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Abstract In this paper, the authors propose an adaptive Barrier-Lyapunov-Functions (BLFs) based

control scheme for nonlinear pure-feedback systems with full state constraints. Due to the coexist of

the non-affine structure and full state constraints, it is very difficult to construct a desired controller for

the considered system. According to the mean value theorem, the authors transform the pure-feedback

system into a system with strict-feedback structure, so that the well-known backstepping method can

be applied. Then, in the backstepping design process, the BLFs are employed to avoid the violation of

the state constraints, and neural networks (NNs) are directly used to online approximate the unknown

packaged nonlinear terms. The presented controller ensures that all the signals in the closed-loop

system are bounded and the tracking error asymptotically converges to zero. Meanwhile, it is shown

that the constraint requirement on the system will not be violated during the operation. Finally, two

simulation examples are provided to show the effectiveness of the proposed control scheme.

Keywords Asymptotic tracking control, barrier Lyapunov functions, full state constraints, nonlinear

pure-feedback systems.
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1 Introduction

During the past few decades, controller design problem for nonlinear systems has become
an active study topic[1–9]. In this issue, various methods have been employed such as adap-
tive backstepping control, sliding mode control, robust control, and so on[10–19]. In particu-
lar, adaptive backstepping technique is a powerful method for synthesizing adaptive controller
for nonlinear systems with parameter uncertainties. Many remarkable results were obtained
when dealing with the controller design problem for nonlinear systems using the backstepping
technique[20–22]. For example, an adaptive control scheme for a class of uncertain systems with
unknown input time-delay using standard backstepping technique was proposed in [21]. As a
challenging control problem, an adaptive backstepping control method was provided in [22] for
uncertain switched nonlinear systems. However, the above results require that the uncertain
nonlinearities in systems are either known functions with unknown parameters, which are linear
with respect to the known functions, or restricted by known nonlinear functions. Therefore, it
is difficult to use the design methods in [20–22] when these conditions imposed on uncertain
nonlinearities are not available.

Recently, a class of backstepping-based adaptive neural controllers and fuzzy controllers for
nonlinear systems were developed, in which NNs and fuzzy logic systems as universal approxi-
mators were used to model nonlinear functions without a priori knowledge[23–32]. Meanwhile, a
number of significant results on backstepping-based adaptive neural control for nonlinear sys-
tems were obtained[33–43]. For example, an adaptive control method based on NNs was studied
in [44], which used NNs to approximate unknown nonlinear functions to control pure-feedback
systems. In [45], an adaptive neural control strategy was developed to circumvent the unknown
nonlinear terms of the multiple input multiple output nonlinear systems. However, it should be
noted that most of the existing results for the tracking problem of nonlinear systems can only
realize the practical tracking performance[46–52]. The reason is that the existing methods can-
not completely eliminate the influence of parameter uncertainties in the system. Furthermore,
the effect of repeating differentiations for virtual control laws in the backstepping procedure
causes the problem of “explosion of complexity”, which can lead to the unapplication problem
of the backstepping method for high-order nonlinear systems. In addition, a system can work
perfectly only if the system is a stable system. Compared with practical stability, asymptotic
stability is more accurate and significance to practical industry. Hence, it is interesting to de-
sign an efficiently controller for unknown nonlinear system to achieve the asymptotic tracking
performance.

However, all the control results mentioned above ignored the influence of constraints, which
usually occur in many practical situations. Apparently, it is more difficult to design a desired
controller for systems with constraints compared with the unconstrained ones. In order to
constrain the system states to an ideal range, the past studies have proposed various meth-
ods, such as the performance control[53], the set invariance notions[54], the extremum-seeking
algorithm[55], the reference governors[56], and the model predictive control[57]. In recent years,
BLFs have become an effective tool to meet the requirement of state constraints for nonlin-
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ear strict-feedback systems. For instance, a novel almost fast finite-time adaptive tracking
controller was developed in [58] by using the BLFs, so that the full state constraints are not
violated and the tracking error converges to a small compact set. In [59], for a class of strict-
feedback nonlinear systems with time-varying full state constraints, the time-varying BLFs were
employed to ensure the requirement of the time-varying state constraints. To handle the state
and input constraints, the integral barrier Lyapunov function (IBLF) was introduced to the
backstepping design procedure in [60]. Unfortunately, the above methods can only be utilized
in the design of nonlinear strict-feedback systems rather than more general systems such as
pure-feedback nonlinear systems. The authors in [61] presented an adaptive neural control al-
gorithm for nonlinear pure-feedback systems with full state constraints, in which the practical
tracking performance was achieved. To the best of our knowledge, the asymptotic tracking
issue of nonlinear pure-feedback systems with full state constraints has not been adequately
addressed, which motivates us for this study.

In this study, inspired by the aforementioned discussions, an adaptive neural-network based
asymptotic tracking control scheme is presented for a class of nonlinear pure-feedback systems
with full state constraints. The main contributions of this paper are listed as follows: (i)
Different from the existing results[56, 57, 59] which focused on the strict-feedback system with
full state constraints, this paper studies a more general class of nonlinear pure-feedback system
with full state constraints. By using the mean value theorem, the pure-feedback system is
transformed into the system with a strict feedback structure. For the transformed system,
the BLFs are integrated into the design of Lyapunov functions to prevent the violation of the
full state constraints. (ii) Compared with the previous results in [48, 50–52, 61–63] for the
bounded tacking performance, one significant advantage of this paper is that the neural-based
control scheme is developed by incorporating the NNs universal approximation capability into
the framework of adaptive backstepping design procedure, such that the asymptotic output
tracking performance is ensured. (iii) Compared with the adaptive laws that constructed in [18,
27, 37, 58, 60], the adaptive laws are designed skillfully in this paper. Through the clever use of
integration technology, only two adaptive parameters need to be updated online and thus the
complexity of analytic calculations is effectively depressed.

2 System Description and Problem Statement

Consider the following nonlinear pure-feedback system:
⎧
⎪⎪⎨

⎪⎪⎩

ẋi = fi(x1, x2, · · · , xi+1), i = 1, 2, · · · , n− 1,

ẋn = fn(x, u),

y = x1,

(1)

where x = [x1, x2, · · · , xn]T ∈ Rn is the state vector of the system. y ∈ R and u ∈ R are the
control output and input of the system, respectively. Let xi = [x1, x2, · · · , xi]

T ∈ Ri, fi(xi+1)
and fn(x, u) are the nonlinear smooth functions that are continuously differentiable for xi+1
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and u. All state variables are constrained in a set |xi| < lci , where lci are positive constants.
Let gi(xi+1) = ∂fi(xi+1)/∂xi+1, gn(x, u) = ∂fn(x, u)/∂u.

From the mean-value theorem in [64], it can be deduced that there exist some points x0
i+1

between 0 and xi+1 and some points u0 between 0 and u, such that
⎧
⎪⎪⎨

⎪⎪⎩

fi(xi+1) = fi(xi) + gi(xi, x
0
i+1)xi+1, i = 1, 2, · · · , n− 1,

fn(x, u) = fn(x) + gn(x, u0)u,

y = x1.

(2)

The control objective of this paper is to construct an adaptive neural state feedback con-
troller u(t) for the system (1), which can guarantee that the system output y can achieve
the asymptotic tracking for the reference trajectory yd in spite of existing unknown nonlinear
functions, all the signals in the system can be bounded and the full state constraints are not
violated.

In this paper, the nonlinear smooth functions fi(xi+1) and fn(x) are unknown. Radial basis
function neural networks (RBF NNs) will be used as a tool to estimate them, and the estimated
function can be written in the following form:

fi(s) = WT
i Ψi(s) + δi(s), (3)

where s ∈ Rm denotes the input vector of NNs, m represents the dimension of NNs input.
Wi are the weight vectors. Ψ(s) = [ϕ1(s), ϕ2(s), · · · , ϕτ (s)]T ∈ Rτ denotes the basis vector
function, τ is the number of neurons in the neural networks, ϕi(s) is the base function of the
neural network, and δi, i = 1, 2, · · · , n are the NNs inherent approximation errors which can be
adjusted to arbitrary small by choosing ideal bounded weight vector W ∗, where

W ∗
i = arg min

W⊂Rn

{

sup
∣
∣
∣
∣fi(s)
s∈Ωs

−WT
i Ψi(s)

∣
∣
∣
∣

}

, (4)

the following Gaussian functions are chosen as the base function of neural networks:

ϕi(s) = exp[−(s− ξi)T(s− ξi)/λ2
i ], i = 1, 2, · · · , τ, (5)

where ξi and λi are the center and the width of the base functions ϕi(s), respectively.
Assumption 2.1 (see [61]) The unknown gain functions gi, i = 1, 2, · · · , n, are bounded,

there exist constants bm > 0 and bM > 0 such that 0 < bm < |gi| < bM < +∞.
Assumption 2.2 (see [61]) Assume the tracking signal yd satisfy |yd(t)| ≤ M0 ≤ lc1 and

its ith order derivatives yd
(i)(t) satisfies

∣
∣yd

(i)(t)
∣
∣ ≤Mi, i = 1, 2, · · · , n, where M1,M2, · · · ,Mn

are positive constants.

Remark 2.1 Assumption 2.1 is a general assumption which is widely used to deal with
the unknown gain functions and the same assumption can be found in [58–60]. Assumption 2.2
is also a common assumption when the tracking control problem under constraints is studied
such as the ones in [59–61]. In Assumption 2.2, we assume that |yd(t)| ≤ M0 ≤ lc1 . Due to
x1 = χ1 + yd(t), we have |x1| ≤ |χ1| + |yd| < lb1 +M0. Let lb1 = lc1 −M0 then, |x1| < lc1 .
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Lemma 2.1 (see [65]) Given υ ∈ R, there exist ρ > 0 and a hyperbolic tangent function
tanh(·) to make the following inequality holds: |υ| ≤ υ tanh(υ/ρ) + ρκ, where κ = 0.2785.

3 Neural Adaptive Controller Design

In order to avoid complicated operations, let θ = max
{

1
bm

‖W ∗
1 ‖2

, 1
bm

‖W ∗
2 ‖2

, · · · , 1
bm

‖W ∗
n‖2

}
,

ε = max
{

1
bm
δ1,

1
bm
δ2, · · · , 1

bm
δn

}
; θ̃ = θ− θ̂; ε̃ = ε− ε̂; θ̂ and ε̂ are the estimates of θ, ε respec-

tively. The adaptive laws are constructed as

˙̂
θ =

n∑

i=1

lχi

r1
2ηi

tanh(lχi/ρ(t))‖Ψi‖2 − r1ρ(t)θ̂,

˙̂ε =
n∑

i=1

lχir2 tanh(lχi/ρ(t)) − r2ρ(t)ε̂, (6)

where r1, r2 are two positive constants and the definition of lχi will be specified later.
Step 1 Let χ1 = x1 − yd, the time derivative of χ1 is given by

χ̇1 = ẋ1 − ẏd = f1(x1) + g1x2 − ẏd. (7)

Next, choose the Lyapunov function as

V1 =
1
2

log(l2b1/(l
2
b1 − χ2

1)) +
bmθ̃

2

2r1
+
bmε̃

2

2r2
, (8)

where r1 and r2 are two positive constants, lb1 = lc1 −M0.
Differentiating V1 yields

V̇1 = lχ1(f1 + g1x2 − ẏd) − bmθ̃
˙̂
θ

r1
− bmε̃ ˙̂ε

r2

≤ lχ1(f̃1 + g1x2) − bmθ̃
˙̂
θ

r1
− bmε̃ ˙̂ε

r2
− η1lχ1 tanh

(
lχ1

ρ(t)

)

, (9)

where f̃1 = f1 − ẏd + η1 tanh
(

lχ1
ρ(t)

)
, lχ1 = χ1/(l2b1 − χ2

1). Then, using RBF NNs to estimate

function f̃1, we have

V̇1 ≤ lχ1(W
∗T
1 Ψ1(x1) + δ1(x1) + g1x2) − bmθ̃

˙̂
θ

r1
− bmε̃ ˙̂ε

r2
− η1lχ1 tanh

(
lχ1

ρ(t)

)

. (10)

From Lemma 2.1 and Young’s inequality, we have

lχ1W
∗T
1 Ψ1 ≤ |lχ1 |W ∗T

1 Ψ1

≤ |lχ1 |
1

2η1
‖Ψ1‖2

bmθ + |lχ1 | η1

≤lχ1 tanh
(
lχ1

ρ(t)

)
1

2η1
‖Ψ1‖2

bmθ +
1

2η1
‖Ψ1‖2

bmθκρ(t)
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+ η1lχ1 tanh
(
lχ1

ρ(t)

)

+ η1κρ(t)

=lχ1 tanh
(
lχ1

ρ(t)

)
1

2η1
‖Ψ1‖2bmθ + lχ1 tanh

(
lχ1

ρ(t)

)

η1

+
(

1
2η1

‖Ψ1‖2
bmθ + η1

)

κρ(t), (11)

lχ1δ1 ≤ |lχ1 | bmε ≤ lχ1 tanh
(
lχ1

ρ(t)

)

bmε+ bmεκρ(t), (12)

where bounded function ρ(t) is positive uniform continuous. It is easy to known that there is
a positive constant ρ1, which satifies limt→∞

∫ t

0
ρ(ξ)dξ ≤ ρ1 < +∞.

Using the inequalities (11) and (12), it has

V̇1 ≤lχ1g1χ2 + lχ1g1α1 + lχ1 tanh
(
lχ1

ρ(t)

)
1

2η1
‖Ψ1‖2bmθ + lχ1 tanh

(
lχ1

ρ(t)

)

bmε

+
(

1
2η1

‖Ψ1‖2
bmθ + η1 + bmε

)

κρ(t) − bmθ̃
˙̂
θ

r1
− bmε̃ ˙̂ε

r2
. (13)

The virtual control signal α1 is designed as

α1 = − tanh(lχ1/ρ(t))‖Ψ1‖2θ̂

2η1
− tanh(lχ1/ρ(t))ε̂−

G1χ
2
1

lχ1

. (14)

Using (14), we have

V̇1 ≤
(‖Ψ1‖2

bmθ

2η1
+ η1 + bmε

)

κρ(t) +
1
r1
bmθ̃

(
r1
2η1

lχ1 tanh
(
lχ1

ρ(t)

)

− ˙̂
θ

)

+
1
r2
bmε̃

(

r2lχ1 tanh
(
lχ1

ρ(t)

)

− ˙̂ε
)

−Q1χ
2
1 + lχ1g1χ2, (15)

where Qi = Gibm, i = 1, 2, · · · , n.
Step 2 Let χ2 = x2 − α1, the time derivative of χ2 is given by

χ̇2 = f2(x2) + g2x3 − α̇1. (16)

Next, Lyapunov functions V2 is designed as

V2 = V1 +
1
2

log(l2b2/(l
2
b2 − χ2

2)), (17)

where |χ2| ≤ lc2 , lb2 = lc2 − α1.
The time derivative of V2 is

V̇2 = V̇1 + lχ2 χ̇2

≤ V̇1 + lχ2(f̃2 + g2x3) − η2lχ2 tanh
(
lχ2

ρ(t)

)

, (18)
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where f̃2 = f2 − α̇1 + η2 tanh
(

lχ2
ρ(t)

)
+ lχ1g1χ2

lχ2
, lχ2 = χ2/(l2b2 − χ2

2). Then, using RBF NNs to

estimate function f̃2, we have

V̇2 ≤ V̇1 + lχ2(W2
∗TΨ2 + δ2 + g2x3) − η2lχ2 tanh

(
lχ2

ρ(t)

)

− lχ1g1χ2. (19)

From Lemma 2 and Young’s inequality, we have

lχ2W2
∗TΨ2 ≤ |lχ2 |W2

∗TΨ2

≤ |lχ2 |
1

2η2
‖Ψ2‖2

bmθ + |lχ2 | η2

≤lχ2 tanh
(
lχ2

ρ(t)

)
1

2η2
‖Ψ2‖2

bmθ +
1

2η2
‖Ψ2‖2

bmθκρ(t)

+ lχ2 tanh
(
lχ2

ρ(t)

)

η2 + η2κρ(t)

=lχ2 tanh
(
lχ2

ρ(t)

)
1

2η2
‖Ψ2‖2

bmθ

+ lχ2 tanh
(
lχ2

ρ(t)

)

η2 +
(

1
2η2

‖Ψ2‖2
bmθ + η2

)

κρ(t), (20)

lχ2δ2 ≤ |lχ2 | bmε ≤ lχ2 tanh
(
lχ2

ρ(t)

)

bmε+ bmεκρ(t). (21)

Using the inequalities (20) and (21), (19) becomes

V̇2 ≤V̇1 + lχ2 tanh
(
lχ2

ρ(t)

)
1

2η2
‖Ψ2‖2

bmθ + lχ2 tanh
(
lχ2

ρ(t)

)

bmε+ lχ2g2x3

+
(

1
2η2

‖Ψ2‖2
bmθ + η2 + bmε

)

κρ(t) − lχ1g1χ2. (22)

The virtual control law α2 is designed as

α2 = − tanh(lχ2/ρ(t))‖Ψ2‖2
θ̂

2η2
− tanh(lχ2/ρ(t))ε̂−

G2χ
2
2

lχ2

. (23)

Using (23), we have

V̇2 ≤
(‖Ψ1‖2

bmθ

2η1
+

‖Ψ2‖2
bmθ

2η2
+ η1 + η2 + 2bmε

)

κρ(t)−Q1χ
2
1 −Q2χ

2
2

+
1
r1
bmθ̃

(
r1
2η1

lχ1 tanh
(
lχ1

ρ(t)

)

+
r1
2η2

lχ2 tanh
(
lχ2

ρ(t)

)

− ˙̂
θ

)

+ lχ2g2χ3

+
1
r2
bmε̃

(

lχ1r2 tanh
(
lχ1

ρ(t)

)

+ lχ2r2 tanh
(
lχ2

ρ(t)

)

− ˙̂ε
)

. (24)

Step k Let χk = xk − αk−1, the time derivative of χk is given by

χ̇k ≤ fk + gkxk+1 − α̇k−1. (25)
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Next, define a positive Lyapunov function Vk as

Vk =
k−1∑

i=1

Vi +
1
2

log(l2bk
/(l2bk

− χ2
k)), (26)

where |xk| ≤ lck
, lbk

= lck
− αk−1.

The time derivative of Vk is

V̇k =
k−1∑

i=1

V̇i + lχk
χ̇k

≤
k−1∑

i=1

V̇i + lχk
(f̃k + gkxk+1) − ηklχk

tanh
(
lχk

ρ(t)

)

, (27)

where f̃k = fk − α̇k−1 + ηk tanh
(

lχk

ρ(t)

)
+

lχk−1gk−1χk

lχk
, lχk

= χk/(l2bk
− χ2

k). Then, using RBF

NNs to estimate function f̃k, we have

V̇k ≤
k−1∑

i=1

V̇i + lχk
(Wk

∗TΨk + δk + gkxk+1) − ηklχk
tanh

(
lχk

ρ(t)

)

− lχk−1gk−1χk. (28)

From Lemma 2.1 and Young’s inequality, we have

lχk
Wk

∗TΨk ≤ |lχk
|Wk

∗TΨk

≤ |lχk
| 1
2ηk

‖Ψk‖2
bmθ + |lχk

| ηk

≤lχk
tanh

(
lχk

ρ(t)

)
1

2ηk
‖Ψk‖2

bmθ +
1

2ηk
‖Ψk‖2

bmθκρ(t)

+ ηklχk
tanh

(
lχk

ρ(t)

)

+ ηkκρ(t)

=lχk
tanh

(
lχk

ρ(t)

)
1

2ηk
‖Ψk‖2

bmθ + lχk
tanh

(
lχk

ρ(t)

)

ηk

+
(

1
2ηk

‖Ψk‖2
bmθ + ηk

)

κρ(t), (29)

lχk
δk ≤ |lχk

| bmε ≤ lχk
tanh

(
lχk

ρ(t)

)

bmε+ bmεκρ(t). (30)

Combing (28), (29) and (30), we have

V̇k ≤lχk
tanh

(
lχk

ρ(t)

)
1

2ηk
‖Ψk‖2

bmθ +
(

1
2ηk

‖Ψk‖2
bmθ + ηk + bmε

)

κρ(t)

+ lχk
tanh

(
lχk

ρ(t)

)

bmε− lχk−1gk−1χk +
k−1∑

i=1

V̇i + lχk
gkxk+1. (31)

The virtual control law αk is designed as

αk = − tanh(lχk
/ρ(t))‖Ψk‖2

θ̂

2ηk
− tanh(lχk

/ρ(t))ε̂− Gkχ
2
k

lχk

. (32)
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Combing (31) and (32), we have

V̇k ≤
( k∑

i=1

‖Ψi‖2bmθ

2ηk
+

k∑

i=1

ηi + kbmε

)

κρ(t) +
1
r1
bmθ̃

( k∑

i=1

r1
2ηk

lχi tanh
(
lχi

ρ(t)

)

− ˙̂
θ

)

−
k∑

i=1

Qiχ
2
i +

1
r2
bmε̃

( k∑

i=1

lχir2 tanh
(
lχi

ρ(t)

)

− ˙̂ε
)

+ lχk
gkχk. (33)

Step n Let χn = xn − αn−1, the time derivative of χn is given by

χ̇n ≤ fn + gnu− α̇n−1. (34)

Next, the Lyapunov function Vn is constructed as following:

Vn =
n−1∑

i=1

Vi +
1
2

log(l2bn
/(l2bn

− χ2
n)), (35)

where |xn| ≤ lcn , lbn = lcn − αn−1.
The time derivative of Vn is

V̇n =
n−1∑

i=1

V̇i + lχn χ̇k

≤
n−1∑

i=1

V̇i + lχnfn + lχngnu− lχn α̇n−1

≤
n−1∑

i=1

V̇i + lχn(f̃n + gnu) − ηnlχn tanh
(
lχn

ρ(t)

)

, (36)

where f̃n = fn − α̇n−1 + ηn tanh
(

lχn

ρ(t)

)
+

lχn−1gn−1χn

lχn
, lχn = χn/(l2bn

− χ2
n). Then, using RBF

NNs to estimate function f̃n, we have

V̇n ≤lχn(Wn
∗TΨn(xn) + δn(xn) + gnu) − ηnlχn tanh

(
lχn

ρ(t)

)

− lχn−1gn−1χn +
n∑

i=1

V̇i. (37)

From Lemma 2.1 and Young’s inequality, we have

lχnWn
∗TΨn ≤ |lχn |Wn

∗TΨn

≤ |lχn |
1

2ηn
‖Ψn‖2

bmθ + |lχn | ηn

≤lχn tanh
(
lχn

ρ(t)

)
1

2ηn
‖Ψn‖2

bmθ +
1

2ηn
‖Ψn‖2

bmθκρ(t)

+ lχn tanh
(
lχn

ρ(t)

)

ηn + ηnκρ(t)

=lχn tanh
(
lχn

ρ(t)

)
1

2ηn
‖Ψn‖2

bmθ

+ lχn tanh
(
lχn

ρ(t)

)

ηn +
(

1
2ηn

‖Ψn‖2bmθ + ηn

)

κρ(t), (38)

lχnδn ≤ |lχn | bmε ≤ lχn tanh
(
lχn

ρ(t)

)

bmε+ bmεκρ(t). (39)
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Using the inequalities (38) and (39), (37) becomes

V̇n ≤lχn tanh
(
lχn

ρ(t)

)
1

2ηn
‖Ψn‖2

bmθ +
(

1
2ηn

‖Ψn‖2
bmθ + ηn + bmε

)

κρ(t)

+ lχn tanh
(
lχn

ρ(t)

)

bmε− lχn−1gn−1χn +
n∑

i=1

V̇i + lχngnu. (40)

We select the feedback controller u as

u = − tanh(lχn/ρ(t))‖Ψn‖2
θ̂

2ηn
− tanh(lχn/ρ(t))ε̂−

Gnχ
2
n

lχn

. (41)

Combing (40) and (41), we have

V̇n ≤
( n∑

i=1

‖Ψi‖2
bmθ

2ηi
+

n∑

i=1

ηi + nbmε

)

κρ(t) +
1
r1
bmθ̃

( n∑

i=1

r1
2ηi

lχi tanh
(
lχi

ρ(t)

)

− ˙̂
θ

)

+
1
r2
bmε̃

( n∑

i=1

lχir2 tanh
(
lχi

ρ(t)

)

− ˙̂ε
)

−
n∑

i=1

Qiχ
2
i . (42)

Using (6), we have

V̇n ≤
( n∑

i=1

‖Ψi‖2bmθ

2ηi
+

n∑

i=1

ηi + nbmε

)

κρ(t) +
bm
r1
θ̃θ̂ρ(t)

+
bm
r2
ε̃ε̂ρ(t)−

n∑

i=1

Qiχ
2
i . (43)

4 Stability Analysis

Theorem 4.1 Consider the nonlinear pure-feedback systems (1) with full state constraints

under Asumptions 2.1 and 2.2, and supposed the adaptive rates ˙̂
θ and ˙̂ε in (6), the virtual

controllers αi, i = 1, 2, · · · , n − 1 are constructed in (14), (23) and (32), the actual controller
u is designed in (41). If the design parameters r1, r2, Gi, i = 1, 2, · · · , n are chosen to satisfy
lci+1 − αi > lbi+1 , αi = max

∣
∣αi(xi, θ̂i, δ̂i, yd

(k), k = 1, · · · , i)∣∣, the control scheme designed in this
paper can guarantee: 1) When the time tends to infinity, the tracking error gradually tends to
zero. 2) All signals are semi-globally uniformly bounded in the closed-loop systems. 3) All state
variables are constrained to the specified ranges i.e.,|xi| ≤ lci .

Proof Combing (15), (24), (33) and (43), it yields

V̇n ≤
( n∑

i=1

‖Ψi‖2
bmθ

2ηi
+

n∑

i=1

ηi + nbmε

)

κρ(t) +
bm
r1
θ̃θ̂ρ(t) +

bm
r2
ε̃ε̂ρ(t)−

n∑

i=1

Qiχi
2. (44)

Consider the following inequalities:

bm
r1
θ̃θ̂ρ(t) ≤ −bmρ(t)θ̃2 + bmρ(t)θ̃θ ≤ bm

2r1
ρ(t)θ2,

bm
r2
ε̃ε̂ρ(t) ≤ bm

2r2
ρ(t)ε2, (45)
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and considering ‖ψi‖ ≤ √
τi with τi > 0 being the number of nodes in the NNs, we have

V̇n ≤−
n∑

i=1

Qiχ
2
i +

( n∑

i=1

τibmθ

2ηi
+

n∑

i=1

ηi + nε

)

κρ(t) +
bm
2r1

ρ(t)θ2 +
bm
2r2

ρ(t)ε2. (46)

Let

γ =
( n∑

i=1

τibmθ

2ηi
+

n∑

i=1

ηi + nbmε

)

κ+
bm
2r1

θ2 +
bm
2r2

ε2. (47)

Combing (46) and (47), it yields

V̇n ≤ −
n∑

i=1

Qiχ
2
i + ρ(t)γ. (48)

Integrating (48) over [0, t] yields that

Vn(t) ≤ Vn(0) + γ

∫ t

0

ρ(ν)dν−
∫ t

0

n∑

i=1

Qiχ
2
i (ν)dν

≤ Vn(0) + γρ1. (49)

This means that χi, χn, xi, xn, and αi, i = 1, · · · , n − 1 are bounded. What’s more, from
the inequality (49), we have

∫ t

0

n∑

i=1

Qiχ
2
i (ν)dν ≤ Vn(0) + γρ1. (50)

By applying the Barbalat lemma in [66], it is concluded that

lim
t→∞χ1 = 0. (51)

From x1 = χ1 + yd and |yd| ≤ M0, we can have |x1| ≤ |χ1| + |yd| < lb1 + M0. Let
lb1 = lc1 −M0 and then, |x1| < lc1 . According to the definition of α1 in (14), we can get that
α1 is a function of Ŵ , δ̂, x1, χ1, g1 and ẏd. Because the boundedness of Ŵ , δ̂, x1, χ1, g1, ẏd,
α1 is bounded and satisfies |α1| < α1. Then, |x2| ≤ |α1| + |χ2| ≤ α1 + lb2 . This implies that
|x2| < lc2 if lb2 = lc2 − α1. Similarly, it can be proven that |xi+1| < lci+1 , i = 2, 3, · · · , n − 1,
when lbi+1 = lci+1 − αi. It can be known from the definition in (41) that u is a function of
Ŵ , δ̂, x, χn, gn and ẏd, yd

(2), · · · , yd
(n). Due to the boundedness of Ŵ , δ̂, x, χn, gn and ẏd,

the controller u is bounded. From the above analysis, we can draw the conclusion that all the
signals in the system are bounded and the constraints of the state variables in the system (1)
are not violated.

Remark 4.2 It can be seen from (48), that the bigger values of Qi are and the smaller
value of γ is, the faster the function Vn is going to go down. This means that we can adjust
the design parameters in Qi and γ to get better control performance. Due to lbi = lci − αi−1,
the design parameters lbi are affected by lci and αi−1. The final sizes are also determined by
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lci and αi−1. The design parameters ηi can be used to adjust the size of the virtual control αi.
The selection of ηi are dynamic, it can adjust the value of αi to the ideal ranges. In general,
according to the existing knowledge, there is no specific way to adjust these parameters, and
constantly debugging is needed according to the quality of the simulation results.

5 Simulation Study

Example 5.1 In order to illustrate the effectiveness of the proposed scheme, the following
nonlinear pure-feedback system is considered:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x1 + 2x2 + x2
2/3,

ẋ2 = x1x
2
2 + 2x2 + 0.2u,

y = x1,

(52)

where the constraints of xi are |x1| < 1.5, |x2| < 1.5 and the reference signal is given as
yd = sin(t).

The controller of this system is designed as follows

u = − tanh(lχ2/ρ(t))‖Ψ2‖2θ̂

2η2
− tanh(lχ2/ρ(t))ε̂−

G2χ
2
2

lχ2

, (53)

where

ϕi(s) = exp
[
−(s− ξi)

T (s− ξi) /λ2
]
, i = 1, 2, · · · , n,

Ψ1(s) = [ϕ1(s), ϕ2(s), · · · , ϕ4(s)]
T
,

α1 = − tanh(lχ1/ρ(t))‖Ψ1‖2
θ̂

2η1
− tanh(lχ1/ρ(t))ε̂−

G1χ
2
1

lχ1

. (54)

The adaptive laws are designed as

˙̂
θ =

2∑

i=1

lχi tanh(lχi/ρ(t))
r1
2ηi

‖Ψi‖2 − r1ρ(t)θ̂,

˙̂ε =
2∑

i=1

lχir2 tanh(lχi/ρ(t)) − r2ρ(t)ε̂. (55)

The initial values of the adaptive laws and states are θ̂(0) = 0.2, ε̂(0) = 0.5, x1(0) = 0.1,
x2(0) = 0.3. Other design parameters are selected as follows: G1 = 10, G2 = 10, r1 = 15,
r2 = 15, λ1 = 2, λ2 = 2. Similar to [53], by using the Matlab routine, we can obtain lb1 = 1.0,
lb2 = 0.447.

From Figure 1 and Figure 2, we can see that the trajectory of y has good tracking perfor-
mance with the trajectory of the reference signal yd. Figure 3 shows that the individual state
variables in the system are constrained in the specified ranges. The trajectories of the virtual
controller α1 and the controller u are illustrated in Figure 4 and Figure 5, respectively.
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Figure 1 Output tracking perormance of Example 5.1
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Figure 2 Output tracking error of Example 5.1
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Figure 3 The trajectory of x2 of Example 5.1
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Figure 4 The trajectory of virtual controller α1 of Example 5.1
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Figure 5 The trajectory of controller u of Example 5.1

Example 5.2 Consider the following nonlinear pure-feedback single-link robot which
taken from [52]

⎧
⎨

⎩

Hς̈ +
1
2
mgl sin ς = u,

y = ς,
(56)

where g(m/s2) is the acceleration of gravity. m(kg) and ς(◦) are the gravity and the angle of the
system respectively. u is the input torque of the system; H(kg · m2) is the moment of inertia;
l(m) is the length. The system (1) can be expressed as:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2,

ẋ2 = −mgl sinx1/2H + u/H,

y = x1,

(57)

where x1 = ς, x2 = ς̇ and the states are constrained in |xi| < 1, i = 1, 2. The reference signal is
yd = 0.5 sin(t). The initial values of the states are chosen as x1(0) = 0.15, x2(0) = 0.1. From
Theorem 4.1, other design parameters are selected as G1 = 1, G2 = 1, r1 = 15, r2 = 15, λ1 = 2,
λ2 = 2. Similar to [62], by using the Matlab routine, we can obtain lb1 = 1.0, lb2 = 0.982.

From Figure 6 and Figure 7, we can see that the trajectory of the y has good tracking
performance with the trajectory of the reference signal yd. Figure 8 shows that the individual
state variables in the system are constrained in the specified ranges. Figure 9 and Figure 10
show the trajectories of virtual controller α1 and the controller u. Figure 11 is provided to show
the comparison results between our method and the existing methods. Compared our method
with methods used in [58, 63], it can be clearly seen that our method has better tracking
performance.
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Figure 6 Output tracking performance of Example 5.2
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Figure 7 Output tracking error using the scheme of Example 5.2
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Figure 8 The trajectory of x2 of Example 5.2
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Figure 9 The trajectory of virtual controller α1 of Example 5.2
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Figure 10 The trajectory of controller u of Example 5.2
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Figure 11 The comparison with the existing results of Example 5.2

6 Conclusions

This paper has studied the controller design problem for a class of nonlinear pure-feedback
system with full state constrains to ensure the asymptotic tracking performance. The nonlinear
functions in the systems are completely unknown and are not linearly parameterized. In order
to apply the backstepping method, we first transformed the pure-feedback system into a system
with strict-feedback structure, and NNs were used to online approximate the unknown nonlinear
terms. In addition, the BLFs were employed in all steps of the backstepping design such that
the requirements of full state constraints were satisfied. The proposed design scheme can
guarantee that all the signals in the closed-loop system remain bounded and the tracking
error asymptotically converges to zero. Two simulation examples are presented to show the
effectiveness of the proposed control scheme in the end. In the fulture, we will concentrate on
the controller design problem for pure-feedback interconnected nonlinear systems with full state
constraints.
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