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Abstract This paper presents a new study on modeling and optimization of trajectory and posture

for the super-giant (SG) slalom of alpine skiing. It is the first time that a Three-Rigid-Body-Particle

model based on rigorous derivations and stability analysis is established to represent skiers trajectory

and posture characteristics, as it is more accurate than the single-rigid-body model which is commonly

used in existing studies. In addition, the Radau pseudospectral method is applied to solve the trajectory

and posture optimization problem in order to obtain better skiing trajectory, skiing posture, and some

key kinematic parameters of skiers. Moreover, this paper analyzes the effects of different body types,

minimum turning radii, and flexor and extensor strength of knees and hip joint on skiing performance.

Finally, based on the findings of the study, some advice about how to improve the performance of the

SG slalom in view of science and technology is given to skiers and coaches for reference.

Keywords Alpine skiing modeling, posture optimization, Three-Rigid-Body-Particle model, trajec-

tory optimization.

1 Introduction

The traditional training guidance mode relying on the experience of coaches no longer meets
the requirements of competitive sports. More sports need to exploit scientific and technological
approaches to support sports development. The complex systems approach proposes a deep
change in sport science and provides more precise and accurate guidance for the selection and
training of athletes[1]. The role of technology in competitive sports is becoming more prominent,
and athletes increasingly rely on scientific and personalized training plans.

ZHANG Yijia · FEI Qing (Corresponding author) · YAO Xiaolan · SUN Jian · ZHANG Yanjun · CHEN Zhen

School of Automation, Beijing Institute of Technology, Beijing 100081, China. Email: 15601259677@163.com;

feiqing@bit.edu.cn; yaoxiaolan@bit.edu.cn; sunjian@bit.edu.cn; yanjun@bit.edu.cn; chenzhen76@bit.edu.cn.
∗This research was supported in part by the Key Technology Research and Demonstration of National Scientific

Training Base Construction of China under Grant No. 2018YFF0300800, in part by the National Natural Science

Foundation of China under Grant No. 62173323, and in part by Beijing Institute of Technology Research Fund

Program for Young Scholars.
�This paper was recommended for publication by Editor HE Wei.



582 ZHANG YIJIA, et al.

Sport is a complex and changeable system. In this sense, the complex systems approach
provides a perspective of the foremost interest when it comes to analyze sports[2]. It has been
widely verified in the literature that the complex systems approach can significantly improve
athletic performance. For instance, the reference [3] addressed the correlation between driving
distance and isokinetic strength in golf and proposed an optimized training scheme aimed at
improving the performance of golfers was proposed. The reference [4] analyzed the World Cup
Final 2006 between France and Italy by means of relative phase to understand the complexity
of soccer. Some skating techniques for the straights based on the optimization of a simulation
model was proposed in [5]. In this paper, we focus on how to improve the performance of
the super-giant (SG) slalom of alpine skiing in view of science and technology. The modeling
and optimization of alpine skiing has been widely addressed in the literature. The reference [6]
described the entire ski system as a particle model and optimized the skiing trajectory. In [7],
the movement of the “skier-ski” system on the slope was regarded as the movement of a particle
in the inertial system. To describe the skiing system more accurately, inverted pendulum models
were addressed to simulate the slalom of alpine skiing in [8–10]. A pole model was proposed
in the reference [11] to describe the ski-skier system as a particle connected with a weightless
rod. There is also some research on the optimization of skiing. A program is developed for
numerical simulation and optimization of the pacing strategy in cross-country ski racing in [12].
The reference [13] optimized the original inrun system in ski jumping and improved the level
of competition.

Although the modeling and optimization of alpine skiing have been widely addressed, there
are still two open issues.

1) The existing skiing models, including the particle model, inverted pendulum model, and
pole model, can describe the trajectory. However, it is still an open research question about
how to establish a model that can have more degrees of freedom and describe the trajectory-
and-posture simultaneously.

2) The existing references mainly addressed how to optimize the skiing trajectory. However,
besides the trajectory, posture and other kinematic parameters are vital in skiing competition.
How to simultaneously address all these issues in optimizing the skiing performance is still open
for study.

In this paper, we conduct a new study on modeling and optimization of trajectory-and-
posture for the SG slalom of alpine skiing. The main contributions of this paper are summarized
as follows.

1) A Three-Rigid-Body-Particle (TRBP) model is established to represent the skiers’ posture
characteristics more accurately than the existing results for the SG slalom of alpine skiing.

2) The alpine skiing trajectory-and-posture optimization problem of the established TRBP
model is solved based on the Radau pseudospectral method (RPM). As a result, the optimal
skiing trajectory, skiing posture, and some key kinematic parameters of skiers are obtained.

3) The effects of different body types, minimum turning radius, and flexor and extensor
strength of knees and hip joint on skiing performance are analyzed. Based on the obtained
results, some advice about how to improve the performance of the SG slalom of alpine skiing
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in view of science and technology are given to skiers and coaches for reference.
The rest of this paper is organized as follows. Section 2 presents the TRBP model. Section 3

discusses the trajectory-and-posture optimization model of the skiing system. Section 4 shows
the simulation study. Section 5 gives the concluding remarks.

2 Model and Description

In this section, we give the alpine skiing model and clarify technical issues to be solved. The
notations used in this paper are summarized in Table 1.

Table 1 The notations used in this paper

Notations Description

x, y the displacements of m0 on the OX-axis and OY -axis

β the slope of the track

m0, m1, m2, m3 the masses of the particle and rigid bodies 1, 2, 3

l1, l2, l3 lengths of rigid bodies 1, 2, 3

v the velocity of the skier

v0, v1, v2, v3 the velocities of m0, m1, m2, m3 on the o′y2-axis

θ the tangential angle (angle between v0 and o′y1-axis)

FN , FL
the supporting force of the ground

to the human body on the o′z2-axis and the o′y2-axis

FP1 the force of m1 on skis m0

FP1′ the force of skis m0 on m1

FP2 the force of m2 on m1

FP2′ the force of m1 on m2

FP3 the force of m3 on m2

FP3′ the force of m2 on m3

Gz20, Gz21, Gz22, Gz23 the gravity components of m0, m1, m2, m3 on the o′z2-axis

Gx20, Gx21, Gx22, Gx23 the gravity components of m0, m1, m2, m3 on the o′x2-axis

FC0, FC1, FC2, FC3 the centripetal forces of m0, m1,m2, m3 on the o′x2-axis

Fm0 , Fm1 , Fm2 , Fm3 the resultant forces on m0, m1, m2, m3

r0, r1, r2, r3 the turning radius of m0, m1, m2, m3

ω1, ω1, ω3, ω4 the angular velocities corresponding to ϕ1, ϕ2, ϕ3, ϕ4

2.1 Three-Rigid-Body-Particle Model

To facilitate the dynamic analysis of skiing, as shown in Figure 1, we establish three reference
coordinate systems. They are the inertial reference coordinate system OXY Z relative to the
ground, the fixed reference system o′x1y1z1 relative to the multi-rigid-body model, and the
non-inertial reference coordinate system o′x2y2z2. The origin o′ is the geometric center of the
skis. For the coordinate system o′x1y1z1, o′x1, o′y1, and o′z1 axes are parallel to OX , OY , and
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OZ axes, respectively. For the coordinate system o′x2y2z2, the direction of the o′y2-axis is that
of the skier’s velocity, while the direction of o′x2-axis is perpendicular to that of skis’ long axis.

Figure 1 Alpine skiing coordinate system diagram

Considering that the lower legs, the thighs, and the trunk represent the skiers posture
characteristics well, as shown in Figure 2, we establish a TRBP model. In this model, the
rigid-body-1 represents the lower legs with length l1 and mass m1, the rigid-body-2 represents
the thighs with length l2 and mass m2, and the rigid-body-3 represents the trunk with length
l3 and mass m3. The centroids of the rigid bodies are located at the geometric center of the
rigid bodies. Moreover, the skis are represented as a particle model with mass m0.

rigid-body-1

rigid-body-2

rigid-body-3

rigid-body-1

rigid-body-2

rigid-body-3

Figure 2 Schematic diagram of TRBP model

The TRBP model established in this paper has seven degrees of freedom. Rigid-body-1 has
one degree of freedom that can rotate around o′ in the o′x2z2 plane (the coronal plane of the
human body). Rigid-body-2 has one degree of freedom that can rotate around the hinge in the
o′y2z2 plane (the sagittal plane of the human body). Rigid-body-3 is connected to rigid-body-2
by the hinge and has two degrees of freedom that can rotate around the hinge in the o′x2z2

plane and o′y2z2 plane. The other three degrees of freedom are the model’s displacements x,y
and direction of movement θ.

2.2 Equations of Motion

In this paper, the ski slope is assumed to be flat, on which the model skied without skid-
ding. The snow friction coefficient, the drag coefficient and the mass density of the air remain
unchanged. The definitions of ϕn, vn, and rn (n = 1, 2, 3, 4) are shown in Figure 3. The angle
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ϕ1 is the inclination angle of the lower legs, ϕ2 is the flexion angle of the knees, ϕ3 is the
inclination angle of the trunk, and ϕ4 is the flexion angle of the trunk. During the modeling
process, only five forces were considered, namely gravity G, supporting force FN , snow friction
fr, aerodynamic drag fa and centripetal force FC , without external force driving the model.

1

3

1

3

1

3

1

3

1

3

(a) Coronal view

4

2

4

2

4

2

(b) Sagittal view

Figure 3 (a) Schematic diagram of TRBP model in the coronal view (the o′x2z2 plane);

(b) Schematic diagram of TRBP model in the sagittal view (the o′y2z2 plane)

Based on the physical meanings of x, y, v0, and θ, it yields
⎧
⎨

⎩

ẋ = v0 sin θ,

ẏ = v0 cos θ.
(1)

Since angular velocity ωi is the derivative of rotation angle ϕi, then

ωn = ϕ̇n, n = 1, 2, 3, 4. (2)

From Figure 3(b), comparing the values between v0, v1, v2, and v3 yields
⎧
⎪⎪⎨

⎪⎪⎩

v1 − v0 = 0,

v2 − v1 = 0.5l2ω2 cosϕ2,

v3 − v2 = 0.5l2ω2 cosϕ2 + 0.5l3ω4 cosϕ4.

(3)

Since the skier’s velocity, denoted by v, is practically equal to v0, we get
⎧
⎪⎪⎨

⎪⎪⎩

v1 = v,

v2 = v + 0.5l2ω2 cosϕ2,

v3 = v + l2ω2 cosϕ2 + 0.5l3ω4 cosϕ4.

(4)

From Figure 3(a), comparing the values between r0, r1, r2, and r3 yields
⎧
⎪⎪⎨

⎪⎪⎩

r0 − r1 = 0.5l1| sin ϕ1|,
r1 − r2 = 0.5l1| sin ϕ1| + 0.5l2| sin ϕ1|,
r2 − r3 = 0.5l2| sin ϕ1| + 0.5l3| sin ϕ3|.

(5)



586 ZHANG YIJIA, et al.

Based on the real skiing situation, it can be seen that r0 and ri are equal, that is, r0 = rn,
n = 1, 2, 3. From the conversion equation of linear velocity and angular velocity, it yields

θ̇ =
v0

r0
sgn θ̇. (6)

With Figures 4–8 to hand, we start to carry out the force analysis of m0, m1, m3, and the
overall system.

Figure 4 m0 force analysis Figure 5 m1 force analysis

Figure 6 m3 force analysis Figure 7 Overall system force analysis

(coronal view)

Figure 8 Overall system force analysis (sagittal view)

2.2.1 Force Analysis of m0

As shown in Figure 4, the forces applied on the o′z2-axis and o′x2-axis are
⎧
⎨

⎩

FN = FP1 cosϕ1 + Gz20,

FC0 = FL + Gx20 − FP1 sin ϕ1,
(7)
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where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Gz20 = m0g cosβ,

FC0 = −m0
v0

2

r0
sgn θ̇,

Gx20 = m0g sinβ cos θ.

(8)

2.2.2 Force Analysis of m1

As shown in Figure 5, the forces applied on the o′z2-axis and o′x2-axis are
⎧
⎨

⎩

FP1′ cosϕ1 = FP2 cosϕ1 + Gz21 − FC′1 cosϕ1,

FC1 = FP1′ sin ϕ1 − FP2 sin ϕ1 + Gx21 + FC′1 sin ϕ1,
(9)

where ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Gz21 = m1g cosβ,

FC1 = −m1r1

(
v1

r0

)2

sgn θ̇,

FC′1 = 0.5m1l1ω
2
1 ,

Gx21 = m1g sin β cos θ.

(10)

From (4)–(6) and (9)–(10), it implies

θ̇ =
g sin β cos θ + g cosβ tanϕ1

v0
. (11)

Rigid-body-1 rotates around o′ in the o′x2z2 plane. According to the moment of momentum
theorem, we have

Ṁm1v1 = MFm1
, (12)

where the moment of momentum Mm1v1 , the momentum M1, and the resultant external moment
MFm1

are
⎧
⎪⎪⎨

⎪⎪⎩

Mm1v1 = 0.5M1l1,

M1 = m1v1,

MFm1
= 0.5FC1l1 cosϕ1 + 0.5Gz21l1 cosϕ1 + 0.5Gz20l1 sin ϕ1.

(13)

From (4), (9), (12)–(13), together with v1 = 0.5ω1l1, it yields

ω̇1 =
1
l1

(

− 2v2 1
r0

cosϕ1 sgn θ̇ + 2g sinβ cos θ cosϕ1 + 2g cosβ sin ϕ1

)

. (14)

2.2.3 Force Analysis of m3

Rigid-body-3 rotates around the hip joint in the o′x2z2 plane. Similar to (12), there exists

Ṁm3v3 = MFm3
, (15)
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where the moment of momentum Mm3v3 , the momentum M3, and the resultant external moment
of m3 rotating around the hip joint MFm3

are

⎧
⎪⎪⎨

⎪⎪⎩

Mm3v3 = M3l
′
3,

M3 = m3v3,

MFm3
= FC3 l′3 cosϕ2 + Gx23l

′
3 cosϕ2 + Gz23l

′
3 sinϕ2,

(16)

with ⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

FC3 = −m3r3

(
v3

r0

)2

sgn θ̇,

Gx23 = m3g sin β cos θ,

Gz23 = m3g cosβ,

l′3 = 0.5l3| cosϕ4|.

(17)

From (3)–(5), (15)–(17), together with v3 = 0.5ω3l3, we get

ω̇3 =
1

l3| cosϕ4| (T1 + 2g sin β cos θ cosϕ3 + 2g cosβ) (18)

with

T1 = −2(v + l2ω2 cosϕ2 + 0.5l3ω4 cosϕ4)2 cosϕ3
sgn θ̇

r0
. (19)

2.2.4 Force Analysis of the Overall System

Ignoring the relative displacement between the skier and the skis, the skier and the skis can
be regarded as an overall system. Then, we analyze the forces applied to the overall system.
As shown in Figure 7, according to Newton’s Second Law, the following equation holds

FN − Gz2 = m1az21 + m2az22 + m3az23, (20)

where az21, az22, and az23 are the accelerations of m1, m2, and m3 on o′z2-axes, Gz2 is the
gravity component of the overall system on o′z2-axes with Gz2 = (m0 + m1 + m2 + m3)g cosβ.
Since acceleration is the second derivative of displacement, it yields

⎧
⎪⎪⎨

⎪⎪⎩

az21 = (0.5l1 cosϕ1)′′,

az22 = [(l1 + 0.5l2 cosϕ2) cosϕ1]′′,

az23 = [(l1 + l2 cosϕ2) cosϕ1 + 0.5l3 cosϕ3 cosϕ4]′′.

(21)

In alpine skiing, there are some types of resistance, such as snow friction fr and aerodynamic
drag fa. As shown in Figure 8, using Newton’s Second Law again leads to

Gy2 − fr − fa = m0ay20 + m1ay21 + m2ay22 + m3ay23, (22)

where ay20, ay21, ay22, and ay23 are the accelerations of m0, m1, m2, and m3 on o′y2-axes,
Gy2 is the gravity component of the overall system on o′y2-axes with Gy2 = (m0 + m1 + m2 +
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m3)g sin β sin θ. Moreover, ⎧
⎨

⎩

fr = μFN ,

fa = 0.5CdρaSv2,
(23)

where μ is the dynamic coefficient of friction, S is the windward cross-sectional area of the skier,
Cd is the drag coefficient, and ρa is the mass density of the air. Based on the real situation
of skiing, the skier does not stay upright while skiing, and S changes with the skier’s posture.
According to the skier’s posture, S can be written as

S = S0
l1 + l2 cosϕ2 + l3 cosϕ4

l1 + l2 + l3
, (24)

where S0 is the windward cross-sectional area of the skier when his body is upright. With the
equations (2), (4), and (20)–(24), we get

v̇ = g sin β sin θ +
T0−fr − fa

(m0 + m1 + m2 + m3)
(25)

with

T0 = (0.5m2l2 + m3l2)(ω2
2 sinϕ2 − ω̇2 cosϕ2) + 0.5m3l3(ω2

4 sin ϕ4 − ω̇4 cosϕ4). (26)

2.2.5 System Dynamic Equations

Consider the following system:

ż = f(z, u, t), t0 ≤ t ≤ tf , (27)

where the state z = [x, y, ϕ1, ϕ2, ϕ3, ϕ4, θ, v, ω1, ω2, ω3, ω4]T ∈ R
12, t0 is the initial time of the

system, and tf is the final time of the system. Based on the real situation of skiing, the control
variables u = [u1, u2, u3]T ∈ R

3 are defined as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1 =
1
r0

sgn θ̇,

u2 = ω̇2,

u3 = ω̇4,

(28)

where the turning radius r0 = RSC cosϕ with RSC being the sidecut radius of skis. One may
refer to [14] for the definition about RSC . The control variable u1 reflects the value of the
turning radius. The control variables u2 and u3 are angular accelerations of the knee and hip
joints, respectively, reflecting the strength of the knee and hip joints.

Based on the above derivations, we establish a skiing model that can describe the skier’s
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trajectory and posture simultaneously:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = v sin θ,

ẏ = v cos θ,

ϕ̇1 = ω1,

ϕ̇2 = ω2,

ϕ̇3 = ω3,

ϕ̇4 = ω4,

θ̇ =
g sin β cos θ + g cosβ tan ϕ1

v
,

v̇ = g sin β sin θ +
T0 − μFN − fa

M
,

ω̇1 =
−2v2u1 cosϕ1 + 2g sinβ cos θ cosϕ1 + 2g cosβ sinϕ1

l1
,

ω̇2 = u2,

ω̇3 =
T1 + 2g sinβ cos θ cosϕ3 + 2g cosβ

l3| cosϕ4| ,

ω̇4 = u3,

(29)

where

M = m0 + m1 + m2 + m3,

T0 = (0.5m2l2 + m3l2)(ω2
2 sin ϕ2 − u3 cosϕ2) + 0.5m3l3(ω2

4 sin ϕ4 − u4 cosϕ4),

T1 = −2(v + l2ω2 cosϕ2 + 0.5l3ω4 cosϕ4)2 cosϕ3u1,

T2 = ω2
1 cosϕ1 cosϕ2 + ω̇1 sin ϕ1 cosϕ2 − 2ω1ω2 sinϕ1 sin ϕ2 + ω2

2 cosϕ1 cosϕ2

+ ω̇2 cosϕ1 sin ϕ2,

T3 = ω2
3 cosϕ3 cosϕ4 + ω̇3 sin ϕ3 cosϕ4 − 2ω3ω4 sinϕ3 sin ϕ4 + ω2

4 cosϕ3 cosϕ4

+ ω̇4 cosϕ3 sin ϕ4,

fa = 0.5CdρaS0v
2 l1 + l2 cosϕ2 + l3 cosϕ4

l1 + l2 + l3
,

FN = Mg cosβ − l2(0.5m2 + m3)T2 − 0.5l3m3T3

− l1(0.5m1 + m2 + m3)(ω2
1 cosϕ1 + ω̇1 sinϕ1). (30)

So far, we have established a skiing model based on force analysis. The skiing model can
describe the skiers trajectory and posture simultaneously.

2.3 Model Stability Analysis

In alpine skiing, skiers need to tilt their bodies to adjust the turning radius. However,
excessive tilting will lead to skiers tipping. It is crucial to ensure the stability of the human
body during turning. Motivated by [15], this paper uses Zero-moment point (ZMP) theory to
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carry out the stability analysis of the TRBP model. The ZMP is defined as the point at which
the horizontal torque component of the ground force is zero. According to stability criterion
of the ZMP theory, if the ZMP falls inside the convex polygon supported by the human body
model, the model is stable and will not overturn. As shown in Figure 9, if the skier’s ZMP falls
inside the quadrilateral ABCD, the skier will not overturn.

A

D
C

B
0.3 m-0.3 m

Figure 9 Schematic diagram of ZMP stability criterion for alpine skiing

Let P (px2 , py2) denote the TRBP model’s ZMP in the coordinates o′x2y2z2. Motivated
by [15], px2 can be expressed as

px2 =
∑n

i=1(mi(z̈i + g)xi − mi(zi − pz)ẍi)
∑n

i=1 mi(z̈i + g)
, (31)

where n is the number of rigid bodies, mi is the mass of rigid body i, xi, yi, and zi are the
coordinate values of rigid body i on the o′x2, o′y2 and o′z2 axes, respectively. The procedure
is complicated and we omit it for space.

When a skier skis, the skier is relatively stable in the sagittal plane (o′y2z2 plane). While,
the movement range in the coronal plane (o′x2z2 plane) is extensive and the skier overturn
easily. Thus, we only analyze the stability in the coronal plane of the human body. Considering
the skier’s posture in alpine skiing, the average distance between the feet is 0.6 m. According
to ZMP stability criterion, the constraint of px2 is given by

−0.3 ≤ px2 ≤ 0.3. (32)

Based on (31), together with (32), we derive the constraint condition of the three rigid bodies
in the coronal plane as

−0.3 ≤
∑n

i=1(mi(z̈i + g)xi − mi(zi − pz)ẍi)
∑n

i=1 mi(z̈i + g)
≤ 0.3. (33)

Thus far, we have derived an alpine skiing model (29) with the constraint condition (33).
The establishment of the alpine skiing model is to optimize its trajectory and posture. The
premise of optimization is to establish the optimization model which will be shown subsequently.
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3 Optimization Model and Solving Method

In this section, we first use the alpine skiing models (29)–(30) to establish a multi-phase
trajectory-and-posture optimization model. Then, we address the trajectory-and-posture opti-
mization problem by using the well-known RPM.

3.1 Trajectory-and-Posture Optimization Model

We first describe the ski track information. As shown in Figure 10, there are red and blue
alternating flag gates placed on the SG track. Skiers need to plan the skiing trajectory and
pass through the flag gates correctly, otherwise the competition will fail. As shown in Figure 11,
an SG gate consists of turning pole, turning gate, outside pole and outside gate.

Referring to the track design rules provided by the International Ski Federation (FIS), we
design the SG track as shown in Figure 10. There are seven red and blue alternating flag gates
on the track. The track has a slope of β and a length of 220 m.

O

11P

12P
21P

22P

31P
32P42P

41P

51P

52P

61P

6 2P

71P

72P

Figure 10 SG track

1.Turning Pole
2.Turning Gate
3.Outside Pole
4.Outside Gate

Figure 11 Schematic diagram of alpine

ski flag gate setting

In OXY Z, the skiers’ starting point O is (0, 0). The coordinates of the k-th flag gate are
P

(k)
s (x(k)

s , y
(k)
s , z

(k)
s ), where s represents the side of the flag gate, k = 1, 2, · · · , 7, and s = 1, 2.

The specific coordinates of each flag gate are shown in Table 2.

Table 2 Coordinates of the flag gates

Flag gate k Left side (s = 1) Right side (s = 2)

1 P
(1)
1 (30, 5, 0) P

(1)
2 (30, 12, 0)

2 P
(2)
1 (55,−6, 0) P

(2)
2 (55, 0, 0)

3 P
(3)
1 (85, 5, 0) P

(3)
2 (85, 11, 0)

4 P
(4)
1 (115,−7, 0) P

(4)
2 (115.0, 0)

5 P
(5)
1 (145, 4, 0) P

(5)
2 (145, 10, 0)

6 P
(6)
1 (180,−7, 0) P

(6)
2 (180,−1, 0)

7 P
(7)
1 (210, 5, 0) P

(7)
2 (210, 11, 0)

Now, we establish the trajectory-and-posture optimization model. Considering that skiers
have different constraints when passing through different flag gates, this paper transforms the
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alpine skiing trajectory-and-posture optimization problem into a multi-phase optimal control
problem. The first phase is from the initial point O to flag gate 1; the second phase is from
flag gate 1 to flag gate 2, and so on. Let t

(k)
0 be the initial time of the k-th phase, t

(k)
f

be the final time of the k-th phase, z
(k)
0 be the initial state of the k-th phase, z

(k)
f be the

terminal state of the k-th phase, and z(k) be the general state of the k-th phase. Note that
z0

(k) ∈ R
12, zf

(k) ∈ R
12, z(k) ∈ R

12, the initial, general, and terminal state of the k-th phase
are denoted, respectively, by

z0
(k) =

[
x0

(k), y0
(k), ϕn0

(k), θ0
(k), v0

(k), ωn0
(k)

]T
, (34)

zf
(k) =

[
xf

(k), yf
(k), ϕnf

(k), θf
(k), vf

(k), ωnf
(k)

]T
, (35)

z(k) =
[
x(k), y(k), ϕn

(k), θ(k), v(k), ωn
(k)

]T
, (36)

where n = 1, 2, 3, 4 and k = 1, 2, · · · , 7.
Based on the skiing rules and the real skiing situations, the variables in the multi-phase are

constrained as follows.

3.1.1 Initial Conditions

The initial conditions are ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0
(1) = 0 m,

y0
(1) = 0 m,

ϕn0
(1) = 0 rad,

θ0
(1) =

π

2
rad,

v0
(1) = 3 m/s,

ωn0
(1) = 0 rad/s,

(37)

where n = 1, 2, 3, 4.

3.1.2 Path Constraints

Since skiers need to pass through the flag gate correctly, the path constraints are
⎧
⎨

⎩

y
(k)
1 ≤ y

(k)
f ≤ y

(k)
2 ,

x
(k)
1 = x

(k)
f = x

(k)
2 ,

(38)

where k = 1, 2, · · · , 7.

3.1.3 Connection Conditions

The connection conditions for each phase are
⎧
⎨

⎩

t
(r+1)
0 = t

(r)
f ,

z
(r+1)
0 = z

(r)
f ,

(39)

where r = 1, 2, · · · , 6.
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3.1.4 Boundary Constraints

Based on the real skiing situations, the boundary constraints are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 s ≤ t
(k)
f ≤ 20 s,

0 m ≤ x(k) ≤ 220 m,

−20 m ≤ y(k) ≤ 20 m,

− 7
18

π rad ≤ ϕ1
(k) ≤ 7

18
π rad,

0 rad ≤ ϕ2
(k) ≤ 1

3
π rad,

− 7
18

π rad ≤ ϕ3
(k) ≤ 7

18
π rad,

−1
3
π rad ≤ ϕ4

(k) ≤ 0 rad,

0 rad ≤ θ(k) ≤ π rad,

3 m/s ≤ v(k) ≤ 50 m/s,

−3.5 rad/s ≤ ωn
(k) ≤ 3.5 rad/s,

(40)

where n = 1, 2, 3, 4 and k = 1, 2, · · · , 7.
In the SG, the athlete should pass through the flag gates correctly and take the shortest

time over the specified course to win. Therefore, the control objective is to minimize the ski
time and is expressed as

J =
7∑

k=1

J (k) =
7∑

k=1

t
(k)
f − t

(k)
0 , (41)

where J (k) is the skiing time of the k-th phase.

3.2 Solution to Optimization Problem

This paper uses a direct numerical solution method to solve the multi-phase trajectory-
and-posture optimization problem of the TRBP model. The direct method does not have
the necessary conditions for the optimal solution, but discretized and parameterized the con-
tinuous optimal control problem, and searched the performance index directly by numerical
method[16, 17]. The advantage of this method is that it can better compare the complex con-
straints, especially the path constraints[18]. The direct numerical solution method consists of
two steps:

1) Discretizing the multi-phase continuous optimal control problem and transforming it into
a nonlinear programming problem (NLP); and

2) solving the NLP problem with the SNOPT solver.
We use RPM to discretize the multi-phase continuous optimal control problem. RPM per-

forms the pseudospectral transformation on continuous optimal problem in Legendre-Gauss-
Radau (LGR) configuration points. It discretizes the state and control variables based on a
global interpolation polynomial[19]. In recent years, RPM has been widely used in the aerospace
and autonomous vehicle fields for trajectory optimization[20–28]. While, it is rarely used in
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skiing. In this paper, we for the first time apply the RPM to solve trajectory-and-posture
optimization problem for alpine skiing.

Consider the general form of the multi-phase optimal control problem:

J (k) = Φ(k)
(
z(k)

(
t
(k)
0

)
, t

(k)
0 , z(k)

(
t
(k)
f

)
, t

(k)
f

)
+

∫ t
(k)
f

t
(k)
0

g(k)
(
z(k)(t), u(k)(t), t(k)

)
dt, (42)

ż(k)(t) = f
(
z(k)

(
t(k)

)
, u(k)

(
t(k)

)
, t(k)

)
, (43)

where k represents the k-th phase, k = 1, 2, · · · , K, J (k) is the objective function of the k-th
phase, z(k) is the state variable of the k-th phase, and u(k) is the control variable of the k-th
phase. The discrete steps of the RPM for multi-phase optimal control problem are as follows.

First, the time interval t ∈
[
t
(k)
0 , t

(k)
f

]
is mapped to the interval τ (k) ∈ [−1, 1] via

τ (k) =
2t

t
(k)
f − t

(k)
0

− t
(k)
f + t

(k)
0

t
(k)
f − t

(k)
0

. (44)

Then, Lagrange interpolation is performed on z(k) and u(k), respectively, as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z(k)
(
τ (k)

) ≈ Z(k)
(
τ (k)

)
=

N(k)+1∑

j=1

L
(k)
j

(
τ (k)

)
Z

(k)
j ,

u(k)
(
τ (k)

) ≈ U (k)
(
τ (k)

)
=

N(k)
∑

j=1

L̃
(k)
j

(
τ (k)

)
U

(k)
j ,

(45)

where N (k) is the number of LGR points in the k-th phase, Z
(k)
j = Z(k)

(
τ

(k)
j

)
, U

(k)
j =

U (k)
(
τ

(k)
j

)
, τ

(k)
j is the time of the k-th phase at the j-th LGR point with τ

(k)
j ∈ [−1, 1),

and j = 1, 2, · · · , N (k). The Lagrange interpolation polynomials L
(k)
i

(
τ (k)

)
and L̃

(k)
j

(
τ (k)

)
are

defined as ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L
(k)
j (τ (k)) =

N(k)+1∏

i=1,i�=j

τ (k) − τ
(k)
i

τ
(k)
j − τ

(k)
i

,

L̃
(k)
j (τ (k)) =

N(k)
∏

i=1,i�=j

τ (k) − τ
(k)
i

τ
(k)
j − τ

(k)
i

,

(46)

where

L
(k)
j (τ (k)) =

⎧
⎨

⎩

1, i = j,

0, i �= j,
(47)

L̃
(k)
j (τ (k)) =

⎧
⎨

⎩

1, i = j,

0, i �= j.
(48)

Taking the derivative of the first equation of (45) yields

Ż(k)
(
τ (k)

)
=

N(k)+1∑

j=1

L̇
(k)
j

(
τ (k)

)
Z

(k)
j . (49)
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Based on the above derivations, the state function (43) and the objective function (42)
approximated at LGR points are derived as

N(k)+1∑

j=1

D
(k)
i,j Z

(k)
j − t

(k)
f − t

(k)
0

2
f (k)

(
Z

(k)
i , U

(k)
i , τ

(k)
i ; t(k)

0 , t
(k)
f

)
= 0, (50)

J =
K∑

k=1

Φ(k)
(
Z

(k)
0 , τ

(k)
0 , Z

(k)
f , τ

(k)
f

)
+

t
(k)
f − t

(k)
0

2

K∑

k=1

N(k)
∑

i=1

ω
(k)
i g(k)

(
Z

(k)
i , U

(k)
i , τ

(k)
i ; t(k)

0 , t
(k)
f

)
, (51)

where the pseudospectral differential matrix D(k) ∈ R
N(k)×(N(k)+1) with D

(k)
i,j = L̇

(k)
j

(
τ (k)

)
,

i = 1, 2, · · · , N (k), j = 1, 2, · · · , N (k) + 1, and ω
(k)
i is the LGR weight in the k-th phase.

Through the above RPM transformation, the system dynamic equations (29)–(30) and ob-
jective function (42) are discretized and transformed into an NLP problem as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(k)+1∑

j=1

D
(k)
ij x

(k)
j =

t
(k)
f − t

(k)
0

2
v
(k)
i sin θ

(k)
i ,

N(k)+1∑

j=1

D
(k)
ij y

(k)
j =

t
(k)
f − t

(k)
0

2
v
(k)
i cos θ

(k)
i ,

N(k)+1∑

j=1

D
(k)
ij ϕn

(k)
j =

t
(k)
f − t

(k)
0

2
ωn

(k)
i ,

N(k)+1∑

j=1

D
(k)
ij θ

(k)
j =

t
(k)
f − t

(k)
0

2
g sinβ cos θ

(k)
i + g cosβ tanϕ1

(k)
i

v
(k)
i

,

N(k)+1∑

j=1

D
(k)
ij v

(k)
j =

t
(k)
f − t

(k)
0

2

[

g sinβ sin θ
(k)
i +

T̃0 − μF̃N − f̃a

M

]

,

N(k)+1∑

j=1

D
(k)
ij ω1

(k)
j =

t
(k)
f − t

(k)
0

2

[
− 2(v(k)

i )2u1
(k)
i cosϕ1

(k)
i

+2g sin β cos θ
(k)
i cosϕ1

(k)
i + 2g cosβ sin ϕ1

(k)
i

]
,

N(k)+1∑

j=1

D
(k)
ij ω2

(k)
j =

t
(k)
f − t

(k)
0

2
u2

(k)
i ,

N(k)+1∑

j=1

D
(k)
ij ω3

(k)
j =

t
(k)
f − t

(k)
0

2
· T̃1 + 2g sin β cos θ

(k)
i cosϕ3

(k)
i + 2g cosβ

l3

∣
∣
∣cosϕ4

(k)
i

∣
∣
∣

,

N(k)+1∑

j=1

D
(k)
ij ω4

(k)
j =

t
(k)
f − t

(k)
0

2
u3

(k)
i ,

(52)

where n = 1, 2, 3, 4, the phase k = 1, 2, · · · , 7, and

T̃0 = (0.5m2l2 + m3l2)
[(

ω2
(k)
i

)2

sin ϕ2
(k)
i − u3

(k)
i cosϕ2

(k)
i

]

+ 0.5m3l3

[(
ω4

(k)
i

)2

sinϕ4
(k)
i − u4

(k)
i cosϕ4

(k)
i

]

,
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T̃1 = −2
(
v
(k)
i + l2ω2

(k)
i cosϕ2

(k)
i + 0.5l3ω4

(k)
i cosϕ4

(k)
i

)2

cosϕ3
(k)
i u1

(k)
i ,

T̃2 =
(
ω1

(k)
i

)2

cosϕ1
(k)
i cosϕ2

(k)
i +

(
ω̇1

(k)
i

)2

sin ϕ1
(k)
i cosϕ2

(k)
i − 2ω1

(k)
i ω2

(k)
i sin ϕ1

(k)
i sinϕ2

(k)
i

+
(
ω2

(k)
i

)2

cosϕ1
(k)
i cosϕ2

(k)
i + u2

(k)
i cosϕ1

(k)
i sinϕ2

(k)
i ,

T̃3 =
(
ω3

(k)
i

)2

cosϕ3
(k)
i cosϕ4

(k)
i +

(
ω̇3

(k)
i

)2

sin ϕ3
(k)
i cosϕ4

(k)
i − 2ω3

(k)
i ω4

(k)
i sin ϕ3

(k)
i sinϕ4

(k)
i

+
(
ω4

(k)
i

)2

cosϕ3
(k)
i cosϕ4

(k)
i + u3

(k)
i cosϕ3

(k)
i sinϕ4

(k)
i ,

f̃a = 0.5CdρaS0

(
v
(k)
i

)2 l1 + l2 cosϕ2
(k)
i + l3 cosϕ4

(k)
i

l1 + l2 + l3
,

F̃N = Mg cosβ − l2(0.5m2 + m3)T̃2 − 0.5l3m3T̃3 − l1(0.5m1 + m2 + m3)

·
⎡

⎣
(
ω1

(k)
i

)2

cosϕ1
(k)
i +

N(k)+1∑

j=1

D
(k)
ij ω1

(k)
j sin ϕ1

(k)
i

⎤

⎦ , (53)

J =
7∑

k=1

N(k)
∑

i=1

t
(k)
f − t

(k)
0

2
ω

(k)
i . (54)

Based on the equations (52)–(54), we can solve the NLP problem with the snopt solver in
Matlab.

So far, we have established the multi-phase trajectory-and-posture optimization model and
transformed it into an NLP problem by RPM method. Base on that, we can solve the multi-
phase trajectory-and-posture optimization problem.

4 Simulation and Analysis

In this section, the simulation results under different parameters and control variables are
obtained. The effects of body shape, minimum turning radius, and flexor and extensor strength
of knees and hip joint are analyzed.

4.1 Simulation Results

Based on the multi-phase trajectory-and-posture optimization model (52)–(55), the stability
constraint condition (33), and the state variables constraints (37)–(40), we solve the trajectory-
and-posture optimization problem with the snopt solver in Matlab.

Considering the real skiing situation, the simulation parameter settings are as shown in
Table 3 and the boundary constraints on control variables are given by

⎧
⎪⎪⎨

⎪⎪⎩

−0.05 ≤ u1 ≤ 0.05,

−2 ≤ u2 ≤ 2,

−2 ≤ u3 ≤ 2.

(55)

The trajectory, posture, and some kinematic parameters optimization results are obtained as
follows.
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Table 3 Simulation parameter values

Parameters Notations Value

Mass of skis (kg) m0 10

Mass of rigid-body-1 (kg) m1 10

Mass of rigid-body-2 (kg) m2 15

Mass of rigid-body-3 (kg) m3 50

Length of rigid-body-1 (m) l1 0.5

Length of rigid-body-2 (m) l2 0.45

Length of rigid-body-3 (m) l3 0.85

Acceleration of gravity (m/s2) g 9.8

The slope of the track (◦) β 20

Coefficient of friction μ 0.04

Coefficient of aerodynamic drag Cd 0.45

Air density (kg/m3) ρa 1.2

Windward area of the upright body (m2) S0 0.4

4.1.1 Trajectory Optimization

The variables x and y are the skier’s displacements on the OX-axis and OY -axis. We
obtain the optimized displacements based on the snopt solver in Matlab and show the trajectory
optimization result in Figure 12. The skier’s center of gravity is always inclined to the inside of
the turn, and the skier always tracks close to the steering gate when passing through the flag
gate.

x

y

Figure 12 Multi-phase trajectory optimization results. The solid line indicates the optimal

trajectory of the skier’s skis, and the dashed line shows the optimal trajectory of the

skier’s center of gravity
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4.1.2 Posture and Some Kinematic Parameters Optimization

Using the snopt solver in Matlab, we can not only solve for the skier’s displacements based
on the trajectory-and-posture optimization model (52)–(55), but also obtain the skier’s posture
and some kinematic parameters with the snopt solver. Figure 13 shows the changes of x, y, θ,
v, ϕ1, ϕ2, ϕ3, ϕ4, and the height of the center of gravity G, respectively. As shown in Figure
13(e), the skier needs to tilt his lower limbs and increases the edge angle (ϕ1) to reduce the
turning radius when passing through the flag gate. It is worth noting that the angle of the
skier’s trunk (ϕ3) is small. The skier need to keep his upper body almost upright to maintain
his balance. In addition, the trunk and lower limbs of the skier are inclined in the same direction
when turning.
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Figure 13 Results of multi-phase optimization of kinetic parameters: (a) Lateral displacement;

(b) Longitudinal displacement; (c) Tangential angle; (d) Tangential velocity; (e) The

tilt angle of the lower limbs ϕ1 in the coronal plane (solid line) and the tilt angle

of the trunk ϕ3 in the coronal plane (dashed line); (f) The knees bending angle ϕ2

(solid line) in the sagittal plane and the trunk bending angle ϕ4 (dashed line) in the

sagittal plane; and (g) Height of center of gravity

As shown in Figure 13(f), at the beginning of skiing, the skier needs to bend over (ϕ4) and
bend knees (ϕ2) to reduce aerodynamic drag and increase velocity. When passing through the
flag gate, the skier should straighten legs and bend over. Differently, the skier should bend legs
and stretch the hip joint when he is in the middle of a phase.

Figure 13(g) shows the change of the skier’s center of gravity. The skier lowers his center
of gravity to reduce aerodynamic drag and increase velocity during the starting phase. The
center of gravity drops to the lowest when passing through the flag gate. When the skier is in
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the middle of a phase, the height of the center of gravity is raised.

4.1.3 Optimized Trajectory and Posture

The multi-phase trajectory-and-posture optimization model (52)–(55) can describe the skier’s
trajectory and posture simultaneously. To show the optimization results of trajectory and pos-
ture simultaneously, we display the optimized trajectory and posture on the three-dimensional
ski track, as shown in Figure 14 (front, side, and vertical views). The green, orange, and purple
lines represent the skier’s trunk, thighs, and lower legs, respectively. It can be seen that the
optimized trajectory and posture match the real skiing situation well.

Posture  optimization
 Side view

Trajectory optimization
Vertical view

Posture optimization

Super-giant track

Main view

Figure 14 The optimized trajectory and posture diagram (front view, side view and verticle view)

4.2 Effect of Body Shape on Skiing Performance

The multi-phase trajectory-and-posture optimization model (52)–(55) can not only describe
the skier’s trajectory and posture, but also obtain the effect of different factors on skiing per-
formance by comparing the optimization results under different model’s parameters and control
variables.

In competitive sports, the athlete’s body shape is a key factor affecting sports performance.
To explore the effect of skiers’ body shape on skiing performance, we set different heights and
weights of TRBP model with other parameters unchanged for simulation. The boundary con-
straints are given by (55). The trajectory, posture, and some kinematic parameters optimization
results under different heights and weights are as follows.

4.2.1 Height

We obtain the optimization results for the height of TRBP model ranging from 1.5 m to
1.95 m with the weight being 75 kg. The effect of height on skiing time is shown in Figure 15.
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It can been seen that the skiing time decreases as the height of the model increases. However,
the time was only shortened by less than 0.1 s as the height increased from 1.5 m to 1.95 m.
This indicates that the height is not significant in SG.

Figure 15 Effect of height on skiing time

Figure 16 and Figure 17 compare the skiing trajectory and posture optimization results for
three heights (1.5 m, 1.8 m, and 1.95 m). It can be seen that the skiing trajectories (Figure 16)
and curves of postural variables (Figure 17) for the different heights are close. Therefore, the
skier’s height has little effect on the skier’s trajectory and posture.
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Figure 16 Skiing trajectory optimization results for three heights (1.5 m, 1.8 m, and 1.95 m)
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Figure 17 Skiing posture optimization results for three heights (1.5 m, 1.8 m, and 1.95 m): (a) The

tilt angle of the lower limbs ϕ1 in the coronal plane; (b) The tilt angle of the trunk ϕ3 in

the coronal plane; (c) The knees bending angle ϕ2 in the sagittal plane; (d) The trunk

bending angle ϕ4 in the sagittal plane; (e) The height of the center of gravity; and (f)

Tangential velocity

4.2.2 Weight

We obtain the optimization results for the weight of TRBP model ranging from 50 kg to
95 kg with the height being 1.8 m. The effect of weight on skiing time is shown in Figure 18.
The result shows that the skiing time decreases as the model weight increases. It indicates that
heavy skiers have an advantage in SG.

Figure 18 Effect of weight on skiing time

Figure 19 and Figure 20 compare skiing trajectory and posture optimization results for three
weights (50 kg, 75 kg, and 95 kg). It can be seen that weight has a significant effect on skiing
trajectory and posture. A heavier skier has larger angles of ϕ1, ϕ2, ϕ3, and ϕ4 when passing
through the flag gate (Figure 20(a)–(d)). Moreover, Figure 20(e) and Figure 20(f) indicate that
if the skier is heavier, his gravity center is lower and velocity is faster.
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Figure 19 Skiing trajectory optimization results for three weights (50 kg, 75 kg, and 95 kg)
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(a) The tilt angle of the lower limbs ϕ1 in the coronal plane; (b) the tilt angle

of the trunk ϕ3 in the coronal plane; (c) the knees bending angle ϕ2 in the

sagittal plane; (d) the trunk bending angle ϕ4 in the sagittal plane; (e) the

height of center of gravity; and (f) tangential velocity

4.3 Effect of the Minimum Turning Radius on Skiing Performance

The minimum turning radius is defined as the smallest radius when the skier carves in a
ski turn. The minimum radius is different for skiers with different technical characteristics,
physical fitness, and athletic ability. To show the effect of the minimum turning radius on
skiing performance, we set the minimum turning radius from 13 m to 26 m for simulation while
holding other parameters unchanged.
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According to (28), the value range of u1 is related to the value range of the turning radius,
and

u1max =
1

r0 min
sgn θ̇, (56)

where u1max is the maximum value of u1 and r0 min is the minimum turning radius. We set
0.0385 ≤ u1max ≤ 0.0769 with −2 ≤ u2 ≤ 2 and −2 ≤ u3 ≤ 2. The weight and height of TRBP
model are set as 75 kg and 1.8 m, respectively.

Figure 21 shows the effect of r0 min on skiing time. As r0 min becomes smaller, its effect on
skiing performance becomes weaker. Therefore, a small turning radius is conducive to getting
good skiing performance.

Figure 21 Effect of the minimum turning radius on skiing time

Figure 22 and Figure 23 show the skiing trajectory optimization results under three different
r0 min. As shown in Figure 22, when passing through the flag gate, the skiers with a smaller
r0 min are closer to the turning gate. In addition, Figure 23(a) and Figure 23(c) show that the
skier with a greater swing of the lower limbs and a more stable upper body performs better.
Moreover, the change of r0 min has little effect on the skiing velocity (Figure 23(f)).
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Figure 22 Skiing trajectory optimization results under three different r0min (26 m, 19 m,

and 13 m)
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Figure 23 Skiing posture optimization results under three different r0 min (26 m, 19 m, and

13 m): (a) The tilt angle of the lower limbs ϕ1 in the coronal plane; (b) The tilt angle

of the trunk ϕ3 in the coronal plane; (c) The knees bending angle ϕ2 in the sagittal

plane; (d) The trunk bending angle ϕ4 in the sagittal plane; (e) The height of center
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4.4 Effect of Knees and Hip Joint Flexor and Extensor Strength

According to the law of rotation M = Jω̇, the angular acceleration ω̇ of fixed axis rotation
of a rigid body is directly proportional to its external torque M and inversely proportional to
its moment of inertia J . Therefore, the greater angular acceleration represents the greater force
on the revolute joint with the same moment of inertia. The angular acceleration of the knee
joints ω̇2 indicates the flexor and extensor strength of the knee joints. The larger the value of
ω̇2 is, the greater the force of the knee joints is. Similarly, the angular acceleration between the
thighs and trunk ω̇4 indicates the flexor and extensor strength of the hip joint. The larger the
ω̇4 is, the greater the force of the hip joint is.

To show the effect of knees and hip flexor and extensor strength on skiing performance, we
change the range of ω̇2 and ω̇4 with other parameters being unchanged. According to (29),
u2 = ω̇2 and u3 = ω̇4. We set u2max from 2 ω/s2 to 5 ω/s2 and u3max from 1.5 ω/s2 to 5 ω/s2,
respectively, with −0.05 ≤ u1 ≤ 0.05. The weight and height of TRBP model are set as 75 kg
and 1.8 m, respectively.

The optimization results under different u2max and u3max are shown in Figure 24. The skiing
time decreases when the angular accelerations of flexion and extension of the knees (u2max) and
hip joint (u3max) increase.
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Figure 24 Effect of flexor and extensor strength of the knees and hip joint on skiing performance

According to the reference [29], knee flexion is related to the biceps femoris, semitendi-
nosus, semimembranosus, sartorius, gracilis, and gastrocnemius, while extension is related to
the quadriceps femoris. Hip flexion is associated with the iliopsoas and rectus femoris muscles,
while extension is associated with the gluteus maximus and biceps femoris. Athletes can boost
the training of the related muscle groups to increase the flexor and extensor strength of the
knees and hip joint to control posture and improve skiing performance better.

So far, we have showed the optimization results of TRBP model under different parameters
and control variables, based on which the effects of body shape, the minimum turning radius,
and the flexor and extensor strength of knees and hip joint on skiing performance are analyzed.
Through simulations, we can see that the TRBP model can represent the skier’s trajectory and
posture simultaneously, which can not be achieved by existing models.

5 Conclusions

This paper has established a TRBP model which can represent skiers trajectory and posture
characteristics simultaneously. Simulation results have verified the effectiveness of the proposed
model and obtained optimal skiing trajectory, skiing posture, and some key kinematic param-
eters of skier. By analyzing the effects of different body shapes, minimum turning radius,
and flexor and extensor strength of knees and hip joint on skiing performance, the following
conclusions are drawn:

1) Tall and heavy skiers have advantages in skiing, but height has little effect on skiing
performance while weight significantly impacts skiing performance.

2) The skier with a smaller turning radius can have a closer trajectory to the turning gate
and shorter skiing time.

3) Strengthening the knees and hip joint can improve the skier’s posture control to reduce
skiing time.

Based on the conclusions, we provide the following advice for skiers and coaches:
1) Appropriately increasing the skier’s weight can improve skiing performance.
2) On the basis of keeping the body stable, increasing the lower limb tilt angle in the coronal

plane can reduce the turning radius and make the skiing trajectory closer to the steering gate,
so as to shorten the skiing time.
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3) Skiers should keep their trunk upright when passing through the flag gate, which helps
to ensure body stability and prevent rollover.

4) Skiers can strengthen the training of the muscle groups related to the knees and hip joint
to control body posture better and improve skiing performance.

For skiers, we provide guidance for their training with the help of scientific technology.
The skiers can capture their ski trajectories and postures with detection sensors and compare
these real information with our optimized skiing trajectory and posture, based on which they
can improve skiing performance. Coaches can analyze the trajectories and postures of skiers
based on the optimization results, and then specify scientifically personalized training plans
for skiers. For skiing researchers, our established TRBP model provides a basis for subsequent
skiing research. In the future, we aim to establish a model that more closely resembles the real
alpine skiing system and consider more details such as changes in terrain and changes in ski
geometry.
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