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Abstract This paper aims at understanding the price dynamics generated by the interaction of

traders relying on heterogeneous expectations in an asset pricing model. In the present work the authors

analyze a financial market populated by five types of boundedly rational speculators-two types of

fundamentalists, two types of chartists and trend followers which submit buying/selling orders according

to different trading rules. The authors formulate a stock market model represented as a 2 dimensional

piecewise linear discontinuous map. The proposed contribution to the existing financial literature is

two aspects. First, the authors perform study of the model involving a 2 dimensional piecewise linear

discontinuous map through a combination of qualitative and quantitative methods. The authors focus

on the existence conditions of chaos and the multi-stability regions in parameter plane. Related border

collision bifurcation curves and basins of multi-attractors are also given. The authors find that chaos

or quasi-period exists only in the case of fixed point being a saddle (regular or flip) and that the

coexistence of multiple attractors may exist when the fixed point is an attractor, but it is common for

spiral and flip fixed points.

Keywords BCB curve, chaos, financial market, heterogeneous agents, multiple attractors, piecewise

linear discontinuous map.

1 Introduction

Stock market dynamics are excessively volatile and frequently display serious bubbles and
crashes. Models with interacting heterogeneous speculators have proven their ability in ex-
plaining complex asset price behaviour, either from a theoretical or empirical point of view (see
e.g., [1–6] among others). Over the last decade, agent-based financial market models have im-
proved the understanding of the functioning of financial markets (see, for instance, [3, 7–9] and
references therein). Modelling financial markets with heterogeneous agents demonstrated that
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endogenous interactions between technical trading rules and fundamental trading rules may give
rise to realistic asset price dynamics. A key feature is that heterogeneous interacting traders in
financial markets are endowed by several behavioral rules, trade in the market. Heterogeneity
and bounded rationality introduce non-linearity in the model which is a further element ex-
plaining complicated dynamics of prices in the market. A huge amount of deterministic and
non-linear works in the heterogeneous agents framework have been proposed. For example,
Naimzada AK[10, 11] analyze a model with a switching mechanism and they show that complex
dynamics can arise even if fundamentalist agents generate different fundamental values. [3, 12]
show that technical traders can switch between several financial markets. Further, Agliari, et
al.[13] develop a stock market model in which participation depends upon an attractiveness
measure related to the market activity and the fundamental value of the market. The authors
show how the participation mechanism amplifies the occurrence of booms and busts dynamics.
Others recent works of deterministic models with heterogeneous agents are, for example, those
of [14–16].

The model established in this study is a piecewise linear discontinuous mapping model which
is a nonlinear model. The main goal of our research is to explore the inherent laws of volatility
and unpredictability in the financial system. As we all know, the chaos of the financial system
is the main reason for the unpredictability of the internal law of price fluctuations in financial
products. Therefore, exploring the chaos of the financial system helps to uncover the internal
law of financial market fluctuations. Many dynamic models have been introduced to study
the chaotic and hyperchaotic behavior of these systems[17–19]. Multiple stability results in the
simultaneous generation of multiple stable orbits. In fact, when several coexisting attractors
are present in the system, the related basins may be not simple, and may be intermingled in a
chaotic way, so that also a very small perturbation in the parameters of the systems may lead
to a change of ω limit set of the trajectories.

Since Day and Huang propose bull and bear market models to explain the complex dynamics
of financial markets, many scholars have studied the interaction of different rational traders who
rely on simple trading rules to produce complex internal price changes[2, 3, 20–23]. Tramontana,
et al. have established and studied a one-dimensional discrete dynamic model containing two
linear subsystems with two different types of traders: fundamentalists and chartists[24–27]. Ac-
cording to whether these two types of traders are cautious in entering the market, they can be
divided into direct market entry fundamentalists and cautious market entry fundamentalists,
direct market entry chartists and cautious market entry chartists. On this basis, they have
established and studied the 1-dimensional (1D) discrete dynamic model containing 3 linear
subsystems. We take into account the inefficiency of the financial market, especially China’s
financial market, that is, due to factors such as information asymmetry, herd mentality, panic
mentality, and other factors, investment strategies are often blind to a certain degree, and they
will be subject to other peoples decisions. Influencing and imitating the investment behavior of
others, results in the phenomenon of following suit in the investment market, and this irrational
behavior is herding behavior. Herding behavior is closely related to the occurrence of financial
crises and has a great impact on market stability. Some scholars believe that stylized laws such



778 GU ENGUO

as the distribution of fat tails in financial markets are related to the herd effect[28]. This article
considers that there are many follow-up speculators in China’s financial market, abandoning the
hypothesis of effective financial markets, assuming that there is another type of trend-following
trader, they buy and sell according to recent price movements in the stock market, if the price
of the market stock rises and accelerates, it will buy; if the price drops, it will be sold. As it
turns out, the dynamics of our model is driven by a 2D piecewise linear discontinuous (PWLD)
map with three branches.

As we all know, the dynamic system defined by the piecewise smooth function will have
phenomena that the smooth system cannot, such as border collision bifurcation (BCB), slip
and chattering. The most typical feature is BCB, which is a bifurcation that occurs when a
point of a cycle collides with the boundary separating the different defined areas of the system.
The BCB theory of piecewise smooth (PWS) continuous map has been developed and has
been successfully applied to explain non-smooth bifurcation phenomena in physical systems.
Since the 1990s, since many physical, engineering, economics and social systems have been
described as non-smooth switching systems, a lot of research work has been directed to non-
smooth switching systems. Such systems are usually given by two or more sets of differential
equations, and the system is transferred from one set to another. In particular, several systems
are modeled via discontinuous maps, often with several discontinuity points[5, 29, 30]. Piecewise
linear (PWL) map is usually a local approximation of a PWS map near the boundary. The
bifurcation theory of 1D PWLD map with 2 subsystems has been well developed[31–35]. However,
the bifurcation theory of 1D piecewise linear discontinuous (PWLD) map with 3 subsystems is
underdeveloped[5, 26, 36, 37]. To the best of my knowledge, the bifurcation theory of 2D PWLD
map with 3 different subsystems have not yet been investigated. The model established in this
paper is described by a 2D PWLD map containing three linear asymmetrical subsystems. We
have investigated 2D PWLD map with 3 subsystems but two outer subsystem are identical.
The existence and stability conditions of periodic attractors and other bounded attractors are
derived[38]. We have established a calculation method for the BCB curves of 2D PWLD map
with 2 subsystems and based on the BCB curves, we have determined the existence conditions
of periodic orbit and the parameter range of the coexistence attractors[39], as well as the related
basins of multi-attractors in the phase space are described.

After this Introduction, the paper is structured as follows. In Section 2 we formulate a
2-dimensional discontinuous financial model. In Section 3, we describe some preliminary prop-
erties of its underlying dynamical system. Section 4 concerns periodic points and their clas-
sification. Section 5 includes the main part of our work, related to the new results, and it
is structured in several subsections according five types of the fixed points. The existence
conditions of chaos and cycles are derived. Multi-stability regions are described in the plane
(mL, mR) by calculating relevant BCB curves. The basin of multiple attractors are presented
in the phase space. Some discussions are given in Section 6. Section 7 concludes the paper.
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2 The Dynamic Model

We assume a market maker mediates transactions out of equilibrium by providing or ab-
sorbing liquidity, depending on whether the excess demand is positive or negative. In addition
to clearing the market, the market adjusts prices according to the following rule:

Pt+1 = Pt + μ(DC,1
t + DF,1

t + DC,2
t + DF,2

t + DS
t ), (2.1)

where P is the log price, μ is a positive price adjustment parameter, and DC,1
t , DF,1

t , DC,2
t , DF,2

t ,

DS
t are the orders of the five types’ speculators. Accordingly, excess buying drives the price up

and excess selling drives it down. For simplicity, yet without loss of generality, we set scaling
parameter μ equal to 1. Chartists believe in the persistence of bull and bear markets. The
orders of type 1 chartists are therefore given by

D1,C
t =

⎧
⎨

⎩

c1,a + c1,b(Pt − F ), Pt − F ≥ 0,

−c1,c + c1,d(Pt − F ), Pt − F < 0,
(2.2)

where the reaction parameters c1,a, c1,b, c1,c, c1,d are non-negative. Given their beliefs about
future price movements, chartists of type 1 optimistically buy (pessimistically sell) if prices
are in the bull (bear) market, that is, if the log price P is above (below) its log fundamental
value F . As usual, the fundamental value is constant and known to all institutional investors
and market participants. The reaction parameters c1,a and c1,c capture some general kind of
optimism and pessimism, respectively, whereas the reaction parameters c1,b and c1,d indicate
how aggressively chartists of type 1 trade on their perceived price signals.

Fundamentalists of type 1 expect prices to return towards their fundamental values. We
thus write the orders placed by fundamentalists as

D1,F
t =

⎧
⎨

⎩

−f1,a + f1,b(F − Pt), Pt − F ≥ 0,

f1,c + f1,d(F − Pt), Pt − F < 0,
(2.3)

where again, the reaction parameters f1,a, f1,b, f1,c, f1,d are non-negative. Hence fundamen-
talists of type 1 always trade in the opposite direction as chartists of type 1. In an overvalued
market, they sell and in an undervalued market they buy. Similar to chartists of type 1, the
trading intensity of fundamentalists of type 1 may depend on market circumstances: A certain
mispricing in the bull market may trigger a higher or lower transaction than the same mispricing
in the bear market. What type 1 chartists and fundamentalists have in common is that they are
almost always active. Once they perceive a mispricing, they start trading. Type 2 chartists and
type 2 fundamentalists are different to them in the sense that they only become active when
the misalignment exceeds a certain critical threshold level. We assume in our model type 2
traders prefer to pay attention to market entry and to trade a fixed amount of assets. Type 2
chartists and fundamentalists submit orders according to

DC,2
t =

⎧
⎪⎪⎨

⎪⎪⎩

c2,a, Pt − F ≥ z,

0, |Pt − F | < z,

−c2,b, Pt − F ≤ −z

(2.4)
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and

DF,2
t =

⎧
⎪⎪⎨

⎪⎪⎩

−f2,a, Pt − F ≥ z,

0, |Pt − F | < z,

f2,b, Pt − F ≤ −z,

(2.5)

respectively. The order sizes in the bull market are given by c2,a > 0 and f2,a > 0 while in the
bear market they are given by c2,b > 0 and f2,b > 0 by type 2 chartists and fundamentalists,
respectively, and the aforementioned threshold level is given by z > 0.

Trend-followers follow the trend blindly, and they place their orders based on a trend-
extrapolation of past prices. Orders triggered by trend-followers may be written as

DS
t = sa + sb(Pt − Pt−1), (2.6)

where the parameters sb is also non-negative to show trading aggressiveness of trend-followers,
and sa can be positive and negative to capture some general kind of optimism and pessimism.
Insert (2.2)–(2.6) into (2.1) yields

Pt+1 = Pt + sa + sb(Pt − Pt−1) +

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1 + m3 + s1(Pt − F ), Pt − F ≥ z,

m1 + s1(Pt − F ), 0 ≤ Pt − F < z,

m2 + s2(Pt − F ), −z < Pt − F < 0,

m2 + m4 + s2(Pt − F ), Pt − F ≤ −z,

(2.7)

where s1 = c1,b − f1,b, s2 = c1,d − f1,d, m1 = c1,a − f1,a, m2 = f1,c − c1,c, m3 = c2,a −
f2,a, m4 = f2,b − c2,b. Note first that s1, s2, m1, m2, m3 and m4 can take any values. Positive
(negative) values of s1 and s2 mean that type 1 chartists are more (less) aggressive than type 1
fundamentalists in bull and bear markets, respectively. Of course, the same interpretation holds
for m3 and m4 of type 2 speculators: A positive (negative) value of m3 now means that type
2 chartists are more (less) aggressive than type 2 fundamentalists in bull markets, a positive
(negative) value of m4 now means that type 2 chartists are less (more) aggressive than type 2
fundamentalists in bear markets. m1 and m2 represent traders’ expected difference of type 1
in bull and bear markets, respectively.

Introducing ut = Pt − F in (2.7), we obtain the following dynamical system

ut+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1 + sb + s1)ut − sbut−1 + sa + m1 + m3, ut ≥ z,

(1 + sb + s1)ut − sbut−1 + sa + m1, 0 ≤ ut < z,

(1 + sb + s2)ut − sbut−1 + sa + m2, −z < ut < 0,

(1 + sb + s2)ut − sbut−1 + sa + m2 + m4, xt ≤ −z.

(2.8)

Let us write vt = −sbut−1 and consider the case that the difference in aggressiveness and
expectations between type 1 traders is the same in a bull market and a bear market. That is,
let s1 = s2 � s, m1 = m2 � m, then (2.8) can be expressed as two dimensional discontinuous
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map

T :

⎛

⎝
u

v

⎞

⎠

′

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AR

⎛

⎝
u

v

⎞

⎠ + (α + m3)e1, u ≥ z,

AM

⎛

⎝
u

v

⎞

⎠ + αe1, |u| < z,

AL

⎛

⎝
u

v

⎞

⎠ + (α + m4)e1, u ≤ −z,

(2.9)

where ′ denotes the unit-time advancement operator,

α = sa + m, AL = AM = AR � A =

⎛

⎝
1 + sb + s 1

−sb 0

⎞

⎠ .

The map T has three branches, one locates in the middle region enclosed by two borders x = −1
and x = 1 (denoted by TM ), the others locate outer of the region. One is in the left side of
the range |x| < 1 (denoted by TL), the other in the right side of the range |x| < 1 (denoted by
TR). This is the map that we shall explore in detail in the rest of the paper. In this paper, we
analyze the map under the following assumption:

Assumption The condition 0 < sb < 1 is assumed hereafter. All the results that follow
rely on this assumption.

3 Some Preliminary Properties

The first property is that parameter z is a scale variable.

Theorem 3.1 The map T in (2.9) is topologically conjugated to the map in (3.1).

Proof In fact, by using the change of variable x = u/z, y = v/z and defining the aggregate
parameter m = α/z, mL = (α + m4)/z, mR = (α + m3)/z, our model in (2.9) becomes

T : X ′ =

⎧
⎪⎪⎨

⎪⎪⎩

TL(X) = AX + mLe1, x ≤ −1,

TM (X) = AX + me1, −1 < x < 1,

TR(X) = AX + mRe1, x ≥ 1,

(3.1)

where X = ( x
y ), and T is represented by a 2D PWLD map with two discontinuity borders.

Note that parameters

mL =
sa + c1,a − f1,a + c2,a − f2,a

z
,

m =
sa + c1,a − f1,a

z
,

mR =
sa + c1,a − f1,a + f2,b − c2,b

z
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are aggregation parameters and they can be positive, negative or zero. s = c1,b−f1,b = c1,d−f1,d

can also be positive, negative or zero. If s > 0, chartists of type 1 dominate fundamentalists
of type 1 in bull and bear markets and vice versa. sb is always positive. If sb ≥ 1 which is
contrary to above assumption, for example, sb = 1, the map (3.1) is area-preserving mapping
(conservative system). It has very complex dynamic behavior. We shall leave this discussion
for the future.

Now, we shall show that the two cases with a positive and negative sign of mL, m, mR are
topologically conjugated to one another. Denoting T by T (x, y; sb, s, mL, m, mR), we have the
following

Theorem 3.2 The map T in (3.1) with mL > 0, m > 0, mR > 0 is topologically conjugated
with the same map with mL < 0, m < 0, mR < 0, and T (−x,−y; sb, s,−mL,−m,−mR) =
−T (x, y; sb, s, mL, m, mR).

Proof In fact, by using the change of variable x = −u, y = −v, the map in (3.1) leads to

T :

⎛

⎝
u

v

⎞

⎠

′

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

⎛

⎝
u

v

⎞

⎠ − mLe1, u ≥ 1,

A

⎛

⎝
u

v

⎞

⎠ − me1, |u| < 1,

A

⎛

⎝
u

v

⎞

⎠ − mRe1, u ≤ −1.

(3.2)

The proof is finished.
This property means that when given sb and s, conclusions for (mL, m, mR) also hold for

(−mL,−m,−mR). As x < −1 (or x > 1), −x > 1 (or −x < −1) and the middle region does
not change during the transformation, results of only involving middle side and left side for
(m, mL) also hold for results of only involving middle side and right side for (−m,−mR).

Theorem 3.3 The map T in (3.1) is a invertible map all over its domain except x = ±1.

Proof In fact, from (3.1) we have

T−1 :

⎧
⎪⎪⎨

⎪⎪⎩

T−1
B (X) = BBX − mRe2, y′ ≤ −sb,

T−1
M (X) = BMX − me2, −sb < y′ < sb,

T−1
A (X) = BAX − mLe2, y′ ≥ sb,

(3.3)

where

BA = BB = BM =

⎛

⎝
0 − 1

sb

1 1+sb+s
sb

⎞

⎠

and e2 = ( 0
1 ). The map T−1 has three branches, one locates in the middle region enclosed by

two borders y′ = −sb and y′ = sb (denoted by T−1
M ), the others locate outer of the region. One
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is above the range |y′| < sb (denoted by T−1
A ), the other below the range |y′| < sb (denoted by

T−1
B ). To prove the map (3.1) is invertible all over its domain, we rewrite the map (3.1) over

its domain except x = ±1 as

T : X ′ =

⎧
⎪⎪⎨

⎪⎪⎩

TL(X) : (−∞,−1) × R → Ω1,

TM (X) : (−1, 1) × R → Ω2,

TR(X) : (1, +∞) × R → Ω3.

Because y′ = −sbx and sb > 0, so

Ω1 = R × (sb, +∞), Ω2 = R × (−sb, +sb), Ω3 = R × (−∞,−sb).

Therefore, we have Ω1∩Ω2∩Ω3 = ∅. The map T in (3.1) is a invertible map all over its domain
except x = ±1.

4 Periodic Points and Their Classification

The fixed points of the system (3.1) (also called as 1-cycle) in three regions of the domain
are given by

L∗ =
(

−mL

s
,
sbmL

s

)

,

M∗ =
(

−m

s
,
sbm

s

)

, (4.1)

R∗ =
(

−mR

s
,
sbmR

s

)

.

According to the existence of fixed points, we can divide them into two categories: Real and
virtual fixed points. If the fixed points locate their suitable regions, they exists and are called
real fixed points, otherwise it does not. However, when they do not exist, dynamic behaviour
is influenced by the “nonexistent” fixed points, which are called “virtual” fixed points, and are
denoted by L

∗
, M

∗
, R

∗
, respectively. According to the characteristics of eigenvalues of A, we

can classify them into five types. The fixed points are stable when their eigenvalues are less
than 1 in magnitude. This is true only when A satisfies the three Jury conditions:

P1 = 1 − TrA + DetA = −s > 0,

P2 = 1 + Tr(A) + DetA = s + 2(1 + sb) > 0,

P3 = 1 − DetA = 1 − sb > 0.

Characteristic equation of A is λ2 − (1 + sb + s)λ + sb = 0. If Δ = (1 + sb + s)2 − 4sb =
(1− sb)2 +2(1+ sb)s+ s2 < 0, matrix A will have a pair of conjugate complex eigenvalues, that
is, all fixed points are spiral attractors as the parameters satisfy the three Jury conditions and
−(1 + sb) − 2

√
sb < s < −(1 + sb) + 2

√
sb. As we have set 0 < sb < 1, thus, for such a map,

there are five basic types of fixed points as shown in Figure 1.
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Figure 1 Five basic types of fixed points in the parameter space (sb, s)

Let us now analyze the conditions leading to higher periodic dynamics. Let S : Z →
{L, M, R} be a periodic symbol sequence with minimal period n, n ≥ 1 (that is, Si+n = Si for
all n ≥ 1). For a periodic symbol sequence S0,S1, · · · ,Sn−1, let T S = T Sn−1 ◦ · · · ◦ T S1 ◦ T S0

denote the iteration of T following S. A straightforward expansion leads to

T SX = AnX + PSe1, (4.2)

where
PS = mSn−1I + mSn−2A + · · · + mS0An−1.

Let S(i) denote the ith shift permutation of S (e.g., if S = LLMR, then S(2) = MRLL).
The ith point of an S-cycle, denoted by XS

i = (xS
i , yS

i ), is a fixed point of T S(i)
. When I −An

is nonsingular, this point is unique. If det(I − An) �= 0 then for each i

XS
i = (I − An)−1PS(i)e1. (4.3)

An S-period is real if every point

xS
i =

eT
1 adj(I − An)PS(i)e1

det(I − An)
(4.4)

lies on the “correct” region. If one of points xS
i lies on the “wrong” region, an S-period is virtual.

For example, if X is a periodic point of an n-cycle with symbolic sequence S = LpM qRr, where
p is the number of periodic points of the n-cycle in the region x < −1 and q in the region |x| < 1
and r in the region x > 1, with p+ q+ r = n and at least two of parameters p, q, r are not equal
to 0, then PS = I + mR(A + · · ·+ Ar−1) + m(Ar + · · ·+ Ar+q−1) + mL(An−p+1 + · · ·+ An−1),
we have

X = (I − An)−1PSe1.

X is stable if and only if all eigenvalues of An lies in the unit circle. Simple calculations we find
that if the eigenvalues of A are λ1, λ2, the eigenvalues of An are λn

1 , λn
2 . Similar to the fixed

point, according to the characteristics of eigenvalues of An, we can divide n-cycle into 5 types.
We have the following:
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Theorem 4.1 1) If s > 0, n-cycle is a regular saddle;
2) If −(1 + s) + 2

√
sb < s < 0, n-cycle is a regular attractor;

3) If −(1 + s) − 2
√

sb < s < −(1 + s) + 2
√

sb, n-cycle is a spiral attractor;
4) If −2sb − 2 < s < −(1 + s) − 2

√
sb, 2k-cycle is a regular attractor and 2k + 1-cycle is a

flip attractor;
5) If s < −2sb − 2, 2k-cycle is a regular saddle and 2k + 1-cycle is a flip saddle.

Proof 1) If s > 0, the eigenvalues of A satisfy λ1 > 1 > λ2 > 0. The eigenvalues of An

satisfy λn
1 > 1 > λn

2 > 0, so n-cycle is a regular saddle.
2) If −(1 + s) + 2

√
sb < s < 0, the eigenvalues of A satisfy 1 > λ1, λ2 > 0. The eigenvalues

of An satisfy 1 > λn
1 , λn

2 > 0, so n-cycle is a regular attractor.
3) If −(1 + s)− 2

√
sb < s < −(1 + s) + 2

√
sb, the eigenvalues of A satisfy |λ1| < 1, |λ2| < 1.

The eigenvalues of An satisfy |λn
1 | < 1, |λn

2 | < 1, so n-cycle is a spiral attractor.
4) If −2sb − 2 < s < −(1 + s) − 2

√
sb, the eigenvalues of A satisfy −1 < λ1, λ2 < 0. If

n = 2k, the eigenvalues of An satisfy 1 > λn
1 , λn

2 > 0, so 2k-cycle is a regular attractor. If
n = 2k + 1, the eigenvalues of An satisfy −1 < λn

1 , λn
2 < 0, so 2k + 1-cycle is a flip attractor.

5) If s < −2sb−2, the eigenvalues of A satisfy λ1 < −1 < λ2 < 0. If n = 2k, the eigenvalues
of An satisfy λn

1 > 1 > λn
2 > 0, so 2k-cycle is a regular saddle. If n = 2k + 1, the eigenvalues of

An satisfy λn
1 < −1 < λn

2 < 0, so 2k + 1-cycle is a flip saddle.
If −2sb−2 < s < 0, any cycle of map T in (3.1) is an attractor, that is, map T has no saddle

periodic point, and thus no chaotic attractors. If s > 0 or s < −2sb−2, any cycle of map T is a
saddle, that is, map T has no periodic attractor, and thus may have chaotic attractors. n-cycle
has the same type as fixed point when it is a regular saddle, regular attractor, spiral attractor.
However, when fixed point is flip attractor or saddle, for the same matrix A, odd n-cycles have
the same type as fixed points and even n-cycle becomes a regular attractor or saddle.

5 Dynamics of Model with Different Types of Fixed Point

In this section, we classify the dynamics of the discontinuous system (3.1) depending on the
different types of fixed points. We shall study the effect of the position of the fixed points on
the dynamics of the system (3.1) for given parameters sb, s. Noting the expressions of fixed
points (4.1), for fixed parameters sb, s which determine the stability types of fixed points, the
position of the fixed points depend on the parameters mL, m and mR. In fact, we shall study
the dynamics of the system with the different types of fixed points as the parameters mL, m

and mR are varied.

5.1 Regular Saddle Fixed Points s > 0

As s > 0 and noting 0 < sb < 1, all fixed points are regular saddle whether they exist (real
or virtual). In this case, the eigenvalues of A satisfy 0 < λ2 < 1 < λ1. Dynamic behavior of the
system (3.1) can be roughly seen through the 2-dimensional bifurcation diagram of Figure 2
obtained with sb = 0.8, s = 0.1, m = 0.2. Figure 2 shows the system (3.1) either divergent or
tends to a periodic attractor with a period exceeding 10. From Theorem 4.1 we know that the
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system (3.1) has no periodic attractor, all bounded attractors are chaos or quasi-period.

Figure 2 The 2-dimensional bifurcation diagram in parameter plane (mL, mR) ob-

tained with sb = 0.8, s = 0.1, m = 0.2

About the divergence of the system (3.1), we have the following:

Theorem 5.1 (Divergence) Suppose s > 0, consider the map T .
1) If mL < s and mR > −s, then any initial condition other than M∗ leads to a divergent

trajectory;
2) If m > s and mR > −s, then any initial condition other than L∗ leads to a divergent

trajectory;
3) If m < −s and mL < s, then any initial condition other than R∗ leads to a divergent

trajectory.

Proof 1) As s > 0, the fixed point M∗ is regular saddle whether it is real or virtual,
trajectory starting from any initial condition in the middle region |x| < 1 other than M∗ (when
it is real) will go out of the region along the unstable manifolds of M∗. Noting mL < s and
mR > −s, both L

∗
and R

∗
are virtual regular saddle. Trajectories from the points in the outer

region |x| > 1 tends to infinity along the unstable manifolds of L
∗

or R
∗
, which also exist in

the region |x| > 1.
2) If mL < s, noting mR > −s, 2) holds from conclusion in 1); If mL > s, L∗ is real regular

saddle. Except that the stable manifold of L∗ is parallel to the x axis, trajectories from any
point in the left region x < −1 and in the left side of stable manifold of L∗ tends to infinity
along the unstable manifold of L∗, while the trajectory from any point in the right side of stable
manifold of L∗ enters the middle region along the unstable manifolds of L∗. Noting m > s, M

∗

locates in the left region. Trajectory starting from any initial condition in the middle region
|x| < 1 goes into the right region along the unstable manifolds of M

∗
, which also exist in the
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region |x| < 1. Similarly, trajectory from any point in the right region x > 1 tends to infinity
along the unstable manifolds of R

∗
, which also exist in the region x > 1.

3) As 2) holds for any mL, that is, the system (3.1) having a divergent trajectory only
involves the conditions m > s and mR > −s, from Theorem 3.2, the conclusion of 2) still holds
after replacing m and mR with −m and −mL. Therefore, 3) holds due to symmetry.

From Theorem 4.1, about the attractor of the system (3.1), we have the following:

Theorem 5.2 (Local chaotic or quasi-periodic attractors) Suppose s > 0, consider the
map T with one of the following conditions:

1) mL > s, |m| < s and mR < −s;
2) m > s and ∃ c2 > c1 > 1 such that −c2s < mR < −c1s or m < −s and ∃ c2 > c1 > 1

such that c2s > mL > c1s;
3) mL > s, |m| < s and mR > −s or mR < −s, |m| < s and mL < s;

then trajectory from the point of attraction basin in the plane converges to chaotic or quasi-
periodic attractors attractors (chaotic attractors in most cases).

Proof 1) As s > 0, if mL > s, |m| < s and mR < −s, all fixed points L∗, M∗, R∗ are
real regular saddle. As the stable manifolds of the saddle fixed points L∗, M∗, R∗ are invariant
set. Except that the stable manifold of L∗ denoted by W s

L∗ is parallel to x axis, trajectory
starting from any point in left side of W s

L∗ tends to infinity along the unstable manifold of
L∗ and in the right side of W s

L∗ goes to the middle region along the unstable manifold of L∗.
Similarly, except that the stable manifold W s

M∗ is parallel to x axis, trajectory starting from
any point in the right side of W s

M∗ goes to the right region along the unstable manifold of M∗

and in left side of W s
M∗ goes to the left region along the unstable manifold of M∗ and then goes

back due to the unstable manifold of L∗. This forms a bounded attractor between W s
L∗ and

W s
M∗ . From Theorem 4.1, this bounded attractor can not be a periodic attractor, it may be

a chaotic or quasi-periodic attractor. Symmetrically, another bounded attractor between W s
R∗

and W s
M∗ may be formed due to interaction between the unstable manifolds of M∗ and R∗. The

basin of these two bounded attractors is bounded by the preimages of W s
L∗ and W s

R∗ and the
preimages of borders x = ±1, and the boundaries separating coexistence bounded attractors
are the preimages of stable manifold W s

M∗ (see Figure 3(a)).
2) If m > s and ∃ c2 > c1 > 1 such that −c2s < mR < −c1s < −s, virtual regular saddle

M
∗

locates in the left region and real regular saddle R∗ is a suitable distance away from the
discontinuous border on the right. Whether L∗ exists or not, trajectories from some points in
the left region may enter the middle region along the unstable manifolds of M

∗
and trajectories

from some points may tend to infinity along the unstable manifolds of M
∗
. Trajectories from

some points in the middle regions go into the right region along the unstable manifolds of M
∗
,

which also exist in the region |x| < 1. Except that the stable manifold of R∗ denoted by W s
R∗

is parallel to x axis, trajectory starting from any point in right side of W s
R∗ tends to infinity

along the unstable manifold of R∗ and in the left side of W s
R∗ goes to the middle region along

the unstable manifold of R∗ and then may come back due to the unstable manifolds of M
∗
.

This forms a bounded attractor between W s
R∗ and x = −1, which is a chaotic or quasi-periodic
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attractor. W s
R∗ is a part of left boundary of basin (see Figure 3(b)). If m < −s and ∃ c2 > c1 > 1

such that c2s > mL > c1s > s, from symmetry Theorem 3.2 we know that trajectory from the
point of attraction basin in the plane converges to a chaotic or quasi-periodic attractor between
W s

L∗ and x = 1.
3) If mL > s, |m| < s and mR > −s, L∗ and M∗ are real regular saddles and R

∗
is a virtual

regular saddle. From the proof of 1), except that the stable manifold of L∗ denoted by W s
L∗ is

parallel to x axis, there is a chaotic or quasi-periodic attractor between W s
L∗ and W s

M∗ . The
basin of the attractor is bounded by the preimages of W s

L∗ and W s
M∗ and the preimages of

borders x = ±1 (see Figure 3(c)). Therefore, trajectory from the point of attraction basin in
the plane converges to a chaotic or quasi-periodic attractor. If mR < −s, |m| < s and mL < s,
a chaotic or quasi-periodic attractor between W s

R∗ and W s
M∗ also exists due to symmetry

Theorem 3.2.

(a) (b)

(c) (d)
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(e) (f)

Figure 3 Basins of attractors in phase space, (a) coexistent chaotic attractors and

their basins obtained with sb = 0.8, s = 0.1, mL = 0.2, m = 0.05, mR =

−0.4, (b) chaotic attractor between W s
R∗ and x = −1 and its basin obtained

with sb = 0.8, s = 0.1, mL = 0.6, m = 0.2, mR = −0.269, (c) chaotic

attractor between between W s
L∗ and W s

M∗ and its basin obtained with

sb = 0.8, s = 0.1, mL = 0.26, m = −0.05, mR = 1, (d) time series obtained

with parameters sb = 0.8, s = 0.1, mL = 0.2, m = 0.05, mR = −0.4 and

initial value x0 = 0.5, y0 = 0.3, (e) time series obtained with parameters

sb = 0.8, s = 0.1, mL = 0.2, m = 0.05, mR = −0.4 and initial value x0 =

−0.4, y0 = 0.2, (f) time series obtained with parameters sb = 0.8, s =

0.1, mL = 0.6, m = 0.2, mR = −0.259 and initial value x0 = −0.4, y0 = 0.2

Note that x = P−F
z , y = −sbx are state variables. If x > 0, asset prices exceed fundamental

values and we think that financial markets are in a bull market. If x < 0, asset prices exceed
fundamental values and we think that financial markets are in a bear market. If the asset
price fluctuates around x = 0, we think that financial markets are in a bear market. we think
financial markets are in a bear/bull transition. The initial iteration value of Figure 3(d) was
taken in the yellow region of Figure 3(a), thus converging to the blue one of the coexistence
attractors of Figure 3(a), while the initial value of Figure 3(e) was taken in the white region of
Figure 3(a), thus converging to the red one of the coexistence attractors of Figure 3(a). The
initial iteration value of Figure 3(f) is taken in the white region of Figure 3(b), thus converging
to the red attractor of Figure 3(b). As seen in Figure 3(d), time series of the system (3.1)
is completely above x = 0 which means that the financial market is in a bear market with
random fluctuations. As seen in Figure 3(e), time series of the system (3.1) spans x = 0, which
means that the financial market is in a bear/bull transition with random fluctuations. As seen
in Figure 3(f), time series of the system (3.1) is completely below x = 0 which means that the
financial market is in a bull market with random fluctuations.

5.2 Regular Attracting Fixed Points −(1 + sb) + 2
√

sb < s < 0

Theorem 5.3 (Attracting fixed points) Suppose −(1 + sb) + 2
√

sb < s < 0, consider the
map T .
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1) If |m| < −s, mL > s, and mR < −s, then trajectory from any point in the plane converges
to M∗, that is M∗ is a globally attracting fixed point;

2) If |m| < −s, mL < s, and mR < −s, then attracting fixed points M∗ and L∗ coexist with
their basins separated by preimages of the border lines x = −1;

3) If |m| < −s, mL > s, and mR > −s, then attracting fixed points M∗ and R∗ coexist with
their basins separated by preimages of the border lines x = 1;

4) If |m| < −s, mL < s, and mR > −s, then three attracting fixed points M∗, L∗ and R∗

coexist with their basins separated by preimages of the border lines x = ±1;
5) If m > −s, mR > −s, then trajectory from any point in the plane converges to R∗ or

coexistence attractors L∗, R∗;
6) If m < s, mL < s, then trajectory from any point in the plane converges to L∗ or

coexistence attractors L∗, R∗.

Proof 1) As −(1+sb)+2
√

sb < s < 0, if |m| < −s, mL > s, and mR < −s, fixed point M∗

is a real regular attractor, L
∗

and R∗ are virtual regular fixed points. If L
∗

locates in the middle
region, all the points in the left region are attracted to the middle region and then converge to
M∗. If L

∗
locates in the right region, all the points in the left region are attracted to the right

region, but, trajectories from them must pass through the middle region before reaching the
right region. When they reach the middle region they are attracted to M∗. Symmetrically, If
R

∗
locates in the middle region or the left region, all the points in the right region are attracted

to the middle region and then converge to M∗. Trajectory from any point in middle region
tend to fixed point M∗. Therefore, trajectory from any point of in the plane converges to M∗.

2) If |m| < −s, mL < s, and mR < −s, fixed point M∗ and L∗ are real attractors, R
∗

is
a virtual regular fixed point. Trajectory from any point in the middle region converges to M∗

and in the left region to L∗. If R
∗

locates in the middle region or the left region, all the points
in the right region are attracted to the middle region or the left region and then converge to
M∗ or L∗, which are coexistence attractors. As the eigenvalues of A satisfy 0 < λ1, λ2 < 1, the
eigenvalues of An satisfy 0 < λn

1 , λn
2 < 1. Therefore, any periodic point can not be a saddle in

this case, the boundaries of basins of coexistence attractors are thus separated by preimages of
the border lines x = −1.

3) If |m| < −s, mL > s, and mR > −s, fixed point M∗ and R∗ are real attractors, L
∗

is a virtual regular fixed point. From the symmetry Theorem 3.2 and the conclusion of 2),
then attracting fixed points M∗ and R∗ coexist with their basins separated by preimages of the
border lines x = 1.

4) If |m| < −s, mL < s, and mR > −s, all fixed points are real attractors. As there is no
saddle periodic point in this case (see Theorem 4.1), they coexist with their basins separated
by preimages of the border lines x = ±1 (see Figure 4(a)).

5) If m > −s, mR > −s fixed point M
∗

is a virtual regular attractor located in the right
region, R∗ is a real regular fixed point. Any point in the middle region is attracted to the right
region and then converges to R∗. If mL > s, L

∗
is a virtual regular fixed point. Any point in

the left region is attracted to the middle and then to right region and finally converges to R∗.
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If mL < s, noting mR > −s, L∗, R∗ are attracting fixed points and they attract the points in
the left and right region, respectively. They coexist with their basins separated by preimages
of the border lines x = ±1.

6) As 6) is the symmetry of 5), the conclusion of 6) holds by Theorem 3.2.

Theorem 5.4 (Attracting cycles) Suppose −(1 + sb) + 2
√

sb < s < 0, consider the map
T .

1) If m > −s and |mR| < −s, the system (3.1) has a periodic attractor. If mL > s, then
trajectory from any point in the plane converges to the periodic attractor. If mL < s then the
periodic attractor coexists with attracting fixed points L∗ with their basins separated by preimages
of the border lines x = −1;

2) If m < s and |mL| < −s, the system (3.1) has a periodic attractor. If mR < −s,
then trajectory from any point in the plane converges to the periodic attractor. If mR > −s

then the periodic attractor coexists with attracting fixed points R∗ with their basins separated by
preimages of the border lines x = 1;

3) If m > −s and mL < mR < s, then the system (3.1) may have a periodic attractor
coexisting with L∗ or globally converge to L∗.

4) If m < s and −s < mL < mR, then the system (3.1) may have a periodic attractor
coexisting with R∗ or globally converge to R∗.

5) If m > −s, mL > s and mR < −s, then the system (3.1) has a periodic attractor in the
right side of x = −1.

6) If m < s, mR < −s and mL > s, then the system (3.1) has a periodic attractor in the left
side of x = 1.

Proof As the cases 2), 4) and 6) are the symmetry of 1), 3) and 5), respectively, we only
gave the proof of 1), 3) and 5).

1) If m > −s and |mR| < −s, virtual regular fixed points M
∗

and R
∗

locate in the right and
middle regions, respectively. Points in the middle region are attracted to the right region by M

∗

and then are attracted to the middle region by R
∗

and then come back due to the influence of
M

∗
. This forms a bounded attractor between M

∗
and R

∗
. From Theorem 5.4, it is impossible

for the system (3.1) to have a periodic saddle, therefore, there is no homoclinic chaos, so the
bounded attractor is a periodic attractor. If mL > s, L

∗
is a virtual regular fixed point, all the

points in the left region are attracted to the middle or right regions and then converge to the
periodic attractor. If mL < s, L∗ is also an attractor, then the periodic attractor coexists with
attracting fixed points L∗ with their basins separated by preimages of the border lines x = −1,
since the system (3.1) has no periodic saddle in this case.

3) If m > −s and mL < mR < s, fixed point M
∗

locates in the right region, fixed point
L∗ is a real attractor, virtual regular fixed point R

∗
locates between L∗ and the left border

x = −1. Trajectories from points in the right region are attracted to the left region by R
∗

but
they must pass through the middle region. As soon as they reach the middle region, some may
be attracted back to the right region by M

∗
, a periodic attractor is formed similar to 1). Some

of them may be attracted to the left region by R
∗
, and as they pass through the middle region,
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they will converge to fixed point L∗. If all the points in the right region are attracted to the
left region by R

∗
, L∗ is a globally attractor. If part of them pass through the middle region, a

periodic attractor coexists with L∗ (see Figure 4(b)).
5) If m > −s, mL > s and mR < −s, all fixed points are virtual regular fixed points. If

s < mR < −s, the conclusion holds from the proof process of 1). If mR < s, R
∗

locates in the
left region. Trajectories from points in the right region are attracted to the left region by R

∗
,

but they must pass through the middle region. As soon as they reach the middle region, they
are attracted back to the right region by M

∗
, this forms a periodic attractor.

(a) (b)

Figure 4 Basins of of coexistent attractors in phase space, (a) 3 types of fixed

points and their basins obtained with sb = 0.2, s = −0.3, mL = −1, m =

0.1, mR = 0.6, (b) 4 cycle and fixed point L∗ and their basins obtained

with sb = 0.2, s = −0.3, mL = −2, m = 0.5, mR = −1

5.3 Spiral Attracting Fixed Points −(1 + sb) − 2
√

sb < s < −(1 + sb) + 2
√

sb

For −(1 + sb) − 2
√

sb < s < −(1 + sb) + 2
√

sb, all fixed points are spiral attractors. In
Figure 5(a) obtained with sb = 0.8, s = −3, m = 4, we show the regions associated with
attracting periodic orbits in the parameter plane (mL, mR). It should be pointed out that
Figure 5(a) only provides the existence of stable periodic orbits. To know the exact periodicity
regions in plane (mL, mR), we must gave the BCB curves analytically. From (4.4), two BCB
curves of the first complexity with symbol sequence S = LR (blue lines in Figure 5(b)) are

BCBL
LR : −mL + mLsb + mLs + mR + sbmR

s(2 + 2sb + s)
= −1

and

BCBR
RL : −mR + mRsb + mRs + mL + sbmL

s(2 + 2sb + s)
= 1.

The superscript of BCBI
S , I ∈ {L, R} indicates that the contact occurs on the I side of the

border x = −1 or x = 1, and the subscript indicates the symbol sequence of the period S. In
the above two formulas, replace mL with m to get two BCB curves of the first complexity with
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symbol sequence S = MR (red lines in Figure 5(b)) are

BCBR
MR : −m + msb + ms + mR + sbmR

s(2 + 2sb + s)
= −1 (5.1)

and

BCBL
MR : −m + msb + ms + mR + sbmR

s(2 + 2sb + s)
= 1. (5.2)

From (4.4), two BCB curves of the first complexity with symbol sequence S = MR2 (purple
lines in Figure 5(b)) are BCBR

MR2 : A3
D3

m + B3
D3

mR = −1, and BCBL
MR2 : A3

D3
m + B3

D3
mR = 1.

In the above two formulas, replace m with mL to get two BCB curves of the first complexity
with symbol sequence S = LR2 (green lines in Figure 5(b)) are BCBL

LR2 : A3
D3

mL+ B3
D3

mR = −1,

and BCBR
RLR : A3

D3
mL + B3

D3
mR = 1. The above BCB curve only involves periodic points of

two character sequences, the following BCB curve involves three character sequences, which
is different from what we have encountered before. BCB curves of the first complexity with
symbol sequence S = LMR (cyan lines in Figure 5(b)) are

BCBL
LMR :

C3

D3
mL +

E3

D3
m +

F3

D3
mR = −1,

BCBR
MRL :

F3

D3
mL +

A3

D3
m +

E3

D3
mR = −1, (5.3)

BCBL
MRL :

F3

D3
mL +

A3

D3
m +

E3

D3
mR = 1,

where D3 = −s[3 + 3sb + 3s + 3(sb)2 + 3sbs + s2], A3 = 1 + sb + 2s + 2sbs + (sb)2 + s2, B3 =
2+2sb+s+sbs+(sb)2, C3 = 1+sb+2s+2sbs+(sb)2, E3 = 1+sb+s+(sb)2, F3 = 1+sb+sbs+(sb)2.

Set parameters sb = 0.8, s = −3, m = 4 and draw the above BCB curves in the plane
(mL, mR), we can determine the existence regions of periodic attractors. Figure 5(b) only shows
BCB curves of 1 to 3 cycles and the existence regions of periodic attractors. In the overlapping
periodicity regions in Figure 5(b), yellow one shows that three types of stable 3-cycles with
symbol sequence LMR, LR2 and MR2 coexist with the fixed point R∗, and grey one 3-cycle
with symbol sequence LMR and 2-cycle with symbol sequence MR coexist with two types of
fixed points L∗ and R∗. Comparing Figure 5(a) and (b), we know that the two-dimensional
bifurcation diagram can only give types of cycles in the parameter (mL, mR), can not give any
information about the parameter range of various periodic attractors and coexisting attractors.

When the fixed point is a spiral attractor, Theorem 5.4 tells us that the system cannot have
a saddle, so the system cannot have the complex dynamic behavior of homoclinic chaos, but
because the system has multiple stable attractors coexisting, the basins of multiple attractors
are entangled with each other and even chaotic boundaries may appear. Figure 6(a) shows
the coexistence of at least 7 types of periodic attractors and their basin boundaries are very
complicated. Figure 6(b) shows the coexistence of period-3 attractors with 3 types of symbol
sequence LMR, LR2 and MR2, and their basin boundaries are also very complicated.

Through the above analysis, we have the following theorem.
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Theorem 5.5 If −(1 + sb) − 2
√

sb < s < −(1 + sb) + 2
√

sb, map T in (3.1) has cycle
attractors regardless of the value of parameters mL, m, mR and they may exist coexistence in
most cases.

(a) (b)

Figure 5 (a) Bifurcation diagram in plane (mL, mR) obtained with sb = 0.8, s =

−3, m = 4, (b) The existence regions of periodic attractors bounded by

BCB curves obtained with sb = 0.8, s = −3, m = 4

(a) (b)

Figure 6 Basins of coexistent attractors in phase space, (a) 7 types of periodic at-

tractors and their basins obtained with sb = 0.95, s = −0.8, mL = 2, m =

−5, mR = −3, (b) 4 types of periodic attractors and their basins obtained

with sb = 0.8, s = −3, mL = 2, m = 4, mR = 2.5

5.4 Flip Attracting Fixed Points −2 − 2sb < s < −(1 + sb) − 2
√

sb

Similar to Subsection 5.3, I first determines the relevant BCB curves based on the two-
dimensional bifurcation diagram in Figure 7(a) obtained with sb = 0.2, s = −2.2, m = 3. We
first analytically give the relevant BCB curves involving 4-cycles. If S = LMRR, we have the
following BCB curves

BCBR
MRRL :

A4

D4
mL +

B4

D4
m +

C4

D4
mR = −1,

BCBL
MRRL :

A4

D4
mL +

B4

D4
m +

C4

D4
mR = 1,
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BCBR
RLMR :

E4

D4
mL +

F4

D4
m +

G4

D4
mR = 1. (5.4)

If S = LLMR, we have the following BCB curves

BCBL
LLMR :

H4

D4
mL +

F4

D4
m +

K4

D4
mR = −1,

BCBL
LMRL :

G4

D4
mL +

E4

D4
m +

F4

D4
mR = −1 (5.5)

BCBL
MRLL :

P4

D4
mL +

Q4

D4
m +

E4

D4
mR = 1,

where D4 = −s[4+4sb+6s+s3+4(sb)3+6(sb)2s+4sbs2+4(sb)2+8sbs+4s2], A4 = 1+sb+(sb)2+
2sbs+(sb)3+sbs2+2(sb)2s, B4 = 1+sb+3s+(sb)2+4sbs+3s2+(sb)3+s3+3sbs2+3(sb)2s, C4 =
2+2sb +3s+2sbs+2(sb)2 +s2 +2(sb)3 +s(sb)2, E4 = 1+sb +2s+(sb)2 +2sbs+s2 +(sb)3, F4 =
1 + sb + s + (sb)2 + (sb)2s + (sb)3, G4 = 2 + 2sb + 3s + 6sbs + 2(sb)2 + 3s2 + 4sbs2 + 2(sb)3 +
s3 + 5s(sb)2, H4 = 2 + 2sb + 5s + 2(sb)2 + 6sbs + s2 + 2(sb)3 + 3(sb)2s + 3sbs2 + s3, K4 =
1 + sb + (sb)2 + 2sbs + (sb)3 + 2(sb)2s + sbs2, P4 = 2 + 2sb + s + (sb)2 + 2sbs + s2 + (sb)3, Q4 =
1 + sb + 3s + (sb)2 + 4sbs + 3s2 + (sb)3 + 3(sb)2s + 3sbs2 + s3.

Set parameters sb = 0.2, s = −2.2, m = 3 and draw relevant BCB curves of (5.1)–(5.5) in
the plane (mL, mR), we can determine the existence regions of periodic attractors. Figure 7(b)
only shows BCB curves of 1 to 4 cycles and the existence regions of periodic attractors. In
the overlapping periodicity regions in Figure 7(b), yellow one shows that three types of stable
cycles with symbol sequence LMR, LLMR and MR2 coexist with the fixed point R∗, and grey
one 4-cycle with symbol sequence LLMR and 2-cycle with symbol sequence MR coexist with
two types of fixed points L∗ and R∗.

(a) (b)

Figure 7 (a) Bifurcation diagram in plane (mL, mR) obtained with sb = 0.2, s =

−2.2, m = 3, (b) the existence regions of periodic attractors bounded by

BCB curves obtained with sb = 0.2, s = −2.2, m = 3



796 GU ENGUO

Theorem 5.6 (Attracting fixed points and their coexistence cycles) Suppose −2 − 2sb <

s < −(1 + sb) − 2
√

sb, consider the map T .
1) If |m| < −s, mL > s, and mR < −s, then trajectory from any point in the plane may

converge to M∗ or to coexistent attractors of a cycle and fixed point M∗;
2) If |m| < −s, mL < s, and mR < −s, then attracting fixed points M∗ and L∗ coexist or

they coexist with a cycle, and their basins are separated by preimages of the border lines x = ±1;
3) If |m| < −s, mL > s, and mR > −s, then attracting fixed points M∗ and R∗ coexist or

they coexist with cycle, and their basins are separated by preimages of the border lines x = ±1;
4) If mR > m > −s, then trajectory from any point in the plane may converge to R∗ or

coexistent attractors of R∗ and L∗, if m > mR > −s, then trajectory from any point in the
plane may converge to coexistent attractors of cycles and fixed R∗ (or fixed points L∗ and R∗);

5) If mL < m < s, then trajectory from any point in the plane may converge to L∗ or
coexistent attractors of L∗ and R∗, if m < mL < s, then trajectory from any point in the plane
may converge to coexistent attractors of cycles and fixed L∗ (or fixed points L∗ and R∗).

Proof As the eigenvalues of A satisfy −1 < λ1, λ2 < 0, the eigenvalues of An satisfy
|λn

1 | < 1, |λn
2 | < 1. Therefore, from Theorem 4.1, any periodic point can not be a saddle in this

case, the boundaries of basins of coexistence attractors are thus separated by preimages of the
border lines x = ±1. As the cases 3) and 5) are the symmetry of 2) and 4), we only gave the
proof of the cases 1), 2) and 4), the conclusions of the cases 3) and 5) hold by Theorem 3.2.

1) As −2 − 2sb < s < −(1 + sb) − 2
√

sb, if |m| < −s, mL > s, and mR < −s, fixed point
M∗ is a real flip attractor, fixed points L

∗
and R

∗
are virtual flip attractors. If s < mL < m <

mR < −s, L
∗

and R
∗

locate in the middle region, trajectories from all the points in the left
and right region are attracted to the middle region and then converge to M∗. If mL > −s and
large enough, mR < s and small enough, then L

∗
locates in the right region and R

∗
in the left

region, trajectories from the points in the left region may be attracted to the right region, when
they pass through the middle region, some may converge to fixed point M∗, some may reach
the right region and then they may be attracted back to the left region by R

∗
. This will form a

cycle involving only the symbols L and R. Therefore, trajectory from any point of in the plane
converges to coexistent attractors of a cycle and fixed point M∗.

2) If |m| < −s, mL < s, and mR < −s, fixed points M∗ and L∗ are real flip attractors,
fixed point R

∗
is a virtual flip attractor. If s < mR < m < −s, R

∗
locates in the middle region

and left side of M∗, then there may be cycles involving only two symbols M and R. Trajectory
from any point in the right region is attracted to the middle region and left side of M∗ and
then is attracted back to M∗, This forms a cycle between R

∗
and M∗. If mR < s, R

∗
locates in

the left region, then there may also be cycles involving two symbols M and R. Trajectory from
any point in the right region is attracted to the left region, but it must pass through the middle
region, when it reaches the middle region and in the left side of M∗, it may be attracted back
by M∗ and form a cycle between x = −1 and M∗ or it may pass through the border x = −1
and then converges to L∗. All cycles coexist with two fixed points M∗ and L∗.

4) If mR > m > −s, fixed point M
∗

is a virtual flip attractor located in the right region,
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fixed point R∗ is a real flip attractor and located in the right of M
∗
. Trajectory from any point

in the middle region is flipped to the right region by M
∗

and then it converges to R∗. If mL > s,
L
∗

is a virtual flip attractor located in the middle or right region. Trajectory from any point
in the left region is flipped to the middle region by L

∗
and then to the right region by M

∗
,

therefore, trajectory from any point in the plane may converge to R∗. If mL < s, then trajectory
from any point in the left region converges to attractor L∗, and trajectory from any point in
the middle and right region converges to attractor R∗. Therefore, trajectory from any point
in the plane may converge to coexistent attractors of R∗ and L∗. However, if m > mR > −s,
virtual flip attractor M

∗
locates in the right region and in the right side of R∗. Some points

in the middle region may be flipped to right region and in the right side of R∗, and then they
may be flipped back by flip fixed point R∗, due to R∗ is more closed to the middle region than
M

∗
. This may form a cycle between M

∗
and R∗, which may coexist with R∗ or with two fixed

points L∗ and R∗ (see Figure 8).
Figure 8(a) obtained with sb = 0.2, s = −2.2, mL = −1.8, m = 3, mR = 2.3. The parameter

values are in the yellow region in Figure 7(b), thus four attractors R∗, MR, LMR, LLMR coex-
ist, and their basins are represented in grey, white, green and yellow, respectively. Figure 8(b)
obtained with sb = 0.2, s = −2.2, mL = −3, m = 3, mR = 2.5. The parameter values are in the
grey region in Figure 7(b), thus four attractors L∗, R∗, MR, LLMR coexist, and their basins
are represented in yellow, grey, green and white, respectively.

(a) (b)

Figure 8 Basins of 4 types of coexistent attractors in phase space, (a) obtained with

sb = 0.2, s = −2.2, mL = −1.8, m = 3, mR = 2.3, (b) obtained with

sb = 0.2, s = −2.2, mL = −3, m = 3, mR = 2.5

5.5 Flip Saddle Fixed Points s < −2 − 2sb

As s < −2 − 2sb, all fixed points are flip saddle whether they exist or not (real or virtual).
In this case, the eigenvalues of A satisfy λ1 < −1 < λ2 < 0. Dynamic behavior of the
system (3.1) can be seen through the 2-dimensional bifurcation diagram of Figure 9(a) obtained
with sb = 0.2, s = −2.5, m = 0.5 and Figure 9(b) obtained with sb = 0.8, s = −3.61, m = 2.
Figure 9 shows the system (3.1) either is divergent or tends to a periodic attractor with a period
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exceeding 10. From Theorem 4.1 we know that the system (3.1) has no periodic attractor, all
bounded attractors are chaos or quasi-period.

(a) (b)

Figure 9 Bifurcation diagrams in plane (mL, mR), (a) obtained with sb = 0.2, s =

−2.5, m = 0.5, (b) obtained with sb = 0.8, s = −3.61, m = 2

Theorem 5.7 (Divergence and bounded attractors) Suppose s < −2 − 2sb, consider the
map T .

1) If mL > m > mR, then trajectory from any point in the plane diverges;
2) If mL > mR > m > 0, then trajectory from any point in the plane may diverge or

converge to a chaotic or quasi-periodic attractor only involving the middle and right branches;
3) If mR < mL < m < 0, then trajectory from any point in the plane may diverge or

converge to a chaotic or quasi-periodic attractor only involving the middle and left branches;
4) If ∃c > 0 such that mR − mL > c, then trajectory from any point in the plane may

converge to chaotic or quasi-periodic attractors.

Proof As the case 3) is the symmetry of 2), we only gave the proof of the cases 1), 2) and
4), the conclusion of the case 3) holds by Theorem 3.2. As the middle fixed point is a flip saddle
whether it exists or not (real or virtual), all the points in the middle region are flipped out by
M∗ or M

∗
to the right or/and left region.

1) If mL > m > mR, we consider the following 3 cases: A) m > −s, B) −s > m > s, C)
m < s. As C) is the symmetry of A), we only gave the proof of the cases A) and B).

A) If mL > m > mR > −s, only the fixed point R∗ is a real flip saddle and the fixed points
L
∗

and M
∗

are virtual flip saddle and locate in the right region. As L
∗

locates in the far right
and R∗ in the far left, any point in the left and middle region is flipped to infinite along the
unstable manifolds of L

∗
and/or M

∗
, respectively. Any point in right region and in the right

side of the stable manifold of R∗ is flipped to infinite along the unstable manifolds of R∗. Any
point in right region and in the left side of the stable manifold of R∗ is flipped to the middle
and left region by R∗ and then tends to infinite along the unstable manifolds of M

∗
and/or L

∗
.
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If mL > m > −s > mR, all fixed points are virtual flip saddles and the fixed points L
∗

and M
∗

still locate in the right region. Any point in left and middle region is flipped to infinite along
the unstable manifolds of L

∗
and/or M

∗
, respectively. Any point in right region is flipped to

infinite along the unstable manifolds of R
∗
.

B) If −s > m > s and mL > m > mR, we have the 4 cases: mL > −s > m > s > mR,
−s > mL > m > s > mR, mL > −s > m > mR > s and −s > mL > m > mR > s. In all
cases only the fixed point M∗ is a real flip saddle and the fixed points L

∗
and R

∗
are virtual

flip saddle. Any point in the middle region and in the right side of the stable manifold of M∗

is flipped out to the right region. Symmetrically, any point in the middle region and in the left
side of the stable manifold of M∗ is flipped out to the left region. As R∗ is in the far left and
L
∗

in the far right, all the points in the middle region are flipped out by M∗ to the right or left
region and then tend to infinite along the unstable manifolds of R

∗
and/or L

∗
, respectively.

2) If mL > mR > −s > m > 0, only L
∗

is a virtual flip saddle and locates in the far right
and M∗ in the far left. Any point in middle region and in the left side of stable manifolds of
M∗ is flipped to the left region and then tends to infinite along the unstable manifolds of L

∗
.

Any point in middle region and in the right side of stable manifolds of M∗ is flipped to the
right region along the unstable manifolds of M∗. If R∗ is not too close or too far away from
M∗, that is, ∃c2 > c1 > 0, such that 0 < c1 < mR −m < c2, there is a chaotic or quasi-periodic
attractor in the middle and right regions which only involves the right discontinuous border
x = 1 (see Figure 10(a)). If mR − m < c1 or mR − m > c2, as mL > mR, trajectory from any
point in the left region is flipped to infinite along the unstable manifolds of L

∗
. Any point in

the right region may be finally flipped to infinite along the unstable manifolds of R∗ and/or
L
∗
. If mL > mR > m > −s, only R∗ is a real flip saddle, L

∗
and M

∗
are virtual flip saddles

locate in the far right and in the far left, respectively. Similarly, if R∗ is not too close or too
far away from M

∗
, there is a chaotic or quasi-periodic attractor between two stable manifolds

of flip saddles M
∗

and R∗. If mL > −s > mR > m > 0 and −s > mL > mR > m > 0, only
M∗ is a real flip saddle. The point in the middle region and in the left side of M∗ is flipped
out to the left region then it tends to infinite along the unstable manifolds of L

∗
. Some points

in the middle region and in the right side of M∗ are flipped out to the right region, then they
may be flipped to infinite along the unstable manifolds of R

∗
. If R

∗
is in appropriate location,

some points in the middle region and in the right side of M∗ are flipped to the left side of the
stable manifolds of R

∗
and then is flipped back to the right side of M∗ in the middle region.

This may form a bounded a chaotic or quasi-periodic attractor in the middle region.
4) If ∃c > 0 such that mR−mL > c, trajectory from any point in the right side of the stable

manifold of L∗ or L
∗

is finally flipped to the right region (may through the middle branch)
along the unstable manifold of L∗ or L

∗
. But it is still in the left side of stable manifold of R∗

or R
∗
, it is finally flipped back to the left region (may through the middle branch) along the

unstable manifold of R∗ or R
∗
. This may form bounded attractors which may be coexistent

chaotic or quasi-periodic attractors (see Figure 10(b)).
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(a) (b)

Figure 10 Basins of attractors in phase space, (a) basin of chaotic or quasi-periodic

attractor obtained with sb = 0.8, s = −3.61, mL = 6, m = 2, mR = 5,

(b) basins of coexistent chaotic or quasi-periodic attractors obtained with

sb = 0.8, s = −3.61, mL = 3, m = 2, mR = 4

6 Discussions

Although there have been many models involving the interaction of different rational traders
who rely on simple trading rules to produce complex internal price changes, they rarely consider
the trend followers. This may be because it will lead to the establishment of a two-dimensional
discontinuous model, and the research on the two-dimensional discontinuous map has not been
well developed. The model we built in this article is a 2D PWLD map with two discontinuities.
To my knowledge, there is no relevant research on this type of model. We thus hope that
our analysis is also useful for the investigation of similar dynamical systems. We find that
complex attractor such as chaos or quasi-period can occur only if s > 0 or s < −2 − 2sb and
divergence often occurs in these cases. As s > 0 means that type 1 chartists are more aggressive
than type 1 fundamentalists in bear and bull markets, respectively, and s < −2 − 2sb means
that type 1 fundamentalists are much more aggressive than type 1 chartists in bear and bull
markets, respectively. If −2 − 2sb < s < 0, map T has no saddle periodic point and thus
no chaotic attractor, but markets at least do not explode. As mL − mR = m4/z − m3/z =
[f2,a + f2,b − (c2,a + c2,b)]/z, mR > mL means that type 2 chartists are more aggressive
than type 2 fundamentalists, and vice versa. If s > 0 and mR > mL or s < −2 − 2sb and
mR < mL the system (2.9) must diverge. This implies that if two types of chartists dominate
two types of fundamentalists or two types of fundamentalists dominate two types of chartists,
the system (2.9) must diverge. Chaos or quasi-period in the system (2.9) only occurs in the
case that type 1 and type 2 chartists and fundamentalists have complementary advantages in
financial markets, that is, type 1 chartists dominate fundamentalists and type 2 fundamentalists
dominate chartists. That is, if two types of chartists or fundamentalists dominate financial
markets at the same time, the superimposed effects are bound to cause financial markets to
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collapse. Naturally, one important goal of a central authority would be to prevent the price
trajectory from settling on an explosive course.

Multi-stability prevails and the basins of multi-attractors may be very complicated and even
have chaotic boundary especially for the case −(1+sb)−2

√
sb < s < −2−2sb, that is, all fixed

points are spiral or flip attractors. There is still the unpredictability of the financial market in
these cases. It should be noted that the system (2.9) may have complicated dynamic as sb is
close to 1 (i.e., the system is adjacent to a central bifurcation occurring at sb = 1). Figure 11
obtained with mL = 2, m = −0.2, mR = 3. It is 2 dimensional bifurcation diagram which is to
show the possible attractors in parameter plane (sb, s). Figure 11(b) is a partial enlargement
of Figure 11(a). Referring to Figure 1, we know that when sb is sufficiently close to 1 (e.g.,
sb > 0.9), the fixed point is ether a saddle point (regular/flip) or a spiral attractor. From the
results of Section 5, we know that if the fixed point is a saddle, the system may be divergent or
converge to chaos or quasi-period. If the fixed point is a spiral attractor, although the system
can not be divergent or converge to chaos or quasi-period, but multiple periodic attractors are
universal with their basins very complex (see Figure 6).

(a) (b)

Figure 11 Bifurcation diagrams in plane (sb, s) obtained with mL = 2, m = −0.2,

mR = 3, (b) is a partial enlargement of enlargement of (a)

7 Conclusions

From the perspective of dynamics, when the fixed point is an attractor (−2− 2sb < s < 0),
especially when sb is sufficiently close to 1, it is impossible for the system to produce chaos
or quasi-periodic, but it is possible to produce complex boundary of attraction domain with
multiple attractors co-existing. When the fixed point is a saddle (s > 0 or s < −2 − 2sb), the
system may be chaotic or quasi-periodic (s > 0, mL > mR or s < −2 − 2sb, mL < mR), or
divergent (s > 0, mL < mR or s < −2 − 2sb, mL > mR).

From an economic point of view, our simple model can help us to explain the emergence of
bubbles and crashes and excessive volatility and unpredictability. If the state of our system is
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unstable we think that stock market crash occurs. If the state of our system is quasi-periodic
or chaotic we think that stock market is in excessive volatility and unpredictability. If our
system has multiple attractors and their basins interlace or attractors sufficiently close to their
basin boundary, we think that stock market is in unpredictability. Market bubbles and crash
can be caused by either type 1 and type 2 chartists dominate fundamentalists or type 1 and
type 2 fundamentalists (strongly) dominate chartists. Excessive volatility can be caused by
type 1 and type 2 chartists and fundamentalists have complementary advantages in financial
markets. Unpredictability can be caused by type 1 fundamentalists moderately dominate type
1 chartists (that is, −2 − 2sb < s < 0) and higher intensity response of trend followers. At
this case, the financial system is very susceptible to interference from external random factors
to change its steady state, which makes the financial system extremely difficult to predict and
supervise. Keeping financial markets stable requires regulators to limit excessive speculation by
chartists or fundamentalists and preventing financial markets from excessive volatility requires
regulators limit intensity response of trend followers to price fluctuations. Our main results
may be summarized as follows:

• Synergistic dominance among type 1 and type 2 traders leads to bubbles and and crashes
in financial markets.

• Complementary dominance among type 1 and type 2 traders leads to excessive volatility
in financial markets.

• Type 1 fundamentalists moderately dominate type 1 chartists and high intensity response
of trend followers to price fluctuations may lead to unpredictability in financial markets.
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