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Abstract In this study, the authors consider an M/M/1 queuing system with attached inventory

under an (s, S) control policy. The server takes multiple vacations whenever the inventory is depleted.

It is assumed that the lead time and the vacation time follow exponential distributions. The authors

formulate the model as a quasi-birth-and-dearth (QBD) process and derive the stability condition of

the system. Then, the stationary distribution in product form for the joint process of the queue length,

the inventory level, and the server’s status is obtained. Furthermore, the conditional distributions of

the inventory level when the server is on and operational, and when it is off due to a vacation, are de-

rived. Using the stationary distribution, the authors obtain some performance measures of the system.

The authors investigate analytically the effect of the server’s vacation on the performance measures.

Finally, several numerical examples are presented to investigate the effects of some parameters on the

performance measures, the optimal policy, and the optimal cost.

Keywords Cost function, multiple vacations, product form solution, queuing-inventory system, (s, S)

control policy.

1 Introduction

A queueing system with attached inventory is called a queueing-inventory system (QIS) in
the literature. In this system, in order to satisfy each customer, items from the inventory are
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required to be on-hand and enough time to complete each service. For example, before items in
the inventory are out of the warehouse, the items require some time for retrieval, preparation,
packing, and loading, see [1]. As pointed by Zhao and Lian[2], the QIS is different from the
traditional queueing system because the attached inventory influences the service, if there is
no inventory on-hand, the service will be interrupted. Also, it is different from traditional
inventory management because the inventory is consumed at the service rate rather than at the
demand rate when there are customers queued up for service. Research on QIS and its explicit
analytical solution has attracted considerable attention over recent decades.

The early research work on the QIS was done by Sigman and Simchi-Levi[3] and Melikov and
Molchanov[4]. Sigman and Simchi-Levi[3] studied an M/G/1 queuing system with an attached
inventory, where it was assumed that customers arriving at the system during an out-of-stock
period were backlogged. They developed a light traffic heuristic for finding performance descrip-
tions for their model. Melikov and Molchanov[4] considered a QIS in a transportation/storage
system, where a user request was lost if the request arrived when the system already contained
the maximum number N of user requests. The exact and approximate solution methods were
proposed.

Most of the existing literature on the QIS assumes that any demands that face a zero
inventory are lost. These are called lost sales. The paper by Schwarz, et al.[5] requires a special
mention since it studied an M/M/1 QIS with the lost sales considered under three different
inventory management policies, and it obtained a product form solution for the joint stationary
distribution of the number of customers and the inventory level. This was a noteworthy outcome
due to the strong correlation that exists between the number of customers joining the system
during the lead time and the number of items in the inventory over that period. Subsequently,
there have been several research papers on the product form solution for various QIS models.

Saffari, et al.[1] extended the M/M/1 QIS with lost sales and the (r, Q) policy studied by
Schwarz, et al.[5] for a case where the lead times followed a mixed exponential distribution.
They derived the product form solution for the joint stationary distribution of the queue length
and the inventory level. The optimal order size was derived in exact form when the reorder
point is predetermined. Saffari, et al.[6] further extended the M/M/1 QIS studied by Saffari, et
al.[1] to include the case where the lead time followed a general distribution. Baek and Moon[7]

studied an M/M/1 production-inventory system, where the inventory was controlled by either
an internal production or an external order. They proved that the joint stationary distribution
of the queue length and the inventory level has a product form solution. Krenzler and Daduna[8]

studied a QIS in a random environment. They proved a necessary and sufficient condition that
the stationary distribution of the joint process of the queueing length and the environment has
a product form.

Krishnamoorthy, et al.[9] proposed an M/M/1 QIS with lost sales, where the item was given
with a probability to a customer at his service completion epoch. For either (s, Q) or (s, S) con-
trol policy, they obtained the product form solution for the joint stationary distribution of the
queue length and the inventory level. Krishnamoorthy, et al.[10] studied a supply chain model
with a production centre and a distribution centre. The production inventory system adopts a



PRODUCT FORM SOLUTION OF A QUEUING-INVENTORY SYSTEM 731

(rQ, KQ) policy, and the distribution centre adopts (s, Q) policy. The product form solution
of the steady-state distribution was obtained. The effect of various performance measures is
investigated. Yue, et al.[11] analyzed an M/M/1 QIS with (s, S) policy and batch demands
where the size of the batch demand was assumed to follow a geometric distribution. They
obtained the product form solution for the joint stationary distribution of the queue length and
the inventory level. In addition, they obtained some important performance measures and the
average cost functions by using these stationary distributions. More research work on QIS with
lost sales can be found in a survey paper by Krishnamoorthy, et al.[12].

Utilization of a server’s idle time has been discussed in the context of vacation queueing
models. From an economical point of view, these vacation models are more profitable than the
classical queueing models since the idle server has been utilized for performing secondary jobs.
For more details on this topic, readers may refer to Doshi[13], Takagi[14], Tian and Zhang[15]

and Ke, et al.[16]. However, there has been very limited research on QIS that consider a server’s
vacations.

Narayanan, et al.[17] were first to introduce a server vacation into a QIS with an (s, S) in-
ventory policy. They considered a very general model where the customer demands constituted
a Markovian arrival process (MAP), the service times and the vacation times all had phase
type (PH) distributions, and the lead time followed a correlated process similar to the customer
arrival process. The customers waiting for service were able to renege after a random time.
They formulated the model as a level-dependent quasi-birth-and-dearth process and computed
the steady state probabilities. Sivakumar[18] studied an M/M/1 QIS with retrial demands and
multiple vacations for a server, where (s, S) policy was considered. The lead time and the
vacation time were all assumed to be exponentially distributed. Demands that occurred during
stock-out periods and/or during server vacation periods entered the orbit of infinite size. The
stationary distribution of joint process of the inventory level and the number of customers in
the orbit. They also calculate some performance measures and the long-run total expected cost
rate. Padmavathi, et al.[19] investigated an (s, S) finite-source inventory system with postponed
demands and a modified vacation policy. A demand that occurs during a stock out period or a
server inactive period was entered into the pool, and the demands in the pool were selected if
the inventory level was above s. They obtained the stationary distribution of the joint process
of the mode of the server, the server status, the inventory level, and the number of demands in
the pool.

Melikov, et al.[20] proposed a model for a servicing system with perishable inventory and a
finite queue of impatient claims where an (s, S) inventory policy was considered, and the server
could be in one of three states: Operational, early, and delaying vacations. They developed
a method for approximate computation of the system’s characteristics. Koroliuk, et al.[21, 22]

proposed Markov QIS models with perishable inventory and an (s, S) inventory policy. In [21],
it was assumed that the server took vacations if either the inventory level was zero, the queue
was empty, or both. Unlike in [21], it was assumed in [22] that the server took a vacation only
if there were no customers in the system at the moment its operation completed, and the server
returned to operating mode only when the number of customers in the system exceeded some



732 YUE DEQUAN, et al.

thresholds. In these studies, they developed an exact method and an approximate method to
find its characteristics. Manikandan and Nair[23] proposed a QIS model under (s, Q) policy with
working vacation and lost sales. They computed the steady-state probability vector and various
performance measures. Jeganathan and Abdul Reiyas[24] studied a QIS model under (s, Q)
policy with two heterogeneous servers and working vacation, where one server is exclusively
used for high priority customers and another for low priority customers. They computed the
steady state distribution of the system and analyzed the distributions of the waiting times of
the types of customers. Zhang, et al.[25] studied an M/M/1 QIS with lost sales and server’s
vacation under a random order size policy. The lead time and the vacation time were all
assumed to be distributed exponentially. They obtained the product form solution for the joint
stationary distribution of the queue length, the inventory level, and the status of the server
under the assumption that the server takes multiple vacations once the inventory is depleted.
They obtained some important performance measures and investigated the effect of the server’s
vacation on the performance measures of the system.

In this paper, we extend the M/M/1 queueing-inventory model with lost sales and (s, S)
inventory policy studied by Schwarz, et al.[5] to include the case where the server takes multiple
vacations. When the server finishes service of a customer and finds that the inventory is empty,
the server leaves for a vacation. If the server finds that the inventory is not empty at the
end of a vacation, it returns from the vacation and serves any customer waiting for service.
Otherwise, the server takes another vacation immediately and continues in the same manner
until it finds that the inventory is not empty. The vacation time and the lead time are assumed
to be exponentially distributed. In contrast to the research work in [20–22], in this paper, we
have produced a tractable product form solution for the stationary distribution.

We summarize the main contributions of this study as follows: (i) We obtain the stability
condition of the system and show that it is independent of both the vacation time and the lead
time. (ii) The product form solution for the joint stationary distribution of the queue length,
the inventory level, and the status of the server are obtained. (iii) We find that the conditional
distribution of the inventory level when the server is off due to a vacation is independent of
the arrival rate, and that the conditional distribution of the inventory level when the server is
on and operational is independent of the vacation rate. (iv) Some very simple expressions of
some performance measures of our system model by means of the corresponding performance
measures of its classical inventory system (CIS) model are developed. (v) We investigate the
effect of the vacation parameter and some other parameters on performance measures of the
system, the optimal policy, and the optimal cost.

The rest of this paper is organized as follows. The system model is described in Section 2.
In Section 3, we derive the stationary condition of the system by using QBD process theory.
Then, we obtain the product form solution for the stationary distribution of the system in
Section 4. Furthermore, the conditional distributions of the inventory level when the server
is on and operating, and off due to a vacation are derived in this section. In Section 5, some
performance measures are computed. We also obtain some very simple formulas that relate the
performance measures of our model and those of the corresponding CIS model. In Section 6,
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we give an average cost function and consider optimization of the average cost function under
the constraint of service level. We also carry out numerical analysis to investigate the effect
of some parameters on the performance measures, the optimal policy, and the optimal average
cost. Conclusions are given in Section 7.

2 System Model

Consider a continuous review QIS with server’s vacations and lost sales. The arrival process
of customers is a Poisson process with rate λ > 0. There is a single server to serve the customers
one by one under a First-Come, First-Served discipline. Each customer requires exactly one
item in the inventory for service. The service time is assumed to be exponentially distributed
with parameter μ > 0.

Multiple vacations are considered for the server. If the server finds that the inventory is
empty at a service completion epoch, the server goes on vacation. On return from this vacation,
if the server finds that the inventory is still empty, the server takes another vacation immediately
and continues in this fashion until the server finds that the inventory is not empty. It is assumed
that the vacation time follows an exponential distribution with parameter θ > 0.

A continuous review (s, S) inventory policy is adopted. Each time the inventory level reaches
the reorder point s ≥ 0 an order is placed for replenishment. Upon replenishment, the inventory
level is restocked to level S with s < S no matter how many items are still present in the
inventory.

The replenishment lead time is exponentially distributed with parameter η > 0. Customers
arriving during a period when inventory is depleted or during a vacation period are rejected
and lost to the system (lost sales). If the inventory is empty at the epoch that the server is
ready to serve a customer that is at the head of the line, the service of the customers waiting
in the queue starts the moment the next replenishment arrives.

3 Stability Condition

In this section, we develop a QBD process for the system described in Section 2 and derive
the stability condition of the system.

Let X(t) be the number of customers at time t, Y (t) be the inventory level at time t, and
Z(t) be the status of the server at time t, where Z(t) is 0 if the server is off due to a vacation or
1 if the server is on and operational. Then, the process {Φ(t), t ≥ 0}={(X(t), Y (t), Z(t)), t ≥ 0}
forms a continuous time Markov process with state space Ω = ∪∞

n=0{n}, where

{n} = {(n, 0, 0), (n, 1, 1), (n, 2, 1), · · · , (n, S, 1), (n, S, 0)}, n = 0, 1, · · ·

is the collection of states with X(t) = n, called the level n. The state-transition diagram of the
process {Φ(t), t ≥ 0} is presented in Figure 1.
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Figure 1 State-transition diagram of the process {Φ(t), t ≥ 0}

The Markov process {Φ(t), t ≥ 0} is a QBD process by noting the assumptions made in
Section 2. We have the infinitesimal generator of the process {Φ(t), t ≥ 0} as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

A0 B0

B2 B1 B0

B2 B1 B0

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where A0, B0, B1 and B2 are all (S + 2) × (S + 2) matrices, and they are given as follows:

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−η 0 0 · · · 0 0 · · · 0 0 η

0 −(λ + η) 0 · · · 0 0 · · · 0 η 0

0 0 −(λ + η) · · · 0 0 · · · 0 η 0

...
...

...
. . .

...
...

. . .
...

...
...

0 0 0 · · · −(λ + η) 0 · · · 0 η 0

0 0 0 · · · 0 −λ · · · 0 0 0

...
...

...
. . .

...
...

. . .
...

...
...

0 0 0 · · · 0 0 · · · −λ 0 0

0 0 0 · · · 0 0 · · · 0 −λ 0

0 0 0 · · · 0 0 · · · 0 θ −θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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B0 = diag{0, λ, λ, · · · , λ, 0},
B1 = A0 − μ

λ
B0,

B2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0 0 0

μ 0 0 · · · 0 0 0

0 μ 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · μ 0 0

0 0 0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the matrix B = B0 + B1 + B2, which is given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−η 0 0 · · · 0 0 · · · 0 0 0 η

μ −(μ + η) 0 · · · 0 0 · · · 0 0 η 0

0 μ −(μ + η) · · · 0 0 · · · 0 0 η 0

...
...

...
. . .

...
...

. . .
...

...
...

...

0 0 0 · · · −(μ + η) 0 · · · 0 0 η 0

0 0 0 · · · μ −μ · · · 0 0 0 0

...
...

...
. . .

...
...

. . .
...

...
...

...

0 0 0 · · · 0 0 · · · μ −μ 0 0

0 0 0 · · · 0 0 · · · 0 μ −μ 0

0 0 0 · · · 0 0 · · · 0 0 θ −θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that B is an infinitesimal generator of a Markov process. Let τ = (τ(0), τ(1), · · · ,

τ(S +1)) denote the stationary probability vector of the Markov process with infinitesimal gen-
erator B. Then, τ satisfies the following set of equations:⎧⎨

⎩
τB = 0,

τe = 1,
(1)

where e is a column vector of 1’s of appropriate dimension. In order to derive the stability of
the process {Φ(t), t ≥ 0}, we first solve Equation (1). The solution is given by the following
lemma.

Lemma 3.1 The components of the stationary probability vector τ of are given by

τ(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ

η

(
μ

μ + η

)s

κ−1, i = 0,

(
μ

μ + η

)s−i+1

κ−1, i = 1, 2, · · · , s,

κ−1, i = s + 1, s + 2, · · · , S,

μ

θ

(
μ

μ + η

)s

κ−1, i = S + 1,

(2)
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where

κ =
μ

η
+ S − s +

μ

θ

(
μ

μ + η

)s

. (3)

Proof Equation (1) can be rewritten as follows:

−ητ(0) + μτ(1) = 0, (4)

−(μ + η)τ(i) + λτ(i + 1) = 0, i = 1, 2, · · · , s, (5)

−μτ(i) + μτ(i + 1) = 0, i = s + 1, s + 2, · · · , S − 1, (6)

−μτ(S) + η

(
τ(0) +

s∑
i=1

τ(i)

)
+ θτ(S) = 0, (7)

−λτ(0) − θτ(S + 1) = 0, (8)

τ(0) +
S+1∑
i=1

τ(i) + τ(S + 1) = 1. (9)

Solving Equation (5) recursively, we get

τ(i) =
(

μ

μ + η

)s−i+1

τ(s + 1), i = 1, 2, · · · , s. (10)

From Equation (6), we get

τ(i) = τ(S), i = s + 1, s + 2, · · · , S − 1. (11)

Substituting Equation (11) with i = s + 1 into Equation (10), we have

τ(i) =
(

μ

μ + η

)s−i+1

τ(S), i = 1, 2, · · · , s. (12)

From Equation (4), using Equation (12) with i = 1, we have

τ(0) =
μ

η
τ(1) =

μ

η

(
μ

μ + η

)s

τ(S). (13)

From Equation (8), using Equation (13), we have

τ(S + 1) =
η

θ
τ(0) =

μ

θ

(
μ

μ + η

)s

τ(S). (14)

Substituting Equations (12)–(14) into Equation (9), we obtain τ(S) as follows:

τ(S) = κ−1, (15)

where κ is defined by Equation (3). This completes the proof of Lemma 3.1.
Using the stationary probability vector of the infinitesimal generator B given by Lemma3.1,

we can derive the stability condition of the process {Φ(t), t ≥ 0}.
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Theorem 3.2 The process {Φ(t), t ≥ 0} is positive recurrent if and only if λ < μ.

Proof From the matrices B0 and B2, we have

τB0e = λ
S∑

i=1

τ(i) = λ (1 − τ(0) − τ(S + 1))

and

τB2e = μ

S∑
i=1

τ(i) = μ (1 − τ(0) − τ(S + 1)) .

From Neuts[26], the process {Φ(t), t ≥ 0} is positive recurrent if and only if

τB0e < τB2e. (16)

Thus, Equation (16) is equivalent to the following inequality:

λ (1 − τ(0) − τ(S + 1)) < μ (1 − τ(0) − τ(S + 1)) .

From Lemma 3.1, it is easy to see that

1 − τ(0) − τ(S + 1) =
μ
η + S − s − μ

η

(
μ

μ+η

)s

μ
η + S − s + μ

θ

(
μ

μ+η

)s > 0.

Thus, we have λ < μ. This proves Theorem 3.2.

Remark 3.3 We find from Theorem 3.2 that the stability condition for the present model
agrees with the stability condition of the classical queueing system (CQS) M/M/1 with the
arrival rate λ and the service rate μ. Thus, this stability condition is independent of both the
vacation parameter θ and the lead time parameter η.

4 Stationary Distribution

In this section, we shall find the stationary distribution of the process {Φ(t), t ≥ 0} by using
a similar idea used in [27]. Firstly, we consider a special case of our model: μ → ∞, i.e., the case
of negligible service time. This specific case of the model is denoted as Model I. Then, we use
this distribution to derive the stationary distribution for our original system model described
in Section 2, which is denoted as Model II.

4.1 Stationary Distribution of Model I

The corresponding Markov process for Model I is defined as {Φ̂(t), t ≥ 0} = {(Ŷ (t), Ẑ(t)), t ≥
0}, where Ŷ (t) and Ẑ(t) have the same definitions as Y (t) and Z(t) that were defined earlier,
respectively. The state space of the process {Φ̂(t), t ≥ 0} for Model I is given as follows:

Ω̂ = {(0, 0)} ∪ {(i, 1), i = 1, 2, · · · , S} ∪ {(S, 0)}.

The state-transition diagram of the process {Φ̂(t), t ≥ 0} is shown by Figure 2.
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Figure 2 State-transition diagram of the state process {Φ̂(t), t ≥ 0}

The infinitesimal generator of the process {Φ̂(t), t ≥ 0} = {(Ŷ (t), Ẑ(t)), t ≥ 0} is given by

Q̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−η 0 0 · · · 0 0 · · · 0 0 0 η

λ −(λ + η) 0 · · · 0 0 · · · 0 0 η 0

0 λ −(λ + η) · · · 0 0 · · · 0 0 η 0
...

...
...

. . .
...

...
. . .

...
...

...
...

0 0 0 · · · −(λ + η) 0 · · · 0 0 η 0

0 0 0 · · · λ −λ · · · 0 0 0 0
...

...
...

. . .
...

...
. . .

...
...

...
...

0 0 0 · · · 0 0 · · · λ −λ 0 0

0 0 0 · · · 0 0 · · · 0 λ −λ 0

0 0 0 · · · 0 0 · · · 0 0 θ −θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let πv = (πv(0, 0), πv(1, 1), πv(2, 1), · · · , πv(S, 1), πv(S, 0)) be the stationary probability vec-
tor of the process {Φ̂(t), t ≥ 0}. Then πv satisfies the following equations:

⎧⎪⎨
⎪⎩

πvQ̂ = 0,

πve = 1,
(17)

where e is a column vector of 1’s of appropriate dimension.
It is easy to see that matrix Q̂ can be obtained if we change all μ in matrix B by λ. Thus,

we can directly get the stationary distribution of the process {Φ̂(t), t ≥ 0} from Lemma 3.1.
Therefore, the solution of Equation (17) is given by

πv(0, 0) =
λ

η

(
λ

λ + η

)s

K−1, (18)

πv(i, 1) =

⎧⎪⎨
⎪⎩

(
λ

λ + η

)s−i+1

K−1, i = 1, 2, · · · , s,

K−1, i = s + 1, s + 2, · · · , S,

(19)

πv(S, 0) =
λ

θ

(
λ

λ + η

)s

K−1, (20)
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where

K =
λ

η
+ S − s +

λ

θ

(
λ

λ + η

)s

. (21)

Let θ → ∞, i.e., the server does not take any vacations. Thus, this special case of Model
I corresponds to a classical inventory system (CIS) model. Let Ĩ be the inventory level in the
steady state for this CIS model, and let θ → ∞ in Equations (18)–(21), then we obtain the
stationary distribution of the inventory level Ĩ as follows:

P (Ĩ = 0) =
λ

η

(
λ

λ + η

)s

K−1
0 , (22)

P (Ĩ = i) =

⎧⎪⎨
⎪⎩

(
λ

λ + η

)s−i+1

K−1
0 , i = 1, 2, · · · , s,

K−1
0 , i = s + 1, s + 2, · · · , S,

(23)

where

K0 =
λ

η
+ S − s. (24)

Remark 4.1 It is easy to verify that the constant K given by Equation (21) can be
rewritten as the sum of the constant K0 of the CIS model and an additional constant K1 due
to the server’s vacation as follows:

K = K0 + K1,

where

K1 =
λ

θ

(
λ

λ + η

)s

. (25)

4.2 Stationary Distribution of Model II

In this subsection, we derive the stationary distribution of Model II by using the stationary
distribution of Model I given Subsection 4.1.

Let ϕ = (ϕ0, ϕ1, · · · ) be the stationary probability vector of the process {Φ(t), t ≥ 0},
where ϕn = (ϕ(n, 0, 0), ϕ(n, 1, 1), ϕ(n, 2, 1), · · · , ϕ(n, S, 1), ϕ(n, S, 0)) is a row vector of S + 2
dimension. Then, the vector ϕ satisfies the set of the following equations:

⎧⎪⎨
⎪⎩

ϕQ = 0,

ϕe = 1,

(26)

where e is a column vector of 1’s of appropriate dimension.

Theorem 4.2 If λ
μ < 1, the stationary probability vector of the process {Φ(t), t ≥ 0} is

given by
ϕ = (ϕ0, ϕ1, · · · ),
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where

ϕn =
(

1 − λ

μ

)(
λ

μ

)n

πv, n = 0, 1, · · · , (27)

and the components of the vector

πv = (πv(0, 0), πv(1, 1), πv(2, 1), · · · , πv(S, 1), πv(S, 0))

are given by Equations (18)–(20).

Proof The first equation of the set of Equation (26) can be rewritten as follows:

ϕ0A0 + ϕ1B2 = 0, (28)

ϕiB0 + ϕi+1B1 + ϕi+2B2 = 0, i = 1, 2, · · · . (29)

Let

ϕn = γ

(
λ

μ

)n

πv, n = 0, 1, · · · , (30)

where γ is a constant.
Now, we need to verify Equation (30) satisfies Equations (28) and (29). Substituting Equa-

tion (30) into the left sides of Equations (28) and (29), we have

ϕ0A0 + ϕ1B2 = γπv

(
A0 +

λ

μ
B2

)

and

ϕiB0 + ϕi+1B1 + ϕi+2B2 = γ

(
λ

μ

)i

πv

[
B0 +

λ

μ
B1 +

(
λ

μ

)2

B2

]

= γ

(
λ

μ

)i

πv

[
B0 +

λ

μ

(
A0 − μ

λ
B0

)
+
(

λ

μ

)2

B2

]

= γ

(
λ

μ

)i+1

πv

(
A0 +

λ

μ
B2

)
, i = 0, 1, · · · .

From the structure of the matrices A0, B2 and Q̂, it is easy to verify that

A0 +
λ

μ
B2 = Q̂. (31)

From Equations (17) and (31), we have πv(A0 + λ
μB2) = πvQ̂ = 0. Hence, the right sides

of Equations (28) and (29) are zero. Thus, Equations (28) and (29) are satisfied with the
assumption given by Equation (30). Applying the normalizing condition ϕe = 1 and noting
that πve = 1, we get

γ

∞∑
i=0

(
λ

μ

)i

= 1. (32)
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Hence, if λ
μ < 1 we get from Equation (32) that γ = 1 − λ

μ . Thus, we complete the proof of
Theorem4.2.

Remark 4.3 Theorem 4.2 shows that the stationary distribution of Model II has a prod-
uct form solution for the two distributions: One distribution is the stationary distribution of
the queue length in the M/M/1 CQS, and the other distribution is the stationary distribution
of the inventory level in Model I.

We denote X , Y and Z to be the corresponding variables of X(t), Y (t) and Z(t) under
the steady state, respectively. From Theorem 4.2, we can obtain the marginal distributions of
theses random variables.

Corollary 4.4 (i) The marginal stationary distribution of the queue length X is given by

P (X = n) =
(

1 − λ

μ

)(
λ

μ

)n

, n = 0, 1, · · · , (33)

which is equal to the stationary distribution of the queue length in M/M/1 CQS with arrival
rate λ and service rate μ.

(ii) The marginal stationary distribution of the inventory level Y is given by

P (Y = i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ

η

(
λ

λ + η

)s

K−1, i = 0,

(
λ

λ + η

)s−i+1

K−1, i = 1, 2, · · · , s,

K−1, i = s + 1, s + 2, · · · , S − 1,
[
1 +

λ

θ

(
λ

λ + η

)s]
K−1, i = S,

(34)

where K is given by Equation (21).
(iii) The marginal stationary distribution of the server’s status Z is given by

P (Z = j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
λ

θ
+

λ

η

)(
λ

λ + η

)s

K−1, j = 0,

[
λ

η
+ S − s − λ

η

(
λ

λ + η

)s]
K−1, j = 1,

(35)

where K is given by Equation (21).

Proof The results are directly obtained by using Theorem 4.2.

Remark 4.5 (i) Equation (33) shows that the stationary distribution of the queue length
is only dependent on the parameters λ and μ, and it is not dependent on the other system
parameters. (ii) Equations (34) and (35) show that both the marginal stationary distribution
of the inventory level and the marginal stationary distribution of the server’s status are not
dependent on the service rate μ.
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4.3 Comparison of the Distributions of the Inventory Level Between Model II
and Its Corresponding CIS Model

In the following, we compare the marginal stationary distribution of the inventory level Y

for Model II with that for its corresponding CIS model.
Comparing Equations (18)–(20) and Equations (22) and (23), it is easy to have the following

relations between the stationary distributions for Model I and its corresponding CIS model:

πv(0, 0) = P (Ĩ = 0)Kv, (36)

πv(i, 1) = P (Ĩ = i)Kv, i = 1, 2, · · · , S, (37)

πv(S, 0) = 1 − Kv, (38)

where

Kv =
λ
η + S − s

λ
η + S − s + λ

θ

(
λ

λ+η

)s . (39)

Using relations given by Equations (36)–(38), we have from Theorem 4.2 that

P (Y = 0) = πv(0, 0) = P (Ĩ = 0)Kv, (40)

P (Y = i) = πv(i, 1) = P (Ĩ = i)Kv, i = 1, 2, · · · , S − 1, (41)

P (Y = S) = πv(S, 1) + πv(S, 0) = P (Ĩ = S)Kv + 1 − Kv. (42)

Using Equations (40) and (41) and noting 0 < Kv < 1, we have

P (Y = i) < P (Ĩ = i), i = 0, 1, · · · , S − 1. (43)

Using Equation (42), we have

P (Y = S) = P (Ĩ = S)Kv + 1 − Kv

= P (Ĩ = S) + (1 − Kv)(1 − P (Ĩ = S))

> P (Ĩ = S). (44)

Remark 4.6 From Equations (43) and (44), we have the following observations: (i) The
marginal probability of the inventory level Y at any level, except the maximum inventory level
S for Model II, is less than the probability of the inventory level Ĩ for its corresponding CIS
model. (ii) The marginal probability of the inventory level Y at the maximum inventory level
S for Model II is larger than the probability of the inventory level Ĩ for its corresponding CIS
model.
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4.4 Conditional Distribution of the Inventory Level

We consider the conditional distributions of the inventory level when the server is off due
to a vacation or is on and operational.

Theorem 4.7 (i) The conditional distribution of the inventory level when the server is
off due to a vacation is given by

P (Y = i|Z = 0) =

⎧⎪⎨
⎪⎩

θ

η + θ
, i = 0,

η

η + θ
, i = S.

(45)

(ii) The conditional distribution of the inventory level when the server is on and operational
is given by

P (Y = i|Z = 1) =

⎧⎪⎨
⎪⎩

(
λ

λ + η

)s

K−1
c , i = 1, 2, · · · , s,

K−1
c , i = s + 1, s + 2, · · · , S,

(46)

where

Kc = S − s +
λ

η

[
1 −

(
λ

λ + η

)s]
. (47)

Proof Using Equations (18)–(20) and Equation (35), it is easy to obtain the conditional
distributions of the on-hand inventory when the server is off due to a vacation and when the
server is on and operational as presented by Equations (45) and (46), respectively.

Remark 4.8 (i) From Equation (45), it is observed that the conditional inventory level
when the server is off due to vacation is either 0 or S, and it follows a Bernoulli distribution.
Also, the conditional distribution of the inventory level when the server is off due to a vacation is
independent of the arrival rate λ, and that it is not dependent on parameters η and θ individually
but only on their proportions η/θ. So, the arrival process of customers does not influence the
conditional inventory level when the server is off due to a vacation. (ii) From Equations (46)
and (47), it is observed that the conditional distribution of the inventory level when the server
is on and operational is independent of the vacation rate θ. So, the vacation parameter does
not influence the conditional inventory level when the server is on and operational.

From Equation (45), we obtain the conditional mean inventory level when the server is off
due to a vacation which is given by

E(Y |Z = 0) =
ηS

η + θ
. (48)

From Equation (46), we obtain the conditional mean inventory level when the server is on and
operational which is given by

E(Y |Z = 1) =

(
S − s + λ

η

)
I

S − s + λ
η

[
1 −

(
λ

λ+η

)s] , (49)

where I is the mean inventory level for the CIS model.
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Remark 4.9 From Equations (48) and (49), we have the following observations: (i) The
conditional mean inventory level when the server is off due to a vacation E(Y |Z = 0) is less
than the maximum inventory level S. (ii) The conditional mean inventory level when the server
is on and operational E(Y |Z = 1) is larger than the mean inventory I for the CIS model.

5 Performance Measures of the System

In this section, we are interested in the stationary characteristics of the system. Having de-
termined the stationary distribution given by Theorem4.2, we can compute several performance
measures of the operating characteristics for the system explicitly.

We introduce some notations used in the rest of our paper. Notations used for Model II
and its corresponding CIS model or its corresponding M/M/1 CQS model are listed in Table 1,
where notations with subscript ‘v’ are for Model II, and notations without any subscripts are
for the CIS model or the M/M/1 CQS model.

Table 1 Notations for the performance measures

Symbol Description

I , Iv The mean inventory level

L, Lv The mean number of lost sales per unit of time

L̃, L̃v The mean number of lost sales per cycle

A, Av The mean arrival rate of customers who are admitted to

the system per unit of time

R, Rv The mean reorder rate per unit of time

β, βv The service level

N , Nv The mean number of the customers in the system

Ñ , Ñv The mean number of the waiting customers in the queue

W , Wv The mean sojourn time of the customers in the system

W̃ , W̃v The mean waiting time of the customers in the queue

5.1 Performance Measures Related to Inventory

According to Schwarz, et al.[5] (pp. 60–61), definitions for a cycle and a service level are
given by the following. The definitions of the other performance measures in Table 1 are readily
known.

Definition 5.1 A cycle and a service level are defined as follows:
(i) A cycle is the time between the placing of two successive orders.
(ii) A service level is defined by

β =
E(demand satisfied per unit of time)

E(total demand per unit of time)
.
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The above definition of the service level is called β-service level by Schwarz, et al.[5], and
it is also called the fill rate in [28]. As pointed out by Schwarz, et al.[5], the β-service level is
a quantity-originated service measure describing the proportion of demands that are met from
stock without accounting for the duration of a stock out.

Firstly, we present some performance measures which have been given by Schwarz, et al.[5]

for the CIS model by the following lemma. These performance measures can be also derived
from Equations (22) and (23).

Lemma 5.2 For the CIS Model, we have the following performance measures:
(i) The mean inventory level is

I =
{

λ

η

[
s − λ

η
+

λ

η

(
λ

λ + η

)s]
+

1
2
(S − s)(S + s + 1)

}
K−1

0 . (50)

(ii) The mean number of lost sales per unit of time is

L =
λ2

η

(
λ

λ + η

)s

K−1
0 . (51)

(iii) The mean arrival rate of customers who are admitted to the system per unit of time is

A = λ

[
1 − λ

η

(
λ

λ + η

)s

K−1
0

]
. (52)

(iv) The mean number of replenishment (reorder rate) per unit of time is

R = λK−1
0 . (53)

(v) The mean number of lost sales per cycle is

L̃ =
λ

η

(
λ

λ + η

)s

. (54)

(vi) The service level is

β = 1 − λ

η

(
λ

λ + η

)s

K−1
0 . (55)

Proof The proof of Lemma 5.2 can be found in [5] (see Theorem 4.3, pp. 66–67). It is easy
to see that all these performance measures are independent of the service rate μ. So, all these
performance measures holds for the CIS model.

Secondly, we compute some performance measures from view point of inventory for Model
II. From Remark 4.5, we know that both the marginal stationary distribution of the inventory
level and the marginal stationary distribution of the server’s status do not depend on the
service rate μ. Thus, we can compute those performance measures that relate to inventory for
Model II by using the stationary distribution for Model I that has been given in Subsection 4.1.
Furthermore, using the relations given by Equations (36)–(38), we can obtain some very simple
formula for the performance measures of Model II by means of the performance measures of
the corresponding CIS model that were given by Lemma 5.2.
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Theorem 5.3 For Model II, the performance measures related to inventory are given as
follows:

(i) The mean inventory level is

Iv = KvI + (1 − Kv)S. (56)

(ii) The mean number of lost sales per unit of time is

Lv = KvL + (1 − Kv)λ. (57)

(iii) The mean arrival rate of customers who are admitted to the system per unit of time is

Av = KvA. (58)

(iv) The mean number of replenishment (reorder rate) per unit of time is

Rv = KvR. (59)

(v) The mean number of lost sales per cycle is

L̃v = L̃ + K1. (60)

(vi) The service level is

βv = Kvβ. (61)

Proof (i) Using Equations (36)–(38), one can easily show that the mean inventory level

Iv =
S∑

i=0

iπv(i, 1) + Sπv(S, 0) = KvI + (1 − Kv)S.

(ii) Lost sales occurs when a demand arrives during a vacation period. Hence, the mean
number of lost sales incurred per unit of time is

Lv = λ(πv(0, 0) + πv(S, 0)). (62)

Substituting Equations (36) and (38) into Equation (62) with some algebra, Equation (57) can
be obtained.

(iii) Using Equation (57), the mean arrival rate of customers who are admitted to the system
per unit of time is

Av = λ − Lv = KvA.

(iv) The mean reorder rate per unit of time is

Rv = η

(
s∑

i=0

πv(i, 1) + πv(0, 0)

)
= η

s∑
i=0

Kvπ(i) = KvR.
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(v) Obviously, the mean cycle time is R−1
v . Thus, the mean number of lost sales per cycle is

L̃v = R−1
v Lv.

Using Equations (57) and (59) with some algebra, Equation (60) can be obtained.
(vi) Using Equation (57), one can easily show that the service level is

βv =
λ − Lv

λ
= Kvβ.

The proof of Theorem 5.3 is completed.

Remark 5.4 From Theorem 5.3, we observed the following relations between Model II
and its corresponding CIS model: (i) The mean inventory level Iv is the weighted average
summation of I and S, and the mean number of lost sales incurred per unit of time Lv is the
weighted average summation of L and the arrival rate λ. (ii) The mean number L̃v of lost
sales per cycle can be decomposed into the summation of L̃ and additional constant K1 due to
server’s vacations. (iii) The performance measures Rv, Av and βv for Model II are Kv times
of their corresponding performance measures R, A and β for the CIS model, respectively. In
other words, each of the ratios Av

A , Rv

R and βv

β is equal to a constant Kv. All these relationships
can be classified into three types of relations: weighted average summation, proportion, and
summation. They are summarized in Table 2.

Table 2 Relations of performance measures between Model II and its corresponding CIS model

Performance measures Relationships Types of relation

I , Iv Iv = KvI + (1 − Kv)S Weighted average summation

L, Lv Lv = KvL + (1 − Kv)λ Weighted average summation

L̃, L̃v L̃v = L̃ + K1 Summation

A, Av Av = KvA Proportion

R, Rv Rv = KvR Proportion

β, βv βv = Kvβ Proportion

5.2 Performance Measures Related to Queue

Now, we compute some performance measures related to queue for Model II. Let Nv and
Ñv be the mean number of customers in the system and the mean number of waiting customers
in the queue, respectively.

From Corollary 4.4 (i), the marginal stationary distribution of the number of customers of
the system for Model II is the same as that of the number of customers for the M/M/1/∞
CQS. Thus, the mean number of customers in the system for Model II is given by

Nv =
λ

μ − λ
. (63)
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From Theorem 4.2, the mean number of waiting customers in the queue is given by

Ñv=
∞∑

n=0

S∑
i=1

(n − 1)ϕ(n, i, 1) +
∞∑

n=0

n[ϕ(n, 0, 0) + ϕ(n, S, 0)]

=
∞∑

n=0

(n − 1)
(

1 − λ

μ

)(
λ

μ

)n

P (Z = 1)

+
∞∑

n=0

n

(
1 − λ

μ

)(
λ

μ

)n

P (Z = 0). (64)

Substituting Equation (35) into Equation (64), we have

Ñv =
λ

μ − λ
− λ

μ
K−1

q , (65)

where

Kq =
λ
η + S − s + λ

θ

(
λ

λ+η

)s

λ
η + S − s − λ

η

(
λ

λ+η

)s . (66)

Let Wv and W̃v be the mean sojourn time of the customers in the system and the mean
waiting time of the customers in the queue, respectively. Using Little’s formula and Equations
(57), (63) and (65), the mean sojourn time of the customers in the system is given by

Wv =
Nv

Av
=

Kq

μ − λ
, (67)

and the mean waiting time of the customers in the queue is given by

W̃v =
Ñv

Av
=

Kq

μ − λ
− 1

μ
, (68)

where Kq is given by Equation (66).

Remark 5.5 From Equations (63), (65), (67) and (68), taking the first and the second
derivatives, it is easy to see that the performance measures Nv, Ñv, Wv and W̃v are decreasing
and convex in μ.

5.3 The Effect of the Vacation Rate on Some Performance Measures

In this subsection, we investigate the effect of the vacation rate θ on some performance
measures by using the results obtained in last two subsections.

From Table 2 and Equations (65)–(68), it is observed that the constants Kv and Kq play a
key role in relating the performance measures of Model II with those of its corresponding CIS
model or CQS model. We have the following properties for the two constants Kv and Kq.

Proposition 5.6 (i) The constant Kv is strictly increasing and concave in θ.
(ii) The constant Kq is strictly decreasing and convex in θ.
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Proof (i) Taking the first and the second derivative for Kv with respect to the parameter
θ, we have

dKv

dθ
= λ

(
λ

λ + η

)s
K0

(θK)2
> 0

and

d2Kv

dθ2
= −2λ

(
λ

λ + η

)s
K2

0

(θK)3
< 0.

Hence, the constant Kv is strictly increasing and concave in θ.
(ii) Taking the first and the second derivative for Kq with respect to the parameter θ, we

have

dKq

dθ
= − λ

θ2

(
λ

λ + η

)s

K−1
c < 0 (69)

and

d2Kq

dθ2
=

2λ

θ3

(
λ

λ + η

)s

K−1
c > 0. (70)

Hence, the constant Kq is strictly decreasing and convex in θ.
Now, we have the following monotonicity of some performance measures with respect to the

vacation rate.

Theorem 5.7 For the performance measures of Model II, we have the following properties:
(i) Iv, Lv and L̃v are strictly decreasing and convex in θ.
(ii) Av, Rv and βv are strictly increasing and concave in θ.
(iii) Ñv, Wv and W̃v are strictly decreasing and convex in θ.

Proof (i) Using the relations for Iv and Lv presented in Table 2, we have

dIv

dθ
= (I − S)

dKv

dθ
,

d2Iv

dθ2
= (I − S)

d2Kv

dθ2
,

and

dLv

dθ
= (L − λ)

dKv

dθ
,

d2Lv

dθ2
= (L − λ)

d2Kv

dθ2
.

Obviously, I − S < 0 and L − λ < 0. Thus, using Proposition 5.6 (i), we prove that Iv and Lv

are strictly decreasing and convex in θ. Using the relation for L̃v presented in Table 2, we have

dL̃v

dθ
=

dK1

dθ
= − λ

θ2

(
λ

λ + η

)s

< 0,

d2L̃v

dθ2
=

d2K1

dθ2
=

2λ

θ3

(
λ

λ + η

)s

> 0.

Hence, L̃v is strictly decreasing and convex in θ.
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(ii) From Table 2, Av, Rv and βv are Kv times of the corresponding performance measures
A, R and β, respectively. Note that A, R and β are positive and independent of θ, and the
result of Theorem 5.7 (ii) obviously holds.

(iii) Using Equations (69) and (70), from Equation (65), we have

dÑv

dθ
=

λ

μ
K−2

q

dKq

dθ
< 0,

d2Ñv

dθ2
=

λ

μ
K−3

q

[
Kq

d2Kq

dθ2
− 2

(
dKq

dθ

)2
]

=
2λ2Kv

μθ3Kq

(
λ

λ + η

)s

> 0.

Thus, we prove that Ñv is strictly decreasing and convex in θ. From Equations (67) and (68),
using Proposition 5.6 (ii), it is clear that Wv and W̃v are strictly decreasing and convex in θ.

6 Numerical Analysis

In this section, we develop a cost function by using the performance measures obtained in
Section 5 and present some numerical analyses to investigate the effect of some parameters on
the performance measures, the optimal policy, and the optimal cost.

6.1 Effect of the System Parameters on Some Performance Measures

In this subsection, we study the effect of the system parameters such as the arrival rate λ,
the replenishment rate η and the vacation rate θ on the performance measures since the service
rate μ only affects the performance measures such as Nv, Ñv, Wv and W̃v and its effects are
well detailed in Remark 5.5. The results are given in Tables 3, 4 and 5. We fix the reorder
point s = 6, and the maximum inventory level S = 15, and fix the cost parameter values as
C1 = 30, C2 = 100, C3 = 500 and C4 = 50.

As is to be expected, it is observed from Table 3 that Lv, L̃v, Ñv, Wv and W̃v increase
significantly as λ increases. We also note that the mean number of lost sales per cycle L̃v is
much larger than the mean number of lost sales per unit of time Lv when λ becomes increasingly
larger. This is due to the very small value of the mean reorder rate per unit of time Rv

and comparatively high value of Lv, which explains the observation by noting the relation
L̃v = LvR

−1
v . From Table 3, we observe that Iv, Av and Rv firstly increase and then decrease

with an increase in the arrival rate λ. However, the values of Iv, Av and Rv vary only slightly
even when λ varies significantly. This means that Iv, Av and Rv are less sensitive than other
performance measures. It is observed that the service level βv decreases significantly with the
arrival rate λ. For instance, the service level βv is below 51% even when λ is larger than 4.
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Table 3 The effect of the arrival rate λ on the performance measures for η = 1, θ = 0.1 and μ = 30

λ Iv Lv L̃v Av Rv βv Ñv Wv W̃v

1 10.4805 0.0169 0.1719 0.9831 0.0985 0.9831 0.0006 0.0351 0.0006

4 11.0274 1.9645 11.5343 2.0355 0.1703 0.5089 0.0756 0.0756 0.0371

7 11.2242 5.1017 34.5572 1.8983 0.1476 0.2712 0.2218 0.1603 0.1168

10 11.0378 8.2299 62.0921 1.7701 0.1325 0.1770 0.4115 0.2825 0.2325

13 10.7901 11.3134 91.6701 1.6866 0.1234 0.1297 0.6655 0.4534 0.3946

16 10.5560 14.3697 122.3317 1.6303 0.1175 0.1019 1.0264 0.7010 0.6296

19 10.3500 17.4098 153.6342 1.5902 0.1133 0.0837 1.5827 1.0862 0.9953

21 10.2284 19.4305 174.7397 1.5695 0.1112 0.0747 2.1589 1.4867 1.3756

24 10.0672 22.4555 206.6481 1.5445 0.1087 0.0644 3.7426 2.5898 2.4231

27 9.9277 25.4751 238.7761 1.5249 0.1067 0.0565 8.4917 5.9019 5.5686

Table 4 The effect of the replenishment rate η on the performance measures with λ = 10,

θ = 0.1 and μ = 30

η Iv Lv L̃v Av Rv βv Ñv Wv W̃v

1 11.0378 8.2299 62.0921 1.7701 0.1325 0.1770 0.4115 0.2825 0.2325

2 12.1067 7.4046 35.1643 2.5954 0.2106 0.2595 0.3702 0.1926 0.1426

3 12.2888 6.4773 21.4082 3.5227 0.3026 0.3523 0.3229 0.1419 0.0919

4 12.1680 5.4933 13.6131 4.5067 0.4035 0.4507 0.2747 0.1109 0.0609

5 11.9381 4.5274 8.9547 5.4726 0.5056 0.5473 0.2264 0.0914 0.0414

6 11.6878 3.6445 6.0598 6.3555 0.6014 0.6355 0.1822 0.0787 0.0287

7 11.4595 2.8838 4.2021 7.1162 0.6863 0.7116 0.1442 0.0703 0.0203

8 11.2698 2.2569 2.9769 7.7431 0.7581 0.7743 0.1128 0.0646 0.0146

9 11.1213 1.7564 2.1492 8.2436 0.8172 0.8244 0.0878 0.0607 0.0107

10 11.0097 1.3649 1.5781 8.6351 0.8649 0.8635 0.0682 0.0579 0.0079
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Table 5 The effect of the vacation rate θ on the performance measures with λ = 10, η = 1 and μ = 30

θ Iv Lv L̃v Av Rv βv Ñv Wv W̃v

0.5 8.5479 5.5908 16.9342 4.4092 0.3301 0.4409 0.2795 0.1134 0.0634

1.0 7.5951 4.5809 11.2895 5.4191 0.4058 0.5419 0.2290 0.0922 0.0423

1.5 7.1725 4.1329 9.4079 5.8671 0.4393 0.5867 0.2066 0.0852 0.0352

2.0 6.9339 3.8800 8.4671 6.1200 0.4582 0.6120 0.1940 0.0817 0.0317

2.5 6.7806 3.7175 7.9026 6.2825 0.4704 0.6282 0.1859 0.0796 0.0296

3.0 6.6737 3.6043 7.5263 6.3957 0.4789 0.6396 0.1802 0.0782 0.0282

3.5 6.5950 3.5209 7.2575 6.4791 0.4851 0.6479 0.1760 0.0772 0.0272

4.0 6.5347 3.4569 7.0559 6.5431 0.4899 0.6543 0.1728 0.0764 0.0264

4.5 6.4869 3.4062 6.8991 6.5938 0.4937 0.6594 0.1703 0.0758 0.0258

5.0 6.4481 3.3651 6.7737 6.6349 0.4968 0.6635 0.1683 0.0754 0.0254

From Table 4, we observe that an increase in the replenishment rate η results in a decrease in
the performance measures Lv, L̃v, Ñv, Wv and W̃v. This agrees with our intuitive expectation.
Moreover, as η increases, Lv and L̃v become closer. We also observe that as η increases, there
is a slight increase in Av and Rv as expected. This is a consequence of a decrease in the mean
number of lost sales Lv. However, as η increases, there is a comparatively high increase in βv.
For instance, when η > 9 the service level βv is higher than 80%. It is observed that a concave
of Iv. It initially increases firstly and then decreases with an increase in the replenishment rate
η. However, the values of Iv vary only slightly even when η varies significantly. This indicates
that Iv is less sensitive than the other performance measures.

We observe the following monotonicity from Table 5: (i) Iv, Lv and L̃v decrease as the
vacation rate θ increases; (ii) Av, Rv and βv increase with an increase in the vacation rate θ;
(iii) Ñv, Wv and W̃v decrease with an increase in the vacation rate θ. These results correspond
to a certain extent with the analytical results given by Theorem 5.7. It is seen that all the
performance measures are more sensitive in the case where θ is a small value compared to the
case where θ is a large value.

6.2 Effect of the System Parameters on the Optimal Policy and the Optimal Cost

According to Schwarz, et al.[5], we consider the following cost parameters connected with
operating the system: A holding cost C1 of inventory per unit time, a shortage cost C2 per unit
of time for each lost sale demand, a fixed cost C3 for placing an order, and a waiting cost C4

per unit of time for each waiting customer in queue.
Let F (s, S) be the total average cost per unit of time for our original model, i.e., Model II.

Then, the total average cost per unit of time for Model II is given by

F (s, S) = C1Iv + C2Lv + C3Rv + C4Ñv, (71)
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where C1Iv, C2Lv, C3Rv and C4Ñv are the average holding cost, the average shortage cost, the
average ordering cost, and the average waiting cost, respectively. It is difficult to discuss the
structural properties of the cost function F (s, S) analytically because of the complexity of the
cost function. Hence, we carry out a detailed numerical study for the optimal policy and the
optimal cost.

In the following, we numerically investigate the effect of system parameters on the optimal
policy and the optimal cost under the constraint of the service level. Hence, the genetic algo-
rithm (see Feng, et al.[29]) is used to find the optimal policy to minimize the total average cost
F (s, S) under the constraint of the service level βv ≥ β0, where β0 the predetermined service
level. We fix the predetermined service level β0 = 85% and the cost parameters C1 = 30,
C2 = 100, C3 = 500 and C4 = 50, and vary any one of the parameters λ, η, θ and μ, and fix all
other parameters to be constant. The results are presented in Figures 3–6.
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Figure 3 The effect of the arrive rate λ on the optimal cost and the optimal policy

with η = 1, θ = 0.5 and μ = 30

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

η

O
pt

im
al

 a
ve

ra
ge

 c
os

t
s

 

 
Total average cost
Average holding cost
Average shortage cost
Average ordering cost
Average waiting cost

(a) Optimal average costs per unit time

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

η

O
pt

im
al

 in
ve

nt
or

y 
le

ve
l

 

 
s*

S *

(b) Optimal values s∗ and S∗

Figure 4 The effect of the replenishment rate η on the optimal cost and the optimal

policy with λ = 15, θ = 0.5 and μ = 30
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Figure 5 The effect of the vacation rate θ on the optimal cost and the optimal policy

with λ = 15, η = 1, and μ = 30
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Figure 6 The effect of the service rate μ on the optimal cost and the optimal policy

with λ = 15, η = 1 and θ = 0.5

From Figures 3–6, we have the following observations:
(i) The optimal average cost F (s∗, S∗) and the optimal policy (s∗, S∗) increase significantly

with an increase in the arrival rate λ. Figure 3(a) shows the increasing tendencies of all
the components of the total average cost F (s∗, S∗). Especially, the holding cost increases
significantly with λ. This leads to the increasing of the optimal policy (s∗, S∗) and the optimal
average cost F (s∗, S∗).

(ii) The optimal average cost F (s∗, S∗) and the optimal policy (s∗, S∗) decrease with an
increase in the replenishment rate η, and their decreasing rates get slower as the replenishment
rate η increases. This can be explained by the following observation from Figure 4(a) that both
the holding cost and the shortage cost decrease with the replenishment rate η even though the
ordering cost increases slightly with η.

(iii) The optimal average cost F (s∗, S∗) and the optimal policy (s∗, S∗) decrease with an
increase in the vacation rate θ. Figure 5(a) shows that the vacation rate mainly affects the
holding cost, while hardly affecting the other three components. This indicates a vacation has
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a negative effect on the optimal average cost.
(iv) The optimal policy (s∗, S∗) does not vary with an increase in service rate μ, but the

optimal average cost decreases slightly with an increase in the service rate μ. This is because
the service rate μ mainly affects the waiting cost, and the waiting cost is smaller than the other
three cost components since the mean number of waiting customers in queue Ñv is very small,
which can be observed from Table 3.

(v) The parameters λ, η and θ have a significant effect on the holding cost, while only having
a slight effect on the shortage cost, the ordering cost and the waiting cost. The parameter μ

only has a slight effect on the waiting cost and does not affect the other three cost components.

6.3 Effect of the Service Level on Some Performance Measures, the Optimal Pol-
icy and the Optimal Cost

In this subsection, we study the effect of the predetermined service level β0 on the optimal
policy, the optimal cost and some performance measures. The numerical results for the optimal
policy (s∗, S∗), the optimal cost F (s∗, S∗), and the performance measures βv, Iv, Lv, Rv and
Ñv are displayed in Table 6. In Table 6, we fix the parameters as λ = 7, η = 1, θ = 0.5, μ = 30,
C1 = 30, C2 = 100, C3 = 500, C4 = 50.

Table 6 Optimal policy and performance measures under service level constraint

β0(%) (s∗, S∗) F (s∗, S∗) βv(%) Iv Lv Rv Ñv

65.00 (8, 18) 722.1563 66.92 10.8354 2.3159 0.3209 0.1007

70.00 (9, 20) 725.5027 71.57 12.1528 1.9900 0.3152 0.0865

75.00 (10, 23) 736.3839 76.67 14.0586 1.6329 0.2956 0.0710

80.00 (11, 26) 754.6255 80.83 15.9596 1.3416 0.2775 0.0583

85.00 (14, 27) 781.5079 85.39 17.3011 1.0230 0.3159 0.0445

90.00 (17, 31) 839.6837 90.33 20.4876 0.6766 0.3119 0.0294

95.00 (23, 35) 960.7663 95.04 24.9067 0.3469 0.3563 0.0151

From Table 6, we have the following observations:
(i) As expected, the mean inventory level Iv increases as β0 increases, and the mean number

of lost sales per unit of time Lv and the mean number of the waiting customers in queue Ñv

decrease with an increase in β0.
(ii) The optimal policy (s∗, S∗) and the optimal cost F (s∗, S∗) increase with the increasing

of β0. This is because the inventory is to be maintained with more stocks with an increase in
the service level. This leads to a much higher holding inventory cost. This may be the main
reason of the increase in the optimal cost.

(iii) The mean reorder rate per unit of time Rv does not display any monotonic behaviour
as the predetermined service level β0 increases. It seems that Rv is slightly sensitive to the
changes of the predetermined service level β0.
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(iv) When the predetermined service level is raised some levels from a lower service level, the
optimal cost may increase slightly. However, when the predetermined service level is raised by
the same number of levels from a higher service level, the optimal cost may increase significantly.
For instance, when β0 is raised 5% from 65% to 70%, the optimal cost only increases around
three units of the cost. However, when β0 is raised the same 5% from 90% to 95%, the optimal
cost increases by around 121 units of the cost. This observation suggests that the decision
maker should improve the service level appropriately so as to balance the service level and the
optimal average cost.

7 Conclusions

In this article we studied a queuing-inventory system with multiple vacations with lost sales
under (s, S) policy. We obtained the product form solution for the stationary distribution of
the system. We found that the conditional distribution of the inventory level when the server
is off due to a vacation is independent of the arrival rate, and that the conditional distribution
of the inventory level when the server is on and operational is independent of the vacation rate.
We obtained some very simple expressions of some performance measures of our system model
by means of the corresponding performance measures of its CIS model. The effect of various
parameters on performance measures, the optimal policy and the optimal average cost were
investigated. From the numerical study, we found that improving the service level could not
only reduce the number of lost sales, but also reduce the number of the waiting customers.
It was also found that improving the service level can more effectively manage the optimal
inventory policy. The queuing-inventory system with multiple vacations with lost sales under
(r, Q) policy could be solved in a similar way as the case of (s, S) policy. The more general
model with general distributions of the service time, the lead time or the vacation time could
be the direction of the future research.
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