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Abstract Strong orthogonal arrays (SOAs) were recently introduced and studied as a class of space-

filling designs for computer experiments. To surely realize better space-filling properties, SOAs of

strength three or higher are desirable. In addition, orthogonality is also an important property for

designs of computer experiments, because it guarantees that the estimates of the main effects are un-

correlated. This paper first provides a systematic study on the construction of (nearly) orthogonal

strength-three SOAs with better space-filling properties. The newly proposed strength-three SOAs en-

joy almost the same space-filling properties of strength-four SOAs, and can accommodate much more

columns than the latter. Moreover, they are (nearly) orthogonal and flexible in run sizes. The construc-

tion methods are straightforward to implement, and their theoretical supports are well established. In

addition to the theoretical results, many designs are tabulated for practical needs.

Keywords Computer experiment, orthogonality, space-filling property, strong orthogonal array.

1 Introduction

Computer experiments call for space-filling designs[1, 2]. A space-filling design spreads its
points in the design region uniformly, where the uniformity can be evaluated by some distance
criteria, discrepancy criteria or stratification properties. A computer experiment always involves
a large number of factors at an early stage while only a few of them are expected to be active[3–5],
the so-called effect sparsity principle in [6] also applies to this situation. Therefore, designs with
low-dimensional space-filling properties are preferred[7, 8]. There have been a fruitful literature
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on space-filling designs with good low-dimensional stratifications. Latin hypercube designs
(LHDs), proposed by [9], are the most commonly used space-filling designs. An LHD with
n runs possesses n equally spaced levels, which guarantees the maximum stratification in one
dimension. Tang[10] constructed LHDs based on orthogonal arrays (OAs) for getting designs
with attractive g-dimensional space-filling property for any g no more than t, where t is the
strength of the corresponding OAs. Qian[11] introduced LHDs with nested structures, while [12]
proposed LHDs with sliced structures, and this line of research has been further developed in [13]
and [14].

As we all know, orthogonality is very important for designs of computer experiments, since
it guarantees that the estimates of the main effects are uncorrelated. Approaches have been pro-
posed in the literature for constructing orthogonal designs, see, e.g., [15–23] and the references
therein.

He and Tang[24] introduced and studied strong orthogonal arrays (SOAs), where an SOA of
strength t is more space-filling than the corresponding OA when projected onto any g dimensions
for any g less than t. [25–28] studied orthogonal SOAs. It is worth noting that to surely
realize better space-filling properties, SOAs of three or higher are desirable. He and Tang[29]

theoretically solved the existence problem of strength-three SOAs. Recently, [30] constructed
strength-three SOAs with better space-filling properties, that is, the strength-three SOAs enjoy
some of the space-filling properties that only strength-four SOAs can offer. Whereas their
resulting SOAs do not have the property of orthogonality. And their constructions are based
on regular 2k−p designs, which means that the run size must be the power of 2.

This paper aims at constructing a new class of strength-three SOAs that possess better
orthogonality and space-filling properties. These strength-three SOAs enjoy almost the same
space-filling properties of strength-four SOAs, and can accommodate much more columns than
the latter. Moreover, they are (nearly) orthogonal and flexible in run sizes (for example, they
do not necessarily need to be a power of 2). The construction methods are straightforward to
implement, and their theoretical supports are well established. In addition to the theoretical
results, many designs are tabulated for practical needs.

This paper is organized as follows. Section 2 introduces the definitions and notation used
in this paper. Characterizations and constructions will be studied under various scenarios in
Section 3. Concluding remarks are provided in Section 4. Four tables are listed in the Appendix.

2 Definitions and Notations

We use D(n, s1, · · · , sm) to denote a balanced design of n runs and m factors, with each of
the si levels from {0, 1, · · · , si−1} replicated equally often in the ith column. When all the si’s
are equal to s, the design becomes a symmetric balanced design D(n, sm). A D(n, s1, · · · , sm)
becomes a mixed-level OA of strength t and s1, · · · , sm levels, denoted by OA(n, m, s1 × · · · ×
sm, t), if all possible level-combinations for any t columns occur with the same frequency. When
all the si’s are equal to s, the array is symmetric and denoted by OA(n, m, s, t).
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The correlation between two column vectors a = (a1, · · · , an)T and b = (b1, · · · , bn)T is
defined as

ρ(a, b) =
n∑

i=1

(ai − a)(bi − b)

/ [
n∑

i=1

(ai − a)2
n∑

i=1

(bi − b)2
]1/2

,

where a =
∑n

i=1 ai/n and b =
∑n

i=1 bi/n. Two column vectors are called orthogonal if the
correlation between them is 0. The correlation matrix of a design D is denoted by ρ(D) =
(ρ(di, dj))m×m, where di and dj are the ith and jth columns of D respectively, 1 ≤ i, j ≤ m.
A design is called orthogonal if any two columns of it are orthogonal.

For an array with n runs and m factors, we say it achieves a stratification on an s1×· · ·×st

grid in some t (t ≥ 2) dimensions if the corresponding t columns of it can be collapsed into an
OA(n, t, s1 × · · · × st, t).

A design is called a regular design if any two factorial effects of it are either combinatorial-
orthogonal to each other or fully aliased, where two vectors are called combinatorial-orthogonal
if they form an OA of strength two.

An n×m matrix with entries from {0, 1, · · · , st −1} is called an SOA of strength t, denoted
by SOA(n, m, st, t), if any n× f submatrix, 1 ≤ f ≤ t, can be collapsed into an OA(n, f, sμ1 ×
· · · × sμf , f) for any positive integers μ1, · · · , μf with μ1 + · · · + μf = t, where the st levels of
a factor are collapsed into sμj levels by �x/st−μj� for x = 0, 1, · · · , st − 1, 1 ≤ j ≤ f , therein
�z� represents the integer part of z. For an SOA(n, m, st, t), if it is orthogonal, we call it an
orthogonal SOA of strength t, denoted by OSOA(n, m, st, t).

An SOA(n, m, s4, 4) is more space-filling than an SOA(n, m, s3, 3), as it also enjoys proper-
ties:

α: Stratifications on s2 × s2 grids in all two dimensions;
β: Stratifications on s × s3 and s3 × s grids in all two dimensions;
γ: Stratifications on s × s × s2, s × s2 × s and s2 × s × s grids in all three dimensions.
Here the four-dimensional space-filling property is not of our concern due to the effect

sparsity principle (cf. [6]). Note that if a design enjoys properties α and β, it has the same
two-dimensional space-filling properties as the SOA of strength four. If a design enjoys property
γ, it has the same three-dimensional space-filling properties as the SOA of strength four. The
remainder of the paper is devoted to the construction of these two kinds of strength-three SOAs.
In this paper, properties β and γ correspond to the two-dimensional (s × s3 and s3 × s) and
three-dimensional (s×s×s2, s×s2×s, and s2×s×s) stratification properties, respectively, while
properties β and γ in [30] were defined differently, representing the three- and two-dimensional
stratification properties, respectively.

3 Construction Results

In this section, we construct two families of strength-three SOAs. The first family are
orthogonal and enjoy α and β, that is, they achieve the same two-dimensional space-filling
properties as those of strength-four SOAs. The second family are nearly orthogonal and enjoy
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γ, that is, they achieve the same three-dimensional space-filling properties as those of strength-
four SOAs.

3.1 Orthogonal Strength-Three SOAs with Properties α and β

In this subsection, we present the construction of OSOAs of strength three that enjoy
properties α and β.

Let E be an OA(n0, k, 4, 2), and F be the following OA(4, 3, 2, 2) with entries from GF (2)

F =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0

0 1 1

1 0 1

1 1 0

⎞

⎟⎟⎟⎟⎟⎠
. (1)

In each column of E, we replace the level q − 1 by the qth row of F for q = 1, 2, 3, 4, then we
can obtain a D(n0, 23k), say G. It can be written as G = (G1, · · · , Gk), where Gi is the ith
group of three columns arising from replacing the levels in the ith column of E by the rows of
F for i = 1, · · · , k.

According to the expansive replacement method discussed in [31, Subsection 9.3], G is
an OA(n0, 3k, 2, 2). Then we introduce the following proposition, which is crucial for later
construction methods.

Proposition 3.1 Any four columns, obtained by taking two columns from Gi1 and two
columns from Gi2 with i1 �= i2, must form an OA(n0, 4, 2, 4).

Its proof is similar to that of Proposition 1 in [22]. According to Proposition 3.1, many
four-column subarrays of G form OAs of strength four, while G is an OA of strength two.

Now we are ready to present the construction of OSOAs of strength three that enjoy prop-
erties α and β. The construction method is given in the following algorithm.

Algorithm 3.2
Input: An OA(n0, k, 4, 2), called E, and an OA(4, 3, 2, 2), called F .
Output: An OSOA(2n0, k, 8, 3), called D1.
Step 1 In each column of E, we replace the level q− 1 by the qth row of F for q = 1, 2, 3, 4,

then we can obtain G = (G1, · · · , Gk), where Gi is the ith group of three columns arising from
replacing the levels in the ith column of E by the rows of F for i = 1, · · · , k.

Step 2 Create Hj = (g1j , · · · , gkj) for j = 1, 2, 3, where gij represents the jth column of Gi

for i = 1, · · · , k.
Step 3 Let A1 = (HT

1 , (H1

·
+ 1)T)T, B1 = (HT

2 , HT
2 )T, C1 = (HT

1 , HT
1 )T, where

·
+ is the

addition defined on GF (2). Treat all entries as numbers and define D1 = 4A1 + 2B1 + C1.

For the resulting design D1, we have the following theorem.

Theorem 3.3 The design D1 obtained in Algorithm 3.2 is an OSOA(2n0, k, 8, 3) with
properties α and β.
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Proof For the convenience of the proof, let aj , bj, cj and dj be the ith columns of A1, B1, C1

and D1 respectively. Obviously, Theorem 3.3 holds if we can prove that the 8-level array D1 can
achieve (i) stratifications on 4×4, 2×8 and 8×2 grids in all two dimensions, (ii) stratifications
on 2 × 2 × 2 grids in all three dimensions, and (iii) D1 is orthogonal.

Now we consider the three cases respectively.
(i) First, we check the two-dimensional stratification of D1. According to Proposition 3.1,

any four columns obtained by taking two columns from Gl1 and two columns from Gl2 with
l1 �= l2 must form an OA of strength four. Thus for l1 �= l2, (h1l1 , h1l2 , h2l1 , h2l2) is an OA
of strength four, where hil denotes the lth column of Hi for i = 1, 2 and l = 1, · · · , k. As
A1 = (HT

1 , (H1

·
+ 1)T)T, and B = (HT

2 , HT
2 )T, it is easy to see that (al1 , al2 , bl1 , bl2) is a

strength-4 OA for any l1 �= l2, indicating that D1 can achieve stratifications on 4 × 4 grids in
all two dimensions.

Recall that for l1 �= l2, (h1l1 , h1l2 , h2l1 , h2l2) is an OA of strength four, and thus (h1l1 , h1l2 ,

h2l1) is a strength-three OA. Now consider (al1 , al2 , bl1 , cl1), it can be written as
⎛

⎝ h1l1 h1l2 h2l1 h1l1

h1l1

·
+ 1 h1l2

·
+ 1 h2l1 h1l1

⎞

⎠ .

As (h1l2 , h2l1 , h1l1) is a strength-three OA, (h1l2

·
+ 1, h2l1 , h1l1) forms a strength-three OA.

And for any level combination (γ, α, β, γ) in (h1l1 , h1l2 , h2l1 , h1l1), there is a corresponding level

combination (γ
·
+ 1, α, β, γ) in (h1l1

·
+ 1, h1l2

·
+ 1, h2l1 , h1l1). Thus (al1 , al2 , bl1 , cl1) is an OA of

strength four for any l1 �= l2. Therefore, D1 can achieve stratifications on 2× 8 and 8× 2 grids
in all two dimensions.

(ii) Next we consider the three-dimensional stratification. Let us check the strength of A1

first. Note that H1 can be obtained from A by replacing its four levels with the four elements of
the first column of F , where F is an OA(4, 3, 2, 2), then H1 is an OA of strength two. According

to Theorem 2.24 of [31], A1 = (HT
1 , (H1

·
+ 1)T)T must be an OA of strength three. It is easy

to see that after collapsing the factors of D1 into 2 levels, D1 becomes A1. Thus D1 achieves a
stratification on a 2 × 2 × 2 grid in any three dimensions.

(iii) We consider the orthogonality of D1. Note that (A1, B1, C1) is an array of strength two,
then (ai, aj), (bi, bj), (ci, cj), (ai, bj), (ai, cj) and (bi, cj) are all OAs of strength two with i �= j.
Without loss of generality, we assume the levels in A1, B1 and C1 are centered. Correspondingly,
we have dT

i dj = (4ai +2bi + ci)
T(4aj +2bj + cj) = 16aT

i aj +8(aT
i bj + bT

i aj)+4(aT
i cj + bT

i bj + cT
i aj)+

2(bT
i cj + cT

i bj) + cT
i cj = 0, implying that any two distinct columns of D1 are orthogonal. Thus

D1 is orthogonal.
Now let us see an illustrative example.

Example 3.4 Giving an OA(48, 13, 4, 2), denoted by E = (e1, · · · , e13), as shown in
Table A.1, we obtain an OSOA(96, 13, 8, 3) with properties α and β as follows. For i = 1, · · · , 13,
replacing the four levels of ei by the four rows of F in (1) respectively, we obtain 13 sets of
three columns, denoted as G1, · · · , G13. Taking one column at a time from these 13 groups
and putting them together, we obtain 3 sets of 13 columns, denoted as H1, H2 and H3. Let
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A1 = (HT
1 , (H1

·
+ 1)T)T, B1 = (HT

2 , HT
2 )T, C1 = (HT

1 , HT
1 )T. Treat all entries as numbers,

then we can get an OSOA(96, 13, 8, 3) by taking D1 = 4A1+2B1+C1, which is shown in the left
part of Table A.2. We can check that, as an OSOA(96, 13, 8, 3), D1 is orthogonal and achieves
stratifications on 2 × 4 and 4 × 2 grids in all two dimensions, and stratifications on 2 × 2 × 2
grids in all three dimensions. In addition, by checking all the two-tuples, we can find that D1

achieves stratifications on 4 × 4, 2 × 8 and 8 × 2 grids in all two dimensions. In summary, D1

is an OSOA of strength three, and enjoys the same two-dimensional space-filling properties as
the SOAs of strength four.

From Theorem 3.3, many OSOAs of strength three with properties α and β can be con-
structed. The OAs needed in Algorithm 3.2 are available in the library of OAs maintained by
Dr. Sloane N J A (http://neilsloane.com/oadir/index.html) and [31]. Table 1 summarizes some
generated designs (Column 2) as well as the OSOAs of strength three and four in [25] (Columns
5 and 6). It is clear that the resulting OSOAs of strength three from Algorithm 3.2 enjoy the
same orthogonality and two-dimensional space-filling property as the OSOAs of strength four,
and can accommodate much more columns than the latter ones. Thus they are more suitable
choices for computer experiments.

Remark 3.5 The underlying arrays in Algorithm 3.2 are not unique, the setting of
A2 = (HT

2 , (H2

·
+ 1)T)T, B2 = (HT

3 , (H3

·
+ 1)T)T and C2 = (HT

2 , HT
2 )T results in another

OSOA(2n0, k, 8, 3) with properties α and β, denoted as D2, these arrays are related through
D2 = 4A2 + 2B2 + C2. Furthermore, these two OSOAs can be combined to obtain a grouped
design D = (D1, D2) with the properties stated in Theorem 3.6.

In order to describe the properties of the design more conveniently, we introduce the nota-
tions πo, πα and πβ , where πo presents the proportion of two-tuples that achieve orthogonality,
πα represents the proportion of two-tuples that achieve stratifications on 4×4 grids, πβ denotes
the proportion of two-tuples that achieve stratifications on 2 × 8 and 8 × 2 grids.

Theorem 3.6 D = (D1, D2) is an SOA(2n0, 2k, 8, 3) with properties α, β and orthogo-
nality in a proportion πα = πβ = πo = 2(k − 1)/(2k − 1). Therein any two-tuple (di1j1 , di2j2)
achieves α, β and orthogonality except for the case i1 �= i2 and j1 = j2, and the correlation
between any two non-orthogonal columns is 2/21 = 0.0952, where dij represents the jth column
of Di for i = 1, 2 and j = 1, · · · , k.

Proof For the convenience of the proof, define A = (A1, A2), B = (B1, B2) and C =
(C1, C2), then D can be written as

D = 4A + 2B + C = (D1, D2) = (d11, · · · , d1k, d21, · · · , d2k),

where dij = 4aij + 2bij + cij and dij , aij , bij , cij are the jth columns of Di, Ai, Bi and Ci

respectively for i = 1, 2, j = 1, · · · , k.

In fact, we can prove that D2 is an OSOA(2n0, k, 8, 3) with properties α and β by similar
arguments as in the proof of Theorem 3.3. Then Theorem 3.6 holds if we can show that (i) A

is an OA of strength three (to ensure that D is an SOA of strength three); (ii) any two-tuple
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(di1j1 , di2j2), with i1 �= i2 and j1 = j2, achieves stratifications on 2 × 4 and 4 × 2 grids, and
the correlation between these two columns is 2/21=0.0952; and (iii) any two-tuple (di1j1 , di2j2),
with i1 �= i2 and j1 �= j2, achieves stratifications on 4×4, 2×8 and 8×2 grids, and orthogonality.

(i) First we check the strength of A, where

A =

⎛

⎝ H1 H2

H1

·
+ 1 H2

·
+ 1

⎞

⎠ .

Due to the structure of G, it is an OA of strength two, then as a sub-matrix of G, (H1, H2)
must be an OA of strength two. In this way, A is an OA of strength three (cf. Theorem 2.24
of [31]).

Now we consider the stratification and orthogonality in two dimensions.
(ii) For any two-tuple (d1j1 , d2j2) with j1 = j2 = j, the six columns (a1j , a2j , b1j , b2j , c1j, c2j)

corresponds to the same Gj , and we have b1j = c2j or c1j = b2j. Therein (a1j , a2j , b1j , b2j)
forms an OA of strength three, indicating that (d1j , d2j) achieves the stratifications on 2 × 4
and 4 × 2 grids. As b1j = c2j or c1j = b2j , so (d1j , d2j) cannot achieve the stratifications on
4 × 4, 2 × 8 and 8 × 2 grid. The correlation between columns d1j1 = 4a1j1 + 2b1j1 + c1j1 and
d2j1 = 4a2j1 + 2b2j1 + c2j1 is 2/(42 + 22 + 1) = 2/21 = 0.0952.

(iii) For any two-tuple (d1j1 , d2j2) with j1 �= j2, the six columns (a1j1 , a2j2 , b1j1 , b2j2 ,

c1j1 , c2j2) corresponds to Gj1 and Gj2 and is an OA of strength two. Therein (a1j1 , a2j2 ,

b1j1 , b2j2) is an OA of strength four, indicating that (d1j1 , d2j2) achieves a stratification on
a 4 × 4 grid. (a1j1 , a2j2 , b1j1 , c1j1), where (a1j1 , b1j1 , c1j1) corresponds to Gj1 and a2j2 corre-
sponds to Gj2 , is also an OA of strength four, indicating that (d1j1 , d2j2) achieves stratifications
on 2 × 8 and 8 × 2 grids. Furthermore, as a sub-matrix of G, (a1j1 , a2j2 , b1j1 , b2j2 , c1j1 , c2j2) is
an OA of strength two, which means D is orthogonal.

From Theorems 3.3 and 3.6, we can see that D has twice as many columns as D1, with
πo = πα = πβ = 2(k − 1)/(2k − 1). In other words, we can sacrifice just a little proportion
of properties of D1 in exchange for another k columns. It is also worth noting that there is a
close relationship between these SOAs and the OSOAs of strength four, that is, the SOAs of
strength three from Theorem 3.6 can be regarded as nearly OSOAs of strength four, where the
proportions πα and πβ measure the degree of proximity in terms of two-dimensional space-filling
properties, and the proportion πo measures the degree of proximity in terms of orthogonality.

Let us see an example.

Example 3.7 (Example 3.4 continued) Let H1, H2, H3 and D1 be the same matrices
as in Example 3.4. As shown in Example 3.4, D1 is an OSOA(96, 13, 8, 3) with properties
α and β. Now we obtain another OSOA(96, 13, 8, 3) with properties α and β, say D2, by

taking D2 = 4A2 + 2B2 + C2 with A2 = (HT
2 , (H2

·
+ 1)T)T, B2 = (HT

3 , (H3

·
+ 1)T)T, and

C2 = (HT
2 , HT

2 )T. Define D = (D1, D2), then we obtain an array with 26 columns, as shown in
Table A.2. We can check that D is an SOA(96, 26, 8, 3), that is, D achieves stratifications on
2 × 4 and 4 × 2 grids in all two dimensions, and stratifications on 2 × 2 × 2 grids in all three
dimensions. In addition, we can check that its two-tuple (di1j1 , di2j2) achieves stratifications on
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4× 4, 2× 8, 8× 2 grids and orthogonality except for the case i1 �= i2 and j1 = j2. Furthermore,
the correlation between any two-tuple (di1j1 , di2j2) with i1 �= i2 and j1 = j2 is 0.0952, implying
that even if these two columns are not orthogonal, their correlation is really acceptable. Thus
we have πo = πα = πβ = 96.00%. In summary, D enjoys properties α, β and orthogonality to
a large extent, thus can be seen as a nearly OSOA of strength four.

Table 1 summarizes some SOAs of strength three from Theorem 3.6 (Columns 3–4), the
OSOAs of strengths three and four in [25] (Columns 5–6) and the third family of strength-three
SOAs in [30] (Column 7). As we have discussed, the resulting SOAs of strength three from
Theorem 3.6 can be regarded as nearly OSOAs of strength four, where the proportions πα and
πβ measure the degree of proximity in terms of two-dimensional space-filling properties, and
proportion πo measures the degree of proximity in terms of orthogonality. From Table 1, we
can see that the values of these proportions are very close to 1, which means that these SOAs of
strength three have almost the same desirable orthogonality as well as two-dimensional space-
filling properties as the OSOAs of strength four. Besides, they can accommodate much more
columns than the latter ones.

Compared with the strength-three OSOAs in [25], our strength-three SOAs have better
two-dimensional space-filling properties and can accommodate more columns, while guaran-
teeing almost the same orthogonality. Compared with the strength-four OSOAs in [25], our
strength-three SOAs have almost the same desirable orthogonality as well as two-dimensional
space-filling properties, and they can accommodate much more columns than the latter ones.
Compared with the third family of strength-three SOAs in [30], which enjoy properties α, β

and γ, the resulting strength-three SOAs from Theorem 3.6 enjoy better orthogonality prop-
erty and can accommodate more columns when the third family of strength-three SOAs are
available. Besides, the resulting SOAs are particularly useful when the run size n is a multiple
of 32 but not a power of 2, where the third family of strength-three SOAs are not available.
That is, the resulting SOAs can fill the gap between the run sizes of the available third family
of strength-three SOAs. For example, we can construct strength-three SOAs with attractive
two-dimensional space-filling properties of 96 and 160 runs while such third family of strength-
three SOAs are not available. All these desirable properties ensure the resulting SOAs to be
competitive designs for computer experiments.

3.2 Nearly Orthogonal Strength-Three SOAs with Property γ

Now, we present the construction of the nearly orthogonal SOAs of strength three that
enjoy property γ, that is, the same three-dimensional space-filling properties as the strength-
four SOAs. The construction method is given in the following algorithm.

Algorithm 3.8
Input: An OA(n0, p, 2, 3), called U .
Output: An SOA(2n0, p, 8, 3), called D̃.
Step 1 Let U be an OA(n0, p, 2, 3) with entries from GF (2).

Step 2 Create X = (UT, (U
·
+ 1)T)T, Y = (U∗T, U∗T)T and Z = (UT, UT)T, where

·
+ is
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the addition defined on GF (2), and ∗ is a right circular shift of the columns of a design, that
is D∗ = (dm, d1, · · · , dm−1) for any design D = (d1, d2, · · · , dm).

Step 3 Treat all entries as numbers and define D̃ = 4X + 2Y + Z.

For the resulting design, we have the following theorem.

Theorem 3.9 The design D̃ obtained in Algorithm 3.8 is an SOA(2n0, p, 8, 3) with prop-
erty γ, while it achieves property β and orthogonality in a proportion πβ = πo = (p−3)/(p−1).
Therein any two columns are orthogonal and achieve stratifications on 2 × 8 and 8 × 2 grids
if and only if they are not adjacent, and the correlation between any two adjacent columns is
2/21 = 0.0952, where the first and last columns are regarded as two adjacent columns.

Proof By the similar proof of Theorem 1 and Remark 1 in [32], we can easily verify that
D̃ is an SOA of strength three. Now we only need to prove (i) property γ holds for D̃; (ii) D̃

enjoys property β and orthogonality in a proportion π = (p−3)/(p−1); and (iii) the correlation
between any two adjacent columns is 2/21=0.0952.

For the convenience of the proof, let ui, xi, yi, zi and di be the ith columns of U, X, Y, Z and
D̃ respectively.

(i) First we consider the three-dimensional stratification of D̃, where D̃ = 4X +2Y +Z with

X =

⎛

⎝ u1 u2 · · · up

u1

·
+ 1 u2

·
+ 1 · · · up

·
+ 1

⎞

⎠ ,

Y =

⎛

⎝up u1 · · · up−1

up u1 · · · up−1

⎞

⎠ , and Z =

⎛

⎝u1 u2 · · · up

u1 u2 · · · up

⎞

⎠ .

To show that D̃ enjoys property γ, we only need to prove that (xi, xj , xk, yk) is an OA of
strength four for all i �= j, i �= k and j �= k, which are in the following two cases.

(a) Case 1: k − 1 = i or k − 1 = j. Without loss of generality, we suppose k − 1 = i, then
(xi, xj , xk, yk) can be written as

⎛

⎝ ui uj uk ui

ui

·
+ 1 uj

·
+ 1 uk

·
+ 1 ui

⎞

⎠ .

Note that (ui, uj, uk) is an OA of strength three, then (ui

·
+ 1, uj

·
+ 1, uk

·
+ 1) is also an OA

of strength three. And for any level combination (α, β, γ, α) in (ui, uj, uk, ui), there is a corre-

sponding level combination (α, β, γ, α
·
+ 1) in (ui

·
+ 1, uj

·
+ 1, uk

·
+ 1, ui). Thus (xi, xj , xk, yk)

is an OA of strength four.
(b) Case 2: k − 1 = l with l �= i and l �= j, then (xi, xj , xk, yk) can be written as

⎛

⎝ ui uj uk ul

ui

·
+ 1 uj

·
+ 1 uk

·
+ 1 ul

⎞

⎠ .
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Therein (ui, uj , uk) and (ui

·
+ 1, uj

·
+ 1, uk

·
+ 1) are OAs of strength three. And for any level

combination (α, β, γ, η1) in (ui, uj, uk, ul), there is a corresponding level combination (α, β, γ, η2)

in (ui

·
+ 1, uj

·
+ 1, uk

·
+ 1, ul), where η1 and η2 are distinct with each other and they are a

permutation on {0, 1}. Thus (xi, xj , xk, yk) is an OA of strength four.
(ii) We consider the two-dimensional stratification of D̃. For any two-tuple (di, dj), it

achieves property β if and only if (xi, xj , yj, zj) and (xi, yi, zi, xj) are OAs of strength four.
Note that (xi, xj , yj, zj) and (xi, yi, zi, xj) can be written as

⎛

⎝ ui uj uj−1 uj

ui

·
+ 1 uj

·
+ 1 uj−1 uj

⎞

⎠ and

⎛

⎝ ui ui−1 ui uj

ui

·
+ 1 ui−1 ui uj

·
+ 1

⎞

⎠

respectively. Obviously, (xi, xj , yj , zj) is an OA of strength four if and only if j − 1 �= i, while
(xi, yi, zi, xj) is an OA of strength four if and only if i − 1 �= j. That is, (di, dj) can achieve
stratifications on 2 × 8 and 8 × 2 grids if and only if i − 1 �= j and j − 1 �= i. Therefore, any
two columns of D̃ can achieve stratifications on 2× 8 and 8× 2 grids if and only if they are not
adjacent.

Next we consider the orthogonality of D̃. According to its structure, (di, dj) is orthogonal
if and only if the following array is an OA of strength two:

⎛

⎝ ui ui−1 ui uj uj−1 uj

ui

·
+ 1 ui−1 ui uj

·
+ 1 uj−1 uj

⎞

⎠ , (2)

which is equivalent to that i − 1 �= j and j − 1 �= i. In this way, for any two columns of D̃,
they are not orthogonal to each other if and only if they are adjacent. Thus, D̃ enjoy property
β and orthogonality in a proportion π = (p − 3)/(p − 1).

(iii) For two adjacent columns di and dj of D̃, we have i−1 = j or j−1 = i. Then according
to (2), the correlation between these two columns is 2/(42 + 22 + 1) = 2/21 = 0.0952.

The following is an illustrative example.

Example 3.10 We now construct an SOA(48, 12, 8, 3) with property γ. Let U =
(u1, · · · , u12) be an OA(24, 12, 2, 3) with entries from GF (2), as shown in Table A.3. Define

X =

⎛

⎝ u1 u2 · · · u12

u1

·
+ 1 u2

·
+ 1 · · · u12

·
+ 1

⎞

⎠ ,

Y =

⎛

⎝u12 u1 · · · u11

u12 u1 · · · u11

⎞

⎠ , and Z =

⎛

⎝u1 u2 · · · u12

u1 u2 · · · u12

⎞

⎠ .

Treat all entries as numbers then we can obtain an SOA(48, 12, 8, 3) by taking D̃ = 4X+2Y +Z,

which is shown in Table A.4. We can check that any three columns of D̃ achieve stratifications
on 2×2×4, 2×4×2 and 4×2×2 grids, i.e., D̃ enjoys property γ. In addition, any two columns
are orthogonal and achieve stratifications on 2 × 8 and 8 × 2 grids if and only if they are not
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adjacent. Thus we have πβ = πo = 81.82%. Furthermore, we can check that the correlation
between any two adjacent columns is 0.0952, implying that even if any two adjacent columns
are not orthogonal, the correlation between them is really acceptable.

From Theorem 3.9, we can obtain many nearly orthogonal SOAs of strength three with
property γ. The OAs needed in Algorithm 3.8 are available in the library of OAs maintained
by Dr. N. J. A. Sloane (http://neilsloane.com/oadir/index.html) and [31]. Table 2 summarizes
some resulting designs and related designs. We can see that most values of πβ (πo) are very
close to 1, indicating that the resulting designs enjoy orthogonality and property β to a large
extent. Shi and Tang[30] constructed strength-three SOAs with property γ using regular designs.
Compared with their strength-three SOAs, the resulting SOAs in Theorem 3.9 have a better
orthogonality and two-dimensional stratification property with the same numbers of columns
when n is a power of 2. Besides, our strength-three SOAs are particularly useful when the run
size n is a multiple of 16 but not a power of 2, which cannot be constructed by their method.
That is, we can fill the gap between the run sizes of their available strength-three SOAs. For
example, we can construct strength-three SOAs of 48 and 80 runs while such SOAs are not
available in the literature. All these desirable properties ensure the strength-three SOAs to be
competitive designs for computer experiments.

Table 2 Some SOAs of strength three from Theorem 3.9 and related designs

C: OA(n0, p, 2, 3)
D̃: SOA(2n0, p, 8, 3)†

SOA(n,m, 8, 3)‡
Design πβ = πo(%)

OA(16, 8, 2, 3) SOA(32, 8, 8, 3) 71.43 SOA(32, 8, 8, 3)
OA(24, 12, 2, 3) SOA(48, 12, 8, 3) 81.82 -
OA(32, 16, 2, 3) SOA(64, 16, 8, 3) 86.67 SOA(64, 16, 8, 3)
OA(40, 20, 2, 3) SOA(80, 20, 8, 3) 89.47 -
OA(48, 24, 2, 3) SOA(96, 24, 8, 3) 91.30 -
OA(56, 28, 2, 3) SOA(112, 28, 8, 3) 92.59 -
OA(64, 32, 2, 3) SOA(128, 32, 8, 3) 93.55 SOA(128, 32, 8, 3)
OA(72, 36, 2, 3) SOA(144, 36, 8, 3) 94.29 -
OA(80, 40, 2, 3) SOA(160, 40, 8, 3) 94.87 -
OA(88, 44, 2, 3) SOA(176, 44, 8, 3) 95.35 -
OA(96, 48, 2, 3) SOA(192, 48, 8, 3) 95.74 -
OA(104, 52, 2, 3) SOA(208, 52, 8, 3) 96.08 -
OA(112, 56, 2, 3) SOA(224, 56, 8, 3) 96.36 -
OA(120, 60, 2, 3) SOA(240, 60, 8, 3) 96.61 -
OA(128, 64, 2, 3) SOA(256, 64, 8, 3) 96.83 SOA(256, 64, 8, 3)

† SOA(2n0, p, 8, 3) from Theorem 3.9 that enjoys property γ, as well as property β and
orthogonality in a proportion πβ = πo = (p − 3)/(p − 1);

‡ SOA(n, m, 8, 3) with property γ in [30] (Theorem 4), where n is a power of 2 and m = n/4;
Symbol-indicates that the corresponding design is not available.

4 Concluding Remarks

For designs of computer experiments, space-filling property and orthogonality are two im-
portant properties. As a class of space-filling designs, SOAs are getting more and more attention
as they have better space-filling properties than ordinary OAs. To surely realize better space-
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filling properties, SOAs of strength three or higher are desirable. This paper develops methods
for constructing (nearly) orthogonal SOAs of strength three with better space-filling properties.
Based on OAs which can be either regular or nonregular, the proposed methods are general and
simple. The newly generated strength-three SOAs enjoy almost the same space-filling properties
of strength-four SOAs, and can accommodate much more columns than the latter. Moreover,
they are (nearly) orthogonal and flexible in run sizes. All these desirable properties make them
competitive designs for computer experiments. Examples are provided throughout to illustrate
the methods, and we tabulate many resulting designs for practical needs.
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Appendix: Four tables in Examples 3.4, 3.7 and 3.10

Table A.1 The OA(48, 13, 4, 2) E = (e1, · · · , e13) in Example 3.4

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 3 3 3 2 2 2 0
0 0 0 3 3 3 2 2 2 1 1 1 0
0 3 1 2 1 3 1 2 0 3 0 2 1
0 3 1 3 2 1 0 1 2 2 3 0 1
0 3 1 1 3 2 2 0 1 0 2 3 1
0 1 2 3 0 2 1 0 3 1 3 2 2
0 1 2 2 3 0 3 1 0 2 1 3 2
0 1 2 0 2 3 0 3 1 3 2 1 2
0 2 3 1 2 0 1 3 2 1 0 3 3
0 2 3 0 1 2 2 1 3 3 1 0 3
0 2 3 2 0 1 3 2 1 0 3 1 3
1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 0 0 0 2 2 2 3 3 3 0
1 1 1 2 2 2 3 3 3 0 0 0 0
1 2 0 3 0 2 0 3 1 2 1 3 1
1 2 0 2 3 0 1 0 3 3 2 1 1
1 2 0 0 2 3 3 1 0 1 3 2 1
1 0 3 2 1 3 0 1 2 0 2 3 2
1 0 3 3 2 1 2 0 1 3 0 2 2
1 0 3 1 3 2 1 2 0 2 3 0 2
1 3 2 0 3 1 0 2 3 0 1 2 3
1 3 2 1 0 3 3 0 2 2 0 1 3
1 3 2 3 1 0 2 3 0 1 2 0 3
2 2 2 2 2 2 2 2 2 2 2 2 0
2 2 2 3 3 3 1 1 1 0 0 0 0
2 2 2 1 1 1 0 0 0 3 3 3 0
2 1 3 0 3 1 3 0 2 1 2 0 1
2 1 3 1 0 3 2 3 0 0 1 2 1
2 1 3 3 1 0 0 2 3 2 0 1 1
2 3 0 1 2 0 3 2 1 3 1 0 2
2 3 0 0 1 2 1 3 2 0 3 1 2
2 3 0 2 0 1 2 1 3 1 0 3 2
2 0 1 3 0 2 3 1 0 3 2 1 3
2 0 1 2 3 0 0 3 1 1 3 2 3
2 0 1 0 2 3 1 0 3 2 1 3 3
3 3 3 3 3 3 3 3 3 3 3 3 0
3 3 3 2 2 2 0 0 0 1 1 1 0
3 3 3 0 0 0 1 1 1 2 2 2 0
3 0 2 1 2 0 2 1 3 0 3 1 1
3 0 2 0 1 2 3 2 1 1 0 3 1
3 0 2 2 0 1 1 3 2 3 1 0 1
3 2 1 0 3 1 2 3 0 2 0 1 2
3 2 1 1 0 3 0 2 3 1 2 0 2
3 2 1 3 1 0 3 0 2 0 1 2 2
3 1 0 2 1 3 2 0 1 2 3 0 3
3 1 0 3 2 1 1 2 0 0 2 3 3
3 1 0 1 3 2 0 1 2 3 0 2 3
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Table A.2 The SOA(96, 26, 8, 3) D = (D1, D2) in Examples 3.4 and 3.7

D1 = (d11, · · · , d113) D2 = (d21, · · · , d213)
d11 d12 d13 d14 d15 d16 d17 d18 d19 d110 d111 d112 d113 d21 d22 d23 d24 d25 d26 d27 d28 d29 d210 d211 d212 d213

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 2 2 7 7 7 5 5 5 0 0 0 0 7 7 7 5 5 5 2 2 2 0
0 0 0 7 7 7 5 5 5 2 2 2 0 0 0 0 5 5 5 2 2 2 7 7 7 0
0 7 2 5 2 7 2 5 0 7 0 5 2 0 5 7 2 7 5 7 2 0 5 0 2 7
0 7 2 7 5 2 0 2 5 5 7 0 2 0 5 7 5 2 7 0 7 2 2 5 0 7
0 7 2 2 7 5 5 0 2 0 5 7 2 0 5 7 7 5 2 2 0 7 0 2 5 7
0 2 5 7 0 5 2 0 7 2 7 5 5 0 7 2 5 0 2 7 0 5 7 5 2 2
0 2 5 5 7 0 7 2 0 5 2 7 5 0 7 2 2 5 0 5 7 0 2 7 5 2
0 2 5 0 5 7 0 7 2 7 5 2 5 0 7 2 0 2 5 0 5 7 5 2 7 2
0 5 7 2 5 0 2 7 5 2 0 7 7 0 2 5 7 2 0 7 5 2 7 0 5 5
0 5 7 0 2 5 5 2 7 7 2 0 7 0 2 5 0 7 2 2 7 5 5 7 0 5
0 5 7 5 0 2 7 5 2 0 7 2 7 0 2 5 2 0 7 5 2 7 0 5 7 5
2 2 2 2 2 2 2 2 2 2 2 2 0 7 7 7 7 7 7 7 7 7 7 7 7 0
2 2 2 0 0 0 5 5 5 7 7 7 0 7 7 7 0 0 0 2 2 2 5 5 5 0
2 2 2 5 5 5 7 7 7 0 0 0 0 7 7 7 2 2 2 5 5 5 0 0 0 0
2 5 0 7 0 5 0 7 2 5 2 7 2 7 2 0 5 0 2 0 5 7 2 7 5 7
2 5 0 5 7 0 2 0 7 7 5 2 2 7 2 0 2 5 0 7 0 5 5 2 7 7
2 5 0 0 5 7 7 2 0 2 7 5 2 7 2 0 0 2 5 5 7 0 7 5 2 7
2 0 7 5 2 7 0 2 5 0 5 7 5 7 0 5 2 7 5 0 7 2 0 2 5 2
2 0 7 7 5 2 5 0 2 7 0 5 5 7 0 5 5 2 7 2 0 7 5 0 2 2
2 0 7 2 7 5 2 5 0 5 7 0 5 7 0 5 7 5 2 7 2 0 2 5 0 2
2 7 5 0 7 2 0 5 7 0 2 5 7 7 5 2 0 5 7 0 2 5 0 7 2 5
2 7 5 2 0 7 7 0 5 5 0 2 7 7 5 2 7 0 5 5 0 2 2 0 7 5
2 7 5 7 2 0 5 7 0 2 5 0 7 7 5 2 5 7 0 2 5 0 7 2 0 5
5 5 5 5 5 5 5 5 5 5 5 5 0 2 2 2 2 2 2 2 2 2 2 2 2 0
5 5 5 7 7 7 2 2 2 0 0 0 0 2 2 2 5 5 5 7 7 7 0 0 0 0
5 5 5 2 2 2 0 0 0 7 7 7 0 2 2 2 7 7 7 0 0 0 5 5 5 0
5 2 7 0 7 2 7 0 5 2 5 0 2 2 7 5 0 5 7 5 0 2 7 2 0 7
5 2 7 2 0 7 5 7 0 0 2 5 2 2 7 5 7 0 5 2 5 0 0 7 2 7
5 2 7 7 2 0 0 5 7 5 0 2 2 2 7 5 5 7 0 0 2 5 2 0 7 7
5 7 0 2 5 0 7 5 2 7 2 0 5 2 5 0 7 2 0 5 2 7 5 7 0 2
5 7 0 0 2 5 2 7 5 0 7 2 5 2 5 0 0 7 2 7 5 2 0 5 7 2
5 7 0 5 0 2 5 2 7 2 0 7 5 2 5 0 2 0 7 2 7 5 7 0 5 2
5 0 2 7 0 5 7 2 0 7 5 2 7 2 0 7 5 0 2 5 7 0 5 2 7 5
5 0 2 5 7 0 0 7 2 2 7 5 7 2 0 7 2 5 0 0 5 7 7 5 2 5
5 0 2 0 5 7 2 0 7 5 2 7 7 2 0 7 0 2 5 7 0 5 2 7 5 5
7 7 7 7 7 7 7 7 7 7 7 7 0 5 5 5 5 5 5 5 5 5 5 5 5 0
7 7 7 5 5 5 0 0 0 2 2 2 0 5 5 5 2 2 2 0 0 0 7 7 7 0
7 7 7 0 0 0 2 2 2 5 5 5 0 5 5 5 0 0 0 7 7 7 2 2 2 0
7 0 5 2 5 0 5 2 7 0 7 2 2 5 0 2 7 2 0 2 7 5 0 5 7 7
7 0 5 0 2 5 7 5 2 2 0 7 2 5 0 2 0 7 2 5 2 7 7 0 5 7
7 0 5 5 0 2 2 7 5 7 2 0 2 5 0 2 2 0 7 7 5 2 5 7 0 7
7 5 2 0 7 2 5 7 0 5 0 2 5 5 2 7 0 5 7 2 5 0 2 0 7 2
7 5 2 2 0 7 0 5 7 2 5 0 5 5 2 7 7 0 5 0 2 5 7 2 0 2
7 5 2 7 2 0 7 0 5 0 2 5 5 5 2 7 5 7 0 5 0 2 0 7 2 2
7 2 0 5 2 7 5 0 2 5 7 0 7 5 7 0 2 7 5 2 0 7 2 5 0 5
7 2 0 7 5 2 2 5 0 0 5 7 7 5 7 0 5 2 7 7 2 0 0 2 5 5
7 2 0 2 7 5 0 2 5 7 0 5 7 5 7 0 7 5 2 0 7 2 5 0 2 5
4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6
4 4 4 6 6 6 3 3 3 1 1 1 4 6 6 6 1 1 1 3 3 3 4 4 4 6
4 4 4 3 3 3 1 1 1 6 6 6 4 6 6 6 3 3 3 4 4 4 1 1 1 6
4 3 6 1 6 3 6 1 4 3 4 1 6 6 3 1 4 1 3 1 4 6 3 6 4 1
4 3 6 3 1 6 4 6 1 1 3 4 6 6 3 1 3 4 1 6 1 4 4 3 6 1
4 3 6 6 3 1 1 4 6 4 1 3 6 6 3 1 1 3 4 4 6 1 6 4 3 1
4 6 1 3 4 1 6 4 3 6 3 1 1 6 1 4 3 6 4 1 6 3 1 3 4 4
4 6 1 1 3 4 3 6 4 1 6 3 1 6 1 4 4 3 6 3 1 6 4 1 3 4
4 6 1 4 1 3 4 3 6 3 1 6 1 6 1 4 6 4 3 6 3 1 3 4 1 4
4 1 3 6 1 4 6 3 1 6 4 3 3 6 4 3 1 4 6 1 3 4 1 6 3 3
4 1 3 4 6 1 1 6 3 3 6 4 3 6 4 3 6 1 4 4 1 3 3 1 6 3
4 1 3 1 4 6 3 1 6 4 3 6 3 6 4 3 4 6 1 3 4 1 6 3 1 3
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Table A.2 (Continued) The SOA(96, 26, 8, 3) D = (D1, D2) in Examples 3.4 and 3.7
D1 = (d11, · · · , d113) D2 = (d21, · · · , d213)

d11 d12 d13 d14 d15 d16 d17 d18 d19 d110 d111 d112 d113 d21 d22 d23 d24 d25 d26 d27 d28 d29 d210 d211 d212 d213
6 6 6 6 6 6 6 6 6 6 6 6 4 1 1 1 1 1 1 1 1 1 1 1 1 6
6 6 6 4 4 4 1 1 1 3 3 3 4 1 1 1 6 6 6 4 4 4 3 3 3 6
6 6 6 1 1 1 3 3 3 4 4 4 4 1 1 1 4 4 4 3 3 3 6 6 6 6
6 1 4 3 4 1 4 3 6 1 6 3 6 1 4 6 3 6 4 6 3 1 4 1 3 1
6 1 4 1 3 4 6 4 3 3 1 6 6 1 4 6 4 3 6 1 6 3 3 4 1 1
6 1 4 4 1 3 3 6 4 6 3 1 6 1 4 6 6 4 3 3 1 6 1 3 4 1
6 4 3 1 6 3 4 6 1 4 1 3 1 1 6 3 4 1 3 6 1 4 6 4 3 4
6 4 3 3 1 6 1 4 6 3 4 1 1 1 6 3 3 4 1 4 6 1 3 6 4 4
6 4 3 6 3 1 6 1 4 1 3 4 1 1 6 3 1 3 4 1 4 6 4 3 6 4
6 3 1 4 3 6 4 1 3 4 6 1 3 1 3 4 6 3 1 6 4 3 6 1 4 3
6 3 1 6 4 3 3 4 1 1 4 6 3 1 3 4 1 6 3 3 6 4 4 6 1 3
6 3 1 3 6 4 1 3 4 6 1 4 3 1 3 4 3 1 6 4 3 6 1 4 6 3
1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 6
1 1 1 3 3 3 6 6 6 4 4 4 4 4 4 4 3 3 3 1 1 1 6 6 6 6
1 1 1 6 6 6 4 4 4 3 3 3 4 4 4 4 1 1 1 6 6 6 3 3 3 6
1 6 3 4 3 6 3 4 1 6 1 4 6 4 1 3 6 3 1 3 6 4 1 4 6 1
1 6 3 6 4 3 1 3 4 4 6 1 6 4 1 3 1 6 3 4 3 6 6 1 4 1
1 6 3 3 6 4 4 1 3 1 4 6 6 4 1 3 3 1 6 6 4 3 4 6 1 1
1 3 4 6 1 4 3 1 6 3 6 4 1 4 3 6 1 4 6 3 4 1 3 1 6 4
1 3 4 4 6 1 6 3 1 4 3 6 1 4 3 6 6 1 4 1 3 4 6 3 1 4
1 3 4 1 4 6 1 6 3 6 4 3 1 4 3 6 4 6 1 4 1 3 1 6 3 4
1 4 6 3 4 1 3 6 4 3 1 6 3 4 6 1 3 6 4 3 1 6 3 4 1 3
1 4 6 1 3 4 4 3 6 6 3 1 3 4 6 1 4 3 6 6 3 1 1 3 4 3
1 4 6 4 1 3 6 4 3 1 6 3 3 4 6 1 6 4 3 1 6 3 4 1 3 3
3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 6
3 3 3 1 1 1 4 4 4 6 6 6 4 3 3 3 4 4 4 6 6 6 1 1 1 6
3 3 3 4 4 4 6 6 6 1 1 1 4 3 3 3 6 6 6 1 1 1 4 4 4 6
3 4 1 6 1 4 1 6 3 4 3 6 6 3 6 4 1 4 6 4 1 3 6 3 1 1
3 4 1 4 6 1 3 1 6 6 4 3 6 3 6 4 6 1 4 3 4 1 1 6 3 1
3 4 1 1 4 6 6 3 1 3 6 4 6 3 6 4 4 6 1 1 3 4 3 1 6 1
3 1 6 4 3 6 1 3 4 1 4 6 1 3 4 1 6 3 1 4 3 6 4 6 1 4
3 1 6 6 4 3 4 1 3 6 1 4 1 3 4 1 1 6 3 6 4 3 1 4 6 4
3 1 6 3 6 4 3 4 1 4 6 1 1 3 4 1 3 1 6 3 6 4 6 1 4 4
3 6 4 1 6 3 1 4 6 1 3 4 3 3 1 6 4 1 3 4 6 1 4 3 6 3
3 6 4 3 1 6 6 1 4 4 1 3 3 3 1 6 3 4 1 1 4 6 6 4 3 3
3 6 4 6 3 1 4 6 1 3 4 1 3 3 1 6 1 3 4 6 1 4 3 6 4 3

Table A.3 The OA(24, 12, 2, 3) U = (u1, · · · , u12) in Example 3.10

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

0 1 1 1 1 1 1 1 1 1 1 1
0 0 1 0 1 1 1 0 0 0 1 0
0 0 0 1 0 1 1 1 0 0 0 1
0 1 0 0 1 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 1 1 0 0
0 0 0 1 0 0 1 0 1 1 1 0
0 0 0 0 1 0 0 1 0 1 1 1
0 1 0 0 0 1 0 0 1 0 1 1
0 1 1 0 0 0 1 0 0 1 0 1
0 1 1 1 0 0 0 1 0 0 1 0
0 0 1 1 1 0 0 0 1 0 0 1
0 1 0 1 1 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 1 0 1
1 1 1 0 1 0 0 0 1 1 1 0
1 0 1 1 0 1 0 0 0 1 1 1
1 1 0 1 1 0 1 0 0 0 1 1
1 1 1 0 1 1 0 1 0 0 0 1
1 1 1 1 0 1 1 0 1 0 0 0
1 0 1 1 1 0 1 1 0 1 0 0
1 0 0 1 1 1 0 1 1 0 1 0
1 0 0 0 1 1 1 0 1 1 0 1
1 1 0 0 0 1 1 1 0 1 1 0
1 0 1 0 0 0 1 1 1 0 1 1
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Table A.4 The SOA(48, 12, 8, 3) D̃ = (d1, · · · , d12) with property γ in Example 3.10

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

2 5 7 7 7 7 7 7 7 7 7 7

0 0 5 2 5 7 7 2 0 0 5 2

2 0 0 5 2 5 7 7 2 0 0 5

0 5 2 0 5 2 5 7 7 2 0 0

0 0 5 2 0 5 2 5 7 7 2 0

0 0 0 5 2 0 5 2 5 7 7 2

2 0 0 0 5 2 0 5 2 5 7 7

2 5 2 0 0 5 2 0 5 2 5 7

2 5 7 2 0 0 5 2 0 5 2 5

0 5 7 7 2 0 0 5 2 0 5 2

2 0 5 7 7 2 0 0 5 2 0 5

0 5 2 5 7 7 2 0 0 5 2 0

5 2 0 0 0 0 0 0 0 0 0 0

7 7 2 5 2 0 0 5 7 7 2 5

5 7 7 2 5 2 0 0 5 7 7 2

7 2 5 7 2 5 2 0 0 5 7 7

7 7 2 5 7 2 5 2 0 0 5 7

7 7 7 2 5 7 2 5 2 0 0 5

5 7 7 7 2 5 7 2 5 2 0 0

5 2 5 7 7 2 5 7 2 5 2 0

5 2 0 5 7 7 2 5 7 2 5 2

7 2 0 0 5 7 7 2 5 7 2 5

5 7 2 0 0 5 7 7 2 5 7 2

7 2 5 2 0 0 5 7 7 2 5 7

6 1 3 3 3 3 3 3 3 3 3 3

4 4 1 6 1 3 3 6 4 4 1 6

6 4 4 1 6 1 3 3 6 4 4 1

4 1 6 4 1 6 1 3 3 6 4 4

4 4 1 6 4 1 6 1 3 3 6 4

4 4 4 1 6 4 1 6 1 3 3 6

6 4 4 4 1 6 4 1 6 1 3 3

6 1 6 4 4 1 6 4 1 6 1 3

6 1 3 6 4 4 1 6 4 1 6 1

4 1 3 3 6 4 4 1 6 4 1 6

6 4 1 3 3 6 4 4 1 6 4 1

4 1 6 1 3 3 6 4 4 1 6 4

1 6 4 4 4 4 4 4 4 4 4 4

3 3 6 1 6 4 4 1 3 3 6 1

1 3 3 6 1 6 4 4 1 3 3 6

3 6 1 3 6 1 6 4 4 1 3 3

3 3 6 1 3 6 1 6 4 4 1 3

3 3 3 6 1 3 6 1 6 4 4 1

1 3 3 3 6 1 3 6 1 6 4 4

1 6 1 3 3 6 1 3 6 1 6 4

1 6 4 1 3 3 6 1 3 6 1 6

3 6 4 4 1 3 3 6 1 3 6 1

1 3 6 4 4 1 3 3 6 1 3 6

3 6 1 6 4 4 1 3 3 6 1 3


