greatly diminishing the reference value of
the evaluation outcomes. These factors contribute to the urgent need for solving the issue of
comprehensive assessment of system storage life.

Currently, statistical inference methods employed in comprehensive reliability assessment
encompass frequency statistical methods, Bayesian methods, and fiducial inference. Frequency
statistical methods are primarily divided into two categories: Exact methods and approximate
methods. However, neither of these approaches is applicable for the comprehensive assessment
of system storage life[11]. The Bayesian approach utilizes multiple sources of information to
acquire prior knowledge about the equipment, enabling more accurate estimation of system
reliability indices by combining sample information[12]. For the comprehensive evaluation of
the storage reliability indicators determined by the distribution parameters of the system’s
component equipment and the rules governing detection and maintenance, it is extremely chal-
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lenging to establish the prior distributions for all the relevant parameters. Efron proposed
the Bootstrap method[13], which has also been applied to evaluate the lower confidence limit
of repairable system availability, but it requires a large amount of calculations[14]. Fiducial
inference was first introduced and studied by Fisher[15], a renowned statistician. This method
randomizes parameters based on samples, recognizing that sample randomness leads to infer-
ence result uncertainty, with the fiducial distribution describing such uncertainty. It provides a
means to identify the true objective prior. Scholars have explored various methods for finding
the fiducial distribution. Fraser[16] employed Haar measure to derive the fiducial distribution
under the family of transform distributions. Dawid and Stone[17] obtained the fiducial distribu-
tion under the simple function model through parametric equation solutions. Xu[12] proposed
a general approach for finding the fiducial distribution of parameters based on the family of
pivot distributions. In recent years, many scholars have further studied and applied the fidu-
cial inference method[18–20]. Fiducial inference has also been explored in the field of reliability.
Grubbs[21] and Pierce[22] investigated approximate confidence limits under two-parameter ex-
ponential distributions. By providing the fiducial distribution of the availability of Weibull-type
equipment at any given time, Yu, et al.[5] obtained point estimates and lower confidence lim-
its for maintainable Weibull equipment availability. They further extended these conceptual
methods[17, 22], which can still make precise inferences for small sample situations. In light of
the frequently encountered small sample sizes in complex repairable systems, researchers have
utilized the fiducial inference method to assess their storage reliability[23–25].

The primary contributions of this research are as follows. Firstly, we employ the longest
duration that the system can consistently meet a specific performance index as the definition of
system storage life. Additionally, we establish a storage model for a complex repairable system
based on engineering inspection and maintenance rules. Secondly, by utilizing the complete
sample (i.e., the specific time points when equipment failure occurs and repairs are required)
of the life distribution, we provide the pivotal representation of the equipment’s reliability
function. We have also demonstrated the precision of the lower fiducial limits for reliability
indicators obtained through this approach. Finally, we utilize the fiducial inference method to
derive the point estimation and the lower fiducial limits of system availability and storage life.

The structure of the remaining paper is outlined as follows. Section 2 introduces the storage
model for complex repairable systems, along with the expression of its availability function.
In Section 3, we present the calculation methods for point estimates and lower fiducial limits
of system availability and storage life for these complex repairable systems. In Section 4, a
simulation study is conducted, and the estimation results based on both the complete samples
and interval-type data (in this paper, refers to the data obtained by periodically monitoring
the equipment at fixed intervals during the storage process) are presented separately.

2 The Storage Model for Complex Repairable Systems

2.1 Storage Reliability

Denote Xt as the random state variable of the system at the time t, that is,
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Xt =

⎧
⎨

⎩

1, the system is normal at time t,

0, the system fails at time t.

Definition 1[26] Availability of the system at the time t: The probability that the system
has the specified function at time t under the specified working (storage) conditions and testing
and maintenance rules is called the availability of the product at the time t, which is denoted
as A(t), A(t) = P{Xt = 1}.

Definition 2[6] The storage life of the system: Given the threshold A0 for the availability
detection during the storage phase of a product, the longest duration during which the product’s
availability remains above or equal to the threshold is called the storage life of the product,
which is denoted as T , T = sup{t|A(S) ≥ A0, 0 ≤ S ≤ t}.
2.2 The Storage Model for Complex Repairable Systems

In practicality, the storage and maintenance procedures of products are inherently intricate.
In order to enhance the elucidation of the proposed comprehensive assessment methodology
for product reliability, we initially undertook a suitable simplification of the storage and main-
tenance model, subsequently presenting the system’s availability function in a comprehensible
analytic form.

The complex repairable system, denoted as S discussed in this paper is comprised of M

equipment that form an integrated entity. The storage life distributions of these constituent
equipment can be fitted by Exponential, Weibull, Normal, and Lognormal distributions, re-
spectively. Accordingly, their storage maintenance models are categorized into three scenarios:
“Bad-as-Old,” “Good-as-New,” and “Mixed Maintenance”.

Let A1(t), · · · , AM (t) denote the respective availabilities of the M equipment comprising
the system, and let AS(t) represent the system’s availability at time t. For a specific system, it
is possible to derive the expression for its system availability based on its reliability structure
function and the maintenance conditions of its constituent equipment. However, the expression
for system availability is typically complex. In our discussion here, we refer to a generic system
that represents a class of complex repairable systems. Due to variations in the reliability
structure functions and maintenance approaches among different systems, it is not feasible to
determine the specific expression for system availability. Hence, we simply express the system
availability as AS(t) in a generalized manner. In accordance with the definition of the reliability
structure function, the system’s availability can be expressed in terms of the availabilities of its
constituent equipment as follows: AS(t) = ϕ(A1(t), · · · , AM (t)). Here, the symbol ϕ signifies
the reliability structure function, whose specific form is contingent upon the system’s structure
and the interdependencies among its equipment.

We denote the lifetime distribution function of the equipment as F (t). In previous literature,
the storage maintenance model for repairable equipment and their availability function are
expressed as follows:

1) “Bad-as-Old” storage maintenance model.
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Model Description: Assuming that the equipment commence storage from time zero, sub-
sequent inspections are conducted at fixed intervals of a (a > 0). If the inspection outcome
indicates that the equipment remains operational, it continues to be stored. Conversely, if the
inspection reveals equipment failure, the equipment undergoes maintenance for a fixed duration
of b (0 < b < a). After the completion of the maintenance period, the equipment is restored
to normal functioning and resumes storage. If the result of the maintenance process is equiva-
lent to replacing the equipment with another identical and concurrently stored equipment that
remains unimpaired, this model is referred to as the “Bad-as-Old” storage maintenance model.

Let A(t) denote the availability of the equipment at time t, and let aj = j · a (j =
0, 1, · · · ), bj = aj + b (j = 1, 2, · · · ). The expression for the availability of the equipment
at any given time t can be obtained as follows[5]:

A(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − F (t), a0 < t ≤ a1,

1 − F (t)
1 − F (ak)

A(ak), ak < t ≤ bk (k ≥ 1),

1 − F (t)
1 − F (bk)

(1 − A(ak)) +
1 − F (t)
1 − F (ak)

A(ak), bk < t ≤ ak+1,

(1)

among them,
⎧
⎪⎨

⎪⎩

A(a1) = 1 − F (a1),

A(ak+1) =
1 − F (ak+1)
1 − F (bk)

+
[
1 − F (ak+1)
1 − F (ak)

− 1 − F (ak+1)
1 − F (bk)

]

A(ak).

In this manner, the availability A(t) of the “Bad-as-Old” equipment can be expressed as a
function of the equipment’s storage life distribution F (t), F (aj), F (bj), j = 1, · · · , k.

2) “Good-as-New” storage maintenance model.
Model Description: Assuming that the equipment commence storage from time zero, sub-

sequent inspections are conducted at fixed intervals of a (a > 0). If the inspection outcome
indicates that the equipment remains operational, it continues to be stored. Conversely, if the
inspection reveals equipment failure, the equipment undergoes maintenance for a fixed duration
of c (0 < c < a). After the completion of the maintenance period, the equipment is restored to
normal functioning and resumes storage. If the maintenance result is equivalent to replacing the
device with a brand new and identical one, then this model is referred to as the “Good-as-New”
storage maintenance model.

Let A(t) denote the availability of the equipment at time t, and let aj = j · a (j = 0, 1, · · · ),
cj = aj + c (j = 1, 2, · · · ). The expression for the availability of the equipment at any given
time t(cm ≤ c < cm+1 (m = 0, 1, · · · )) can be obtained as follows[27]:

A(t) = 1 − F0(t) +
m∑

k=1

k∑

j=1

υ
(j−1)
k (1 − F (t − ck)), (2)
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among them

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν
(0)
j = gj , j = 1, 2, · · · ,

ν
(1)
j =

j−1∑

k=1

ν
(0)
k hj−k, j = 2, 3, · · · ,

...

ν
(n)
j =

j−1∑

k=1

ν
(n−1)
k hj−k, j = n + 1, n + 2, · · · .

gn = F (an) − F (an−1), hn = F (an − c) − F (an−1 − c), n = 1, 2, · · · .

In this manner, the availability A(t) of the “Good-as-New” equipment can be expressed as
a function of the equipment’s storage life distribution F (t), F (t − cj), F (aj), F (aj − c) (j =
1, 2, · · · , m).

3) “Mixed Maintenance” storage maintenance model.
Model Description: Assuming that the equipment commence storage from time zero, sub-

sequent inspections are conducted at fixed intervals of a (a > 0). If the inspection outcome
indicates that the equipment remains operational, it continues to be stored. Conversely, if
the diagnostic outcome indicates equipment failure, it necessitates the initiation of restorative
measures. Assuming that the equipment experiences two modes of failure: Minor repair and
major repair, with probabilities of occurrence p and 1− p respectively. If a minor repair failure
occurs, the equipment is restored to normal functioning and continues storage after undergoing
a “Bad as Old” method with a fixed maintenance time b (0 < b < a). If a major repair failure
occurs, the equipment is replaced with a new one after undergoing a “Good-as-New”method
with a fixed maintenance time c (0 < c < a), and resumes storage. This model is referred to as
the “mixed maintenance” storage maintenance model.

Let A(t) denote the availability of the equipment at time t, and let aj = j · a (j = 0, 1, · · · ),
bj = aj + b (j = 1, 2, · · · , ), cj = aj + c (j = 1, 2, · · · ). The expression for the availability of the
equipment at any given time t can be obtained as follows[28]:

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − F (t), 0 < t < b1;

1 − F (t) +
m∑

k=1

k∑

j=1

ν
(j−1)
k F (t − bk)

+
m−1∑

k=1

k∑

j=1

(1 − p)ν(j−1)
k F (t − ck), bm ≤ t < cm;

1 − F (t) +
m∑

k=1

k∑

j=1

ν
(j−1)
k F (t − bk)

+
m∑

k=1

k∑

j=1

(1 − p)ν(j−1)
k F (t − ck), cm ≤ t < bm+1;

(3)
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among them
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν
(0)
j = gj, j = 1, 2, · · · ,

ν
(1)
j =

j−1∑

i=1

ν
(0)
i hj−i, j = 2, 3, · · · ,

...

ν
(k)
j =

j−1∑

i=k

ν
(k−1)
i hj−i, j = k + 1, k + 2,

In this manner, the availability A(t) of the “mixed maintenance” equipment can be expressed
as a function of the equipment’s storage life distribution

R(t), R(t − bj), R(t − cj), R(aj), R(aj − b), R(aj − c), j = 1, 2, · · · , m.

Further, the system availability can be expressed as a function of its component equipment
storage life distribution, and it is a complex function composed of equipment life distribution
containing unknown parameters.

3 Fiducial Method for Comprehensive Evaluation of Reliability

3.1 System Availability Distribution Function Based on the Fiducial Method

3.1.1 Pivot Quantity Representation of Equipment Storage Life Distribution

In the subsequent analysis, the pivotal variable is employed to symbolize various representa-
tive life distributions, specifically Exponential, Weibull, Normal, and Lognormal distributions[28],
and we prove that the lower limit of equipment reliability obtained by this method is accurate.

(i) Case One: Exponential Distribution.
Suppose that the storage life random variable T of equipment can be fitted with an expo-

nential distribution, T ∼ F (t|θ) = 1 − e−t/θ.
Let t1, t2, · · · , tn be the i.i.d. samples of T , and denote the total test time Tn =

∑n
k=1 tk. In

previous studies, the pivot quantity representation of R(t) has been obtained as R(t) d∼ e−t/θ,
θ

d∼ 2Tn

χ2
2n

.

Theorem 3.1 The α quantile of fiducial distribution R(t) d∼ e−t/θ has property Pθ{R ≥
RL} = 1 − α, for any θ.

Proof Since 2Tn

θ ∼ χ2
2n, it’s easy to get the lower confidence limit under the confidence

degree α of reliability R(t) = e−t/θ, that is, Rα(t) = exp{− t·χ2
2n(α)
2Tn

}.
Therefore, the confidence limits derived from the fiducial distribution obtained through the

pivotal quantity method are evidently precise.
By leveraging the relationship F (t) = 1 − R(t) between the distribution of lifetime and

reliability, we can obtain the pivotal quantity representation

F (t) d∼ 1 − e−t/θ(t) (4)

for the distribution of storage lifetime of the equipment.
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(ii) Case Two: Weibull Distribution.
Suppose that the storage life random variable T of equipment can be fitted with a Weibull

distribution T ∼ F (t) = 1 − e−(t/η)m

, t > 0, m (m > 0) is the shape parameter, η (η > 0) is
the scale parameter.

Let t1, t2, · · · , tn be the i.i.d. samples of T , and denote xi = ln ti, i = 1, · · · , n, x =
∑n

i=1 xi/n, s =
√∑n

i=1(xi − x)2/n. Let Wi = m(xi − ln η). Wi follows the standard ex-
treme value distribution. In previous studies, the pivot quantity representation of R(t) has
been obtained as R(t) d∼ e−eθ(t)

, θ(t) d∼ W − x−ln(t)
s V .

Theorem 3.2 The α quantile of fiducial distribution R(t) d∼ e−eθ(t)
has property Pθ{R ≥

RL} = 1 − α, for any θ.

Proof From E[x] = μ − γσ, var[x] = π2

6 · σ2, where Euler’s constant γ = 0.5772.
Take the torque estimation of parameters μ and σ as μ̂ = x + γ ·

√
6

π · s, and σ̂ =
√

6
π · s.

Take the torque estimation of reliability R as R̂x = exp{−exp{− μ̂−ln t
σ̂ }}.

Then the reliability point estimation can be rewritten as follows:

R̂x =exp
{

−exp
{

− x +
√

6
π · γ · s − ln t

√
6

π · s

}}

=exp
{

−exp
{

− γ − π√
6
· x − ln t

s

}}

=exp
{

−exp
{

− γ − π√
6
· σ · w + μ − ln t

σ · V
}}

=exp{−exp
{

− γ +
π√
6
· −

μ−ln t
σ − w

V

}}

=exp
{

−expv

{

− γ +
π√
6
· log log R−1 − w

V

}}

.

R̂X stands for replacing the sample observation value R̂x with the sample X .
Denotes G(x, θ) = Pθ{R̂X ≥ R̂x}, θ = (μ, σ).

Then G(x, θ) = G̃(x, R) def= PR{w − V · x−ln t
s ≥ log log R−1}, R = e−e−

μ−ln t
σ .

According to the sample space ranking method, for a given confidence degree α, the lower
confidence limit of reliability is RL(x) = infR{R : G̃(x, R) > α, 0 ≤ R ≤ 1}.

Since

RL(x) = inf
R
{R : G̃(x, R) > α}

= inf
R

{

R : PR

{

w − V · x − ln t

s
≥ log log R−1

}

> α

}

= inf
R

{

R : PR

{

exp
{

− exp
{

w − V · x − ln t

s

}}

≤ R

}

> α

}

.

RL(x) is precisely the α-fraction of the random variable exp{−exp{w − V · x−ln t
s }} under

the given statistic (x, s2).
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By leveraging the relationship F (t) = 1 − R(t) between the distribution of lifetime and
reliability, we can obtain the pivotal quantity representation

F (t) d∼ 1 − e−eθ(t) (5)

for the distribution of storage lifetime of the equipment.
(iii) Case Three: Normal Distribution.
Suppose that the storage life random variable X of equipment can be fitted with a Normal

distribution X ∼ N(μ, σ2), μ(μ ∈ R) is the mean of the distribution and σ (σ2 > 0) is the
variance of the distribution.

Let x1, x2, · · · , xn be the i.i.d. samples of X , denote x = 1
n

∑n
i=1 xi, s2 = 1

n

∑n
i=1(xi − x)2,

and denote Yi = xi−μ
σ , Y = 1

n

∑n
i=1 Yi, V 2 = 1

n

∑n
i=1(Yi − Y )2. In previous studies, the pivot

quantity representation of equipment reliability R(t) has been obtained as R(t) d∼ 1 − φ(Y +
V t−x

s ).

Theorem 3.3 The α quantile of fiducial distribution R(t) d∼ 1−φ(Y +V t−X
S ) has property

Pθ{R ≥ RL} = 1 − α, for any θ.

Proof The point estimate of reliability R is R̂x = 1 − φ( t−x
s ).

By simple derivation, we can obtain R̂x = 1 − φ( t−μ−σY
σV ) = 1 − φ(

t−μ
σ −Y

V ) = 1 − φ(λ−Y
V ),

λ = t−μ
σ . In this case, Rx = 1 − φ(λ). Therefore, calculating the lower confidence limit for the

reliability R is equivalent to finding the upper confidence limit for parameter λ at the same
confidence level α.

R̂X stands for replacing the sample observation value R̂x with sample X, using the sample
space ranking method, it can be seen that λα = inf{λ : Pθ{R̂x ≥ R̂X} ≤ α}.

Since R̂x ≥ R̂X ⇐⇒ φ(λ−Y
V ) ≤ 1 − R̂X ⇐⇒ φ−1(R̂X) ≤ −λ−Y

V , then Pθ{R̂x ≥ R̂X} ≥
α ⇐⇒ P̂θ{λ ≤ −φ−1(R̂X)V + Y } ≥ α,

The above equation shows that λα is precisely the α-fraction of the random variable−φ−1(R̂X)
V + Y .

In addition, it can be obtained from R̂X = φ(− t−x
s ) to φ−1(R̂X)V + Y = t−x

s V + Y .
By comparing this formula with the fiducial distribution obtained by the pivot method, we

know that the corresponding fiducial lower limit is the exact confidence limit.
By leveraging the relationship F (t) = 1 − R(t) between the distribution of lifetime and

reliability, we can obtain the pivotal quantity representation

F (t) d∼ φ

(

Y + V
t − x

s

)

(6)

for the distribution of storage lifetime of the equipment.
(iv) Case Four: Lognormal Distribution.
Suppose that the storage life random variable X of equipment can be fitted with a Lognormal

distribution lnX ∼ N(μ, σ2), μ (μ ∈ R) is the mean of the distribution and σ (σ2 > 0) is the
variance of the distribution.

Let x1, x2, · · · , xn be the i.i.d. samples of X , denote x = 1
n

∑n
i=1 xi, s2 = 1

n

∑n
i=1(lnxi−x)2,

and denote Yi = lnxi−μ
σ , Y = 1

n

∑n
i=1 Yi, V 2 = 1

n

∑n
i=1(Yi − Y )2. In previous studies, the pivot
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quantity representation of equipment reliability R(t) has been obtained as R(t) d∼ 1 − φ(Y +
V lnt−x

s ).

Theorem 3.4 The α quantile of fiducial distribution R(t) d∼ 1−φ(Y +V lnt−X
S ) has property

Pθ{R ≥ RL} = 1 − α, for any θ.

Proof The point estimate of reliability R is R̂x = 1 − φ( lnt−x
s ).

By simple derivation, we can obtain R̂x = 1−φ( lnt−μ−σY
σV ) = 1−φ(

lnt−μ
σ −Y

V ) = 1−φ(λ−Y
V ),

λ = lnt−μ
σ . In this case, Rx = 1 − φ(λ). Therefore, calculating the lower confidence limit for

the reliability R is equivalent to finding the upper confidence limit for parameter λ at the same
confidence level α.

R̂X stands for replacing the sample observation value R̂x with sample X , using the sample
space ranking method, it can be seen that λα = inf{λ : Pθ{R̂x ≥ R̂X} ≤ α}.

Since R̂x ≥ R̂X ⇐⇒ φ(λ−Y
V ) ≤ 1 − R̂X ⇐⇒ φ−1(R̂X) ≤ −λ−Y

V , so Pθ{R̂x ≥ R̂X} ≥ α ⇐⇒
P̂θ{λ ≤ −φ−1(R̂X)V + Y } ≥ α. The above equation shows that λα is precisely the α-fraction
of the random variable −φ−1(R̂X)V + Y .

In addition, from R̂X = φ(− lnt−x
s ) to φ−1(R̂X)V + Y = lnt−x

s V + Y . By comparing this
formula with the fiducial distribution obtained by the pivot method, the corresponding fiducial
lower limit is the exact confidence limit.

By leveraging the relationship F (t) = 1 − R(t) between the distribution of lifetime and
reliability, we can obtain the pivotal quantity representation

F (t) d∼ φ

(

Y + V
lnt − x

s

)

(7)

for the distribution of storage lifetime of the equipment.
Generally, life distributions belonging to the ‘location-scale’ distribution family and the log-

arithmic ‘location-scale’ distribution family have concise pivot quantity expressions. Moreover,
the lower fiducial limit for reliability obtained using the aforementioned method possesses the
property Pθ{R ≥ RL} = 1 − α, which holds for any value of θ[12].

3.1.2 Fiducial Distribution of System Availability

By substituting Equations (4)–(7) from Subsection 3.1.1 into the expression (1)–(3) of the
availability function for each piece of equipment in Subsection 2.2, we can derive the pivotal
representation of the equipment’s availability. This pivotal representation is then substituted
into the reliability structure function AS(t) = ϕ(A1(t), · · · , AM (t)) of the system to obtain the
fiducial distribution of the system’s availability.

Since it is difficult to provide the specific expression of the fiducial distribution function,
their distributions can be approximated using Monte Carlo methods.

3.2 Fiducial Method for Comprehensive Evaluation of System Storage Reliability

Let the system S be composed of M equipment, and X = {−→X1, · · · ,
−−→
XM} be a set of complete

samples of the life distribution of its component equipment.
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3.2.1 System Availability

The algorithm for computing the point estimate and the lower fiducial limit of the system
availability is presented below.

Step 1 Based on the complete sample X = {−→X1, · · · ,
−−→
XM} of M equipment, construct

the pivot quantity Φ = {−→φ1, · · · ,
−→
φM} corresponding to the life distribution parameter Θ =

{−→θ1 , · · · ,
−→
θM} of each kit by using the pivot quantity representation method provided in Sub-

section 3.1.1.
Step 2 According to the method provided in Subsection 3.1.1, the pivot quantity Φ is

substituted into the life distribution function of each piece of equipment to obtain the pivot
quantity representation of the storage life distribution function:

{F1(t|−→θ1), · · · , FM (t|−→θM )} =⇒ {F1(t|−→φ1), · · · , FM (t|−→φM )}.

Step 3 According to the method provided in Subsection 2.2, through the relationship
between the equipment life distribution function and the equipment availability function, the
pivot quantity representation of the equipment availability function can be expressed as follows:

{F1(t|−→φ1), · · · , FM (t|−→φM )} =⇒ {A1(t|−→φ1), · · · , AM (t|−→φM )}.

Step 4 Substitute the pivot quantity representation of the availability function of each
equipment into the system availability function AS(t) = ϕ(A1(t), · · · , AM (t)) to obtain the
pivot quantity representation of the system availability function:

{A1(t|−→φ1), · · · , AM (t|−→φM )} =⇒ A(t|Φ) = ϕ({A1(t|−→φ1), · · · , AM (t|−→φM )}).

Step 5 Sample the pivot quantity representation corresponding to the storage life distribu-
tion parameters of each of piece equipment for N times to obtain Φ(n) = {−→φ1

(n), · · · ,
−→
φM

(n)},
n = 1, · · · , N , and then substitute it into Steps 2, 3, and 4 successively to get A(m)(t|Φ), m =
1, · · · , N as the approximate fiducial distribution of system availability.

Step 6 Take the mean value of A(m)(t|Φ), m = 1, · · · , N obtained in Step 5 as the point
estimate value of availability. For a given level 1−α, the α quantile AL(α) of the approximate
fiducial distribution A(m)(t|Φ), m = 1, · · · , N is calculated as the lower fiducial limit of the
system availability.

Figure 1 is a flow chart for calculating the fiducial distribution of system availability.
This paper presents a methodology for calculating the lower fiducial limit of system avail-

ability at a specific time t. The “t moment” can refer to any given point in time, thereby
enabling the theoretical derivation of the lower fiducial limit for system reliability at each mo-
ment within a given period and facilitating the construction of an associated curve. In practical
applications, it is possible to calculate the lower fiducial limit of system availability at densely
distributed time points during the relevant time period. These calculated values can then be
plotted on a graph and compared with the corresponding graph representing the true system
availability, enabling a comprehensive analysis of the assessment results’ efficacy at different
points in time.
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Figure 1 Flowchart of the algorithm for lower fiducial limit of system availability

3.2.2 System Storage Life

The algorithm for computing the point estimate and the lower fiducial limit of the system
storage life is presented below.

Step 1 According to the method provided in Subsection 3.2.1, take a sufficiently small
time interval c, calculate A

(i)
s (nc|Φ) successively, and compare it with A0, n = 1, 2, · · · . When

A
(i)
s (nc|Φ) is less than A0 for the first time, denote T

(i)
s = (n − 1)c as an observed value of

system storage life.
Step 2 Repeat Step 1 N times to obtain an approximate fiducial distribution T

(i)
s , i =

1, · · · , N for the storage life of the system.
Step 3 Take the mean value of T

(i)
s , i = 1, · · · , N obtained in Step 2 as the point estimate

value of storage life. For a given level 1 − α, the α quantile TL(α) of the approximate fiducial
distribution T

(i)
s , i = 1, · · · , N is calculated as the lower fiducial limit of the system storage life.

Figure 2 is a flow chart for calculating the fiducial distribution of system storage life.
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Figure 2 Flowchart of the algorithm for lower fiducial limit of system storage life

3.2.3 Preprocessing of Equipment Life Test Data

The aforementioned fiducial inference method requires the experimental data to be in the
form of complete samples. However, in practical scenarios, the obtained storage life test data
for equipment are typically interval-censored data obtained by periodically examining them
at fixed intervals during the storage process. In such cases, the approach proposed in this
paper relies on having a complete sample of equipment life test data. Here, a complete sample
refers to the specific time point at which the equipment fails and requires repair. In this study,
complete samples are employed for evaluation purposes, showcasing and analyzing the method’s
ideal effectiveness. Nonetheless, in practical applications, equipment is typically tested at fixed
intervals, providing information about the failure occurrence within a certain time period but
not the precise time of failure. To address this limitation, preprocessing of the obtained interval
data is necessary to generate virtual complete samples. The quantile filling algorithm, based
on the moment invariant criterion, can be employed to convert the data into realistic complete
samples in advance[24, 29, 30]. Subsequently, the fiducial inference method can be applied to
assess the storage reliability of the system.

4 Simulation Results and Analysis

4.1 Simulation Example of System Availability at a Given Time t

The system under consideration consists of 9 equipment, and its system structure is il-
lustrated in Figure 3. The life distribution and maintenance status of the equipment that
comprise the system are presented in Table 1. During the storage procedure, initiating from
time zero, regular inspections are conducted on each constituent equipment of the system with
a periodicity of a = 1.0 year. If the test results indicate normal functioning, the equipment is
retained for storage. Conversely, if the test results reveal any signs of failure, the correspond-
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ing maintenance mode is implemented to rectify the issue. The “Bad as Old” maintenance
approach requires a minor repair and maintenance period of b = 0.25 years, while the “Good
as New” repair methodology necessitates a comprehensive overhaul and maintenance period of
c = 0.5 years. In cases where “mixed maintenance” is adopted, minor repairs are performed
with a probability of p, while significant repairs occur with a probability of 1 − p. We desig-
nate the temporal reference point for the system as t = 20 years, with confidence levels set at
γ = 0.7, 0.8, 0.9 respectively. For each equipment, the sample sizes for storage life experiments
(complete samples and interval-type data) are set as n = 15, 30, 50. We approximate the fidu-
cial distribution AS(t) using empirical distributions based on N = 1000 corresponding values
of A

(i)
S (t), i = 1, 2, · · · , N . The simulation is repeated N∗ = 2000 times.

u1

u2 u3

u4

u5

u6

u7

u8 u9

Figure 3 System structure diagram composed of 9 equipment

(i) The system structure.
(ii) Equipment information.

Table 1 System component equipment information

Equipment Life distribution Parameter value Maintenance situation

u1 Normal distribution μ = 77, σ = 15 bad-as-old

u2 Weibull distribution m = 80, η = 3 mixed maintenance (p = 0.5)

u3 Lognormal distribution μ = 3.8, σ = 0.4 good-as-new

u4 Normal distribution μ = 90, σ = 10 bad-as-old

u5 Exponential distribution θ = 100 bad-as-old

u6 Lognormal distribution μ = 3.5, σ = 0.6 bad-as-old

u7 Exponential distribution θ = 100 good-as-new

u8 Weibull distribution m = 15, η = 2.9 good-as-new

u9 Normal distribution μ = 90, σ = 20 bad-as-old

4.1.1 Analysis of Simulation Results

According to the data presented in Table 2 and Table 3, when dealing with complete samples,
the disparity between the coverage and the intended confidence degree γ gradually diminishes
as the sample size increases. The coverage surpasses the desired confidence degree, indicating
a conservative estimation. The estimated standard deviation is relatively small. The estimated
lower limit mean has a minimal deviation from the true value of system availability, and as
the sample size increases, the estimated lower limit mean also increases. This indicates that
the estimation becomes more precise with larger sample sizes. In the case of interval-type
data, the deviation between coverage and the target confidence degree γ is more noticeable
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compared to complete samples. However, some values slightly fall below the desired confidence
degree, suggesting that the estimations may be slightly aggressive. Similar to complete samples,
the standard deviation of the estimate is small and decreases as the sample size increases.
The estimates of the lower limit mean demonstrate good agreement with the actual system
availability values, with larger sample sizes leading to more accurate estimations.

Table 2 List of availability estimates of the system at a given time (complete sample)

t = 20, a = 1.0, b = 0.25, c = 0.5, A0 = 0.9306

Point estimation
Degree of

confidence

Sample

size

Lower

mean

Standard

deviation

Coverage

rate

0.9311

0.9305

0.9407

0.7

15

30

50

0.9273

0.9289

0.9294

0.0070

0.0042

0.0030

0.8250

0.7745

0.7140

0.9311

0.9305

0.9407

0.8

15

30

50

0.9245

0.9274

0.9283

0.0072

0.0042

0.0031

0.9100

0.8900

0.8570

0.9311

0.9305

0.9407

0.9

15

30

50

0.9202

0.9250

0.9267

0.0079

0.0045

0.0033

0.9735

0.9600

0.9525

Table 3 List of availability estimates of the system at a given time (interval-type data)

t = 20, a = 1.0, b = 0.25, c = 0.5, A0 = 0.9306

Point estimation
Degree of

confidence

Sample

size

Lower

mean

Standard

deviation

Coverage

rate

0.9359

0.9322

0.9287

0.7

15

30

50

0.9286

0.9298

0.9301

0.0045

0.0024

0.0014

0.7660

0.6775

0.6855

0.9359

0.9322

0.9287

0.8

15

30

50

0.9266

0.9287

0.9294

0.0053

0.0028

0.0016

0.8980

0.8460

0.8795

0.9359

0.9322

0.9287

0.9

15

30

50

0.9230

0.9268

0.9282

0.0067

0.0035

0.0020

0.9730

0.9585

0.9730

4.2 Simulation Example of System Storage Life

The system under consideration consists of 5 equipment, and its system structure is illus-
trated in Figure 4. The life distribution and maintenance status of the equipment that comprise
the system are presented in Table 4. During the storage procedure, initiating from time zero,
regular inspections are conducted on each constituent equipment of the system with a periodic-
ity of a = 1.0 year. If the test results indicate normal functioning, the equipment is retained for
storage. Conversely, if the test results reveal any signs of failure, the corresponding maintenance
mode is implemented to rectify the issue. The “Bad as Old” maintenance approach requires
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a minor repair and maintenance period of b = 0.25 years, while the “Good as New” repair
methodology necessitates a comprehensive overhaul and maintenance period of c = 0.5 years.
In cases where “Mixed Maintenance” is adopted, minor repairs are performed with a probability
of p, while significant repairs occur with a probability of 1 − p. We establish the threshold for
system storage availability as A0 = 0.85, selecting a calculation interval of d = 0.05 years to
determine the system’s availability. Utilizing this information, we can derive the theoretical
value of the system’s storage lifespan as t0 = 93.95 years. The confidence levels are respectively
established as γ = 0.7, 0.8, 0.9. For each equipment, the sample sizes for storage life experi-
ments (complete samples and interval-type data) are set as n = 15, 30, 50. We approximate the
fiducial distribution TS using empirical distributions based on N = 100 corresponding values
of TS with T i

S , i = 1, 2, · · · , N . The simulation is repeated N∗ = 300 times.
(i) The system structure.

u1

u3

u4

u5u2

Figure 4 System structure diagram composed of 5 equipment

(ii) Equipment information.

Table 4 System component equipment information

Equipment Life distribution Parameter value Maintenance situation

u1 Lognormal distribution μ = 10, σ = 0.5 bad-as-old

u2 Normal distribution μ = 95, σ = 1 bad-as-old

u3 Exponential distribution θ = 60 mixed maintenance (p = 0.9)

u4 Weibull distribution m = 80, η = 1.5 good-as-new

u5 Normal distribution μ = 90, σ = 30 good-as-new

4.2.1 Analysis of Simulation Results

Under the aforementioned specific model, the data in Table 5 and Table 6 reveal that,
in the case of complete samples, there is a small deviation between the coverage rate and
the confidence degree γ for the lower fiducial limit. Initially, with a smaller sample size, the
estimated standard deviation exhibits more significance. However, as the sample size increases,
the estimated standard deviation gradually diminishes. The mean estimation of the lower limit
closely aligns with the theoretical value of the system’s storage life showcasing minimal disparity.
In the case of interval-type data, a similar trend can be observed. The deviation between the
coverage and the confidence degree γ remains small. As the sample size increases, the estimated
standard deviation decreases. The mean value estimation of the lower limit also aligns closely
with the theoretical value of the system’s storage life, albeit with minor differences.
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Table 5 List of system storage life estimates (complete sample)

a = 1.0, b = 0.25, c = 0.5, A0 = 0.85, T0 = 93.95

Point estimation
Degree of

confidence

Sample

size

Lower

mean

Standard

deviation

Coverage

rate

93.7521

94.0262

93.9957

0.7

15

30

50

93.8532

93.9218

93.9118

0.3056

0.1953

0.1215

0.7367

0.6900

0.7467

93.7521

94.0262

93.9957

0.8

15

30

50

93.7443

93.8617

93.8722

0.3165

0.1823

0.1241

0.8300

0.7733

0.8400

93.7521

94.0262

93.9957

0.9

15

30

50

92.9650

93.7812

93.8200

7.6371

0.2001

0.1303

0.8933

0.8700

0.9067

Table 6 List of system storage life estimates (interval-type data)

a = 1.0, b = 0.25, c = 0.5, A0 = 0.85, T0 = 93.95

Point estimation
Degree of

confidence

Sample

size

Lower

mean

Standard

deviation

Coverage

rate

93.4213

93.8603

94.0215

0.7

15

30

50

93.6813

93.9477

93.9430

5.4400

0.1962

0.1590

0.5367

0.6100

0.6300

93.4213

93.8603

94.0215

0.8

15

30

50

92.9533

93.8857

93.9037

9.3198

0.1962

0.1590

0.6500

0.7400

0.7167

93.4213

93.8603

94.0215

0.9

15

30

50

89.9660

93.4723

93.8382

18.3816

5.4197

0.1637

0.8033

0.8800

0.8367

5 Conclusions

For the three storage maintenance models of “Bad as Old”, “Good as New”, and “mixed
maintenance”, availability emerges as the paramount measure, which can be epitomized by
the function of the storage life distribution at a series of specific temporal instances. The life
(or storage life) distributions employed in the realm of reliability engineering all belong to the
‘location-scale’ distribution family and the logarithmic ‘location-scale’ distribution family. They
all possess a concise pivot quantity representation. By substituting distinct values from these
distributions into the expression governing the equipment availability function and the system
reliability structure-function, one can attain the pivot quantity representation of the system’s
availability function. Subsequently, the fiducial inference method can be employed to derive its
approximate distribution through simulation, facilitating the evaluation of its reliability.

Given that the practical data obtained through periodic detection consist of interval data,
a vital consideration arises: The fiducial method proposed in this paper relies on complete
sample data as its foundational requirement. Consequently, it becomes imperative to preprocess
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the data and convert them into fully virtual samples prior to practical implementation. By
employing this approach, one can effectively apply the quantile filling algorithm, which operates
based on the moment invariant criterion. Furthermore, it is worth noting that while the model
under discussion primarily pertains to the repairable storage model, it is indeed plausible to
regard the unrepairable system as a distinctive case within this framework.

Based on the simulation findings, it is evident that the utilization of the fiducial inference
method enables the assessment of storage reliability for the system, encompassing both com-
plete sample and interval data scenarios. Notably, more precise outcomes are achieved when
employing full samples.
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