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Abstract This paper studies the multi-period mean-variance (MV) asset-liability portfolio manage-

ment problem (MVAL), in which the portfolio is constructed by risky assets and liability. It is worth

mentioning that the impact of general correlation is considered, i.e., the random returns of risky assets

and the liability are not only statistically correlated to each other but also correlated to themselves in

different time periods. Such a model with a general correlation structure extends the classical multi-

period MVAL models with assumption of independent returns. The authors derive the explicit portfolio

policy and the MV efficient frontier for this problem. Moreover, a numerical example is presented to

illustrate the efficiency of the proposed solution scheme.

Keywords Asset-liability management, dynamic programming, mean-variance, multi-period portfo-

lio, stochastic correlated returns.

1 Introduction

Since Markowitz[1] published his seminar work in 1952, the mean-variance (MV) portfolio
selection model has become a standard tool of the modern investment analysis in both academic
study and financial practice. This static MV portfolio selection model has been extended to
dynamic one[2, 3], which is one of the most significant development in this area. The multi-
period MV portfolio optimization models have been developed greatly in the past years. For
example, the mean-field formulation was introduced in [4], the management fee was considered
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in [5], the no-shorting constraint was investigated in [6, 7] and both no-shorting constraints and
regime-switching were studied in [8].

On the other hand, some financial institutions, such as banks and insurance companies, also
pay great attention to their liability. In fact, one can operate more soundly and lucratively
when considering the effects of liability. The asset liability management (ALM) problem un-
der MV framework was first investigated in a single-period setting[9]. It was then extended
to multi-period setting[10] and also with different constraints, e.g., with an uncertain exiting
time[11, 12], with probability constrains[13], with an uncontrolled cash flow[14] and with jump
diffusion process[15]. It is noted that the returns of assets and liability in the above literatures
are assumed to be statistical independent. However, as pointed out in [16], the correlation of
the returns of the risky assets can not be neglected in portfolio management. In their work,
they adopted the ARMA(1, 1) process to demonstrate the correlation characteristics of the
risky assets returns. When investors take into account the fact that risky asset returns are
both correlated to each other and serially correlated over different periods, they can achieve
better performance, as discussed in Section 4. For the pure multi-period MV portfolio selection
problem, some researchers considered the correlations of random returns of the risky assets in
their models, e.g., [17–20]. As far as we know, however, there is few work investigating the
general correlations of the random returns of the assets and liability for the MVAL model.

In this paper, we study a general model of the multi-period MVAL problem, in which all
the assets in the portfolio are risky assets. Furthermore, the returns of these risky assets and
the liability are not only correlated to each other but also serially correlated themselves in
different time periods. Instead of assuming any particular stochastic processes of the random
returns of the risky assets and liability, we adopt a general formulation to model the correlation,
which enables us to derive the model-independent portfolio policy, i.e., the portfolio policy only
depends on the first and second conditional moments of the random parameters. Once the first
and second moments of the returns of the assets and liability are calibrated from market data,
the optimal policy can be computed numerically. Our result is novel in the literature and it
includes several previous ones as its special cases.

• Note that our model is a generalization of [21] in which a specific correlation structure
of the returns is considered, i.e., regime switching. Our model can also be regarded as a
generalization of [22] if it does not have an intertemporal constraint.

• If we do not consider the correlation between the returns of the risky assets and liabil-
ities, our model will become simplified to the one presented in [10] and [23] without an
intertemporal constraint.

• If we exclude the exogenous liabilities, our model is simplified to the pure multi-period
mean-variance portfolio optimization problem with general correlations (see, e.g., [18–20]).

In addition, we can see from our result that the MVAL efficient frontiers generated from
the model with all risky asset and the one with risk-free asset are all in shapes of hyperbola
and are not tangent to each other. Such a phenomenon is consistent with the observation from
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pure continuous-time based MV portfolio selection model (see e.g., [24])∗. The impacts of the
correlation among the risky assets, the assets and the liability to the efficient frontier are also
analyzed in the illustrative example.

The remaining of the paper is organized as follows. Section 2 presents the market setting
and our model. The optimal portfolio strategies and efficient frontiers are derived in Section 3.
Section 4 provides a numerical example to illustrate the derived theoretical results and presents
the impacts of some parameters in the model. Finally, we conclude the paper in Section 5.

2 Formulation

Assume that the capital market consists of n risky assets and one liability, which can be
traded in totally T periods. At each time period t ∈ {0, 1, · · · , T − 1}, the random return
vector of these n risky assets and the random return of the liability are denoted by et =
[e1t , · · · , en

t ]T and pt, respectively. Note that, different from the independent assumption used
in the literature [10, 12, 25], in this paper, we allow et and pt to be statistically correlated
to each other and also serially correlated in different periods†, such as Markov chain models
(see, e.g., [26]) or the conventional time series models, which have important applications in
financial decision making (see, e.g., [17, 22]). All the underlying uncertainties are modeled
by a complete probability space (Ω ,F ,P) with the structure of the filtration satisfying Ft ⊂
Ft+1, t = 0, 1, · · · , T − 1 and FT = F . The filtration Ft represents the information available
at stage t‡. Under this model, at any time t, the return vector et and liability pt are Ft+1

measurable, i.e., the realization of et and pt are known only at time t + 1§. To simplify the
notation, we use the Et[·] and Vart[·] to denote the conditional expectation E[·|Ft] and the
conditional variance Var[·|Ft], respectively¶. The advantage of this model is that, there is no
need to assume any particular stochastic process of et and pt and all the results are expressed
by the conditional moments of et and pt for given filtration Ft.

An investor joins the market at the beginning of period 0 with an initial wealth x0 and initial
liability l0. He can adjust his portfolio at the beginning of each following T − 1 consecutive
periods. Let xt and lt be the wealth and liability of the investor at the beginning of period t

respectively, then xt − lt is the net wealth. We assume in this paper that the liability follows
the dynamics, lt+1 = ptlt, t = 0, · · · , T − 1, which is exogenous, i.e., it is uncontrollable and
cannot be affected by the investor’s strategies. At period t, let ut : = (u1

t , · · · , un
t )T be the

portfolio decision vector, where ui
t is the amount invested in the i-th risky asset. We confine

all admissible investment policies to be Ft-adapted Markovian policy, i.e., ut is only based on
the information before time stage t.

∗This phenomenon is observed in pure dynamic MV portfolio selection model and is named as the premium

of dynamic trading in [24].
†The serial correlation indicates that et and pt are dependent on the realization value of {es, ps}t−1

s=0, for all

t = 0, 1, · · · , T − 1.
‡Mathematically, Ft is the σ-algebra generated by the realization of {e0, e1, · · · , et−1, p0, · · · , pt−1}.
§This type of model is very general since it does not require specifying the particular stochastic process that

et and pt follow.
¶At t = 0, E[·|F0] and Var[·|F0] are just the unconditional expectation E[·] and variance Var[·], respectively.
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The investor adopts the multi-period MVAL model to guide his investment, which is to seek
the best strategy, {u∗

t}|T−1
t=0 , to solve the following problem

(P) : min
ut

ωVar[xT − lT ] − E[xT − lT ]

s.t. xt+1 = eT
t ut (1)

xt = 1Tut, (2)

lt+1 = ptlt, t = 0, · · · , T − 1, (3)

where x0 and l0 are known, ω > 0 is a weighting parameter and 1 is the vector whose elements
are all 1. In this paper, we also consider the MVAL model including a risk-free asset. Let the
return of the risk-free asset be rt, t = 0, · · · , T −1, which is assumed to be deterministic. When
the risk-free asset is included, we can represent allocation in the risk-free asset as xt −1Tut for
t = 0, · · · , T − 1. Therefore, the wealth process can be written as

xt+1 = rtxt + dT
t ut, for t = 0, · · · , T − 1, (4)

where the excess return vector dt ∈ R
n is defined as, dt�

(
d1

t , d
2
t , · · · , dn

t

)T = et − rt1. Then,
the MVAL problem with n risky assets and a risk-free asset can be formulated as follows

(Pf ) : min
ut

ωVar[xT − lT ] − E[xT − lT ]

s.t. {xt, lt,ut} satisfies dynamics (3) and (4), t = 0, · · · , T − 1.

Note that there is an alternative formulation for the problems (P) and (Pf ), i.e., maximizing
the expected terminal net wealth for a given variance of the terminal net wealth. In fact,
the two kinds of models are actually equivalent due to the convexity from the multi-objective
optimization point of view. To guarantee the convexity of problem, we need to introduce the
following assumption.

Assumption 2.1 For all time t = 0, 1, · · · , T − 1, the conditional covariance matrices
satisfy Covt[et] := Et[ete

T
t ]−Et[et]Et[eT

t ] � 0, where the notation A � 0 means A is a positive
definite matrix.

Remark 2.2 If there is no general correlation in our model, Assumption 2.1 reduces to the
simplified assumption, i.e., “For all time t = 0, 1, · · · , T − 1, the covariance matrices of random
return vector et satisfy Cov[et] := E[ete

T
t ] − E[et]E[eT

t ] � 0, which further implies E[ete
T
t ] �

0”. This simplified assumption has been widely employed in numerous scholarly works as
a foundation for addressing multi-period mean-variance portfolio selection problems without
general correlation (see, e.g., [4, 27, 28]). This simplified assumption can exclude “redundant”
securities (see, e.g., [29]) and ensure the convexity of the problem (see, e.g. [2, 27]).

Remark 2.3 If there is general correlation among the returns of assets and liability,
Assumption 2.1 is still commonly applied in the context of pure multi-period mean-variance
portfolio optimization problem without the exogenous liability (see, e.g., [6, 19]). Similarly,
Assumption 2.1 can also be applied to ensure the convexity of our problem, which further
guarantees the existence and uniqueness of the optimal portfolio policy.
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3 Optimal Portfolio Policy

3.1 The Solution for Problem (P)

The primary problem (P) is a nonseparable one in the sense of dynamic programming. To
solve it, we consider the following auxiliary problem (P(λ)) for some given parameter λ

(P(λ)) : min
ut

ωE[(xT − lT )2] − λE[xT − lT ]

s.t. {xt, lt,ut} satisfies the dynamics (1)–(3).

This embedding scheme was first introduced by Li and Ng[2]. Let the set of optimal policy
for the problems (P(λ)) and (P) be Π (P(λ)) and Π (P), respectively. The following two
lemmas characterize the relationship of the solutions between the problems (P(λ)) and (P).
On the basis of avoiding confusion, we use the notation u∗ to denote {u∗

t}T−1
t=0 . Denote d(u) =

1 + 2ωE[xT − lT ]
∣
∣
u
.

Lemma 3.1 For any u∗ ∈ Π (P), we have u∗ ∈ Π (P(d(u∗)))‖.

Proof We will prove this lemma using the method of contradiction. If the solution u∗ is not
the optimal solution of Π (P(d(u∗))), we can find another solution u† such that the following
inequality holds true:

{
ωE[(xT − lT )2]

∣
∣
u† −

(
1 + 2ωE[xT − lT ]

∣
∣
u∗

)
E[(xT − lT )]

∣
∣
u†

}

≤
{
ωE[(xT − lT )2]

∣
∣
u∗ −

(
1 + 2ωE[xT − lT ]

∣
∣
u∗

)
E[(xT − lT )]

∣
∣
u∗

}
. (5)

Notice that ν2 is a convex function with respect to ν, which implies that the following inequality
holds true:

(
E[xT − lT ]

∣
∣
u†

)2

−
(
E[xT − lT ]

∣
∣
u∗

)2

≥ 2E[xT − lT ]
∣
∣
u∗ ×

(
E[xT − lT ]

∣
∣
u† − E[xT − lT ]

∣
∣
u∗

)
. (6)

Combining the inequality (6) with (5) yields

{
ω
(
E[(xT − lT )2]

∣
∣
u∗ −

(
E[xT − lT ]

∣
∣
u∗

)2)
− E[xT − lT ]

∣
∣
u∗

}

≥
{
ω
(
E[(xT − lT )2]

∣
∣
u† −

(
E[xT − lT ]

∣
∣
u†

)2)
− E[xT − lT ]

∣
∣
u†

}
,

which contradicts the assumption that u∗ is the optimal solution of the problem (P). This
completes the proof.

The implication of Lemma 3.1 is that the solution set for the problem (P) is a subset of the
solution set for the problem (P(λ)). This allows us to transform the intractable primal problem
(P) into a tractable auxiliary problem (P(λ)) by utilizing a quadratic utility function.

The following lemma presents a necessary condition under which a solution of Π (P(λ))
represents an optimal multi-period portfolio policy of (P).

‖This lemma is similar to Theorem 1 of Li and Ng[2].



2520 WU XIANPING · WU WEIPING · LIN YU

Lemma 3.2 If u∗ ∈ Π (P(λ∗)), a necessary condition for u∗ ∈ Π (P) is

λ∗ = 1 + 2ωE[xT − lT ]
∣∣
u∗ . (7)

Proof Clearly, the solution set (P(λ)) can be parameterized by λ. That implies that each
point within the set

⋃
λ Π (P(λ)) can be expressed with respect to λ as

{
E

[(
xT−lT

)2(λ)
]
,E

[(
xT−

lT
)
(λ)

]}
. Therefore, considering that Π (P) ⊆ Π (P(λ)), we can reformulate the problem (P)

into the following equivalent representation:

min
λ

ω
(
Var

[(
xT − lT

)
(λ)

])
−

(
E

[(
xT − lT

)
(λ)

])

= min
λ

ωE

[(
xT − lT

)2(λ)
]
−

(
ωE

2
[(
xT − lT

)
(λ)

]
+ E

[(
xT − lT

)
(λ)

])
.

The first-order necessary optimality condition for the optimal λ∗ is given as follows∗∗:

ω
∂E

[(
xT − lT

)2(λ∗)
]

∂λ
−

[
1 + 2ωE[xT − lT ]

∣
∣
u∗

]∂E

[(
xT − lT

)
(λ∗)

]

∂λ
= 0. (8)

On the other hand, when u∗ ∈ Π (P(λ∗)), the following result is derived from Reid and
Citron[30]:

ω
∂E

[(
xT − lT

)2(λ∗)
]

∂λ
− λ∗

∂E

[(
xT − lT

)
(λ∗)

]

∂λ
= 0.

From the above analysis, it is not hard to obtain that λ∗ = 1+2ωE[xT −lT ]
∣
∣
u∗ , which completes

the proof.
The proof of Lemma 3.2 is similar to that of Theorem 2 in [2]. Before presenting the main

results, we define the following random variables for t = T − 1, · · · , 0:

Qt =
1

1TE
−1
t [Qt+1eteT

t ]1
,

Rt = Et[Rt+1p
2
t ] − Et[mt+1e

T
t pt]E−1

t [Qt+1ete
T
t ]Et[mt+1etpt]

+

(
1T

E
−1
t [Qt+1ete

T
t ]Et[mt+1etpt]

)2

1TE
−1
t [Qt+1eteT

t ]1
,

mt =
1T

E
−1
t [Qt+1ete

T
t ]Et[mt+1etpt]

1TE
−1
t [Qt+1eteT

t ]1
,

qt =
1T

E
−1
t [Qt+1ete

T
t ]Et[qt+1et]

1TE
−1
t [Qt+1eteT

t ]1
,

ht = Et[ht+1pt] − Et[mt+1e
T
t pt]E−1

t [Qt+1ete
T
t ]Et[qt+1et]

(9)

∗∗This condition is a necessary condition since the λ that satisfies the condition (8) may not necessarily be

the optimal value but could represent an extreme point.
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+
1T

E
−1
t [Qt+1ete

T
t ]Et[mt+1etpt]1T

E
−1
t [Qt+1ete

T
t ]Et[qt+1et]

1TE
−1
t [Qt+1eteT

t ]1
,

ct = Et[ct+1] −
(
1T

E
−1
t [Qt+1ete

T
t ]Et[qt+1et]

)2

1TE
−1
t [Qt+1eteT

t ]1
+ Et[qt+1e

T
t ]E−1

t [Qt+1ete
T
t ]Et[qt+1et],

with QT = 1, RT = 1, mT = −1, qT = 1, hT = −1 and cT = 0. Note that this random variables
can be characterized once the stochastic process of et and pt is specified. The following lemma
is useful in the proof of the main theorem.

Lemma 3.3 For any t = 0, 1, · · · , T − 1, we have Et[Qt+1ete
T
t ] � 0 and 0 < ct < 1.

Please refer to Appendix A.1 for a more detailed proof of this lemma, which is similar to
that of Lemma 3 in [18]. Next, we present the optimal portfolio policy of the problem (P(λ)).

Theorem 3.4 The optimal portfolio policy of the problem (P(λ)) is

u∗
t = E

−1
t [Qt+1ete

T
t ]

(
λ

2ω

(
Et[qt+1et] − qt1

)
+Qtxt1 + lt

(
mt1− Et[mt+1ptet]

))
, (10)

for t = 0, · · · , T − 1.

Proof We solve the problem (P(λ)) by approach of dynamic programming. At any time t,
the value function is defined as

Jt(xt, lt) := min
{uk}T−1

k=t

E

[
ω(xT − lT )2 − λ(xT − lT )

∣∣Ft

]
.

From Bellman’s principle of optimality principle, we have the following recursion

Jt(xt, lt) = min
ut

E

[
Jt+1(xt+1, lt+1)

∣∣Ft

]
,

where the terminal condition is JT (xT , lT ) = ω(xT − lT )2 − λ(xT − lT ). Claim that the value
function is in the following form

Jt(xt, lt) = ω
(
Qtx

2
t +Rtl

2
t + 2mtxtlt

) − λqtxt − λhtlt − λ2

4ω
ct, (11)

for t = 0, · · · , T . Obviously, when t = T , the claim (11) is true. Assume that the claim (11) is
true at stage t + 1. Now we check it is also right at stage t. Introducing a lagrange multiplier
φt for the constraint (2) gives the lagrange function

L(ut, φt) =E

[
ω
(
Qt+1x

2
t+1 +Rt+1l

2
t+1 + 2mt+1xt+1lt+1

)

− λ
(
qt+1xt+1 + ht+1lt+1

) − λ2

4ω
ct+1

∣∣Ft

]
+ λφt(xt − 1Tut)

=ω
(
uT

t Et[Qt+1ete
T
t ]ut + Et[Rt+1p

2
t ]l

2
t + 2Et[mt+1e

T
t pt]ltut

)

− λ
(
Et[qt+1e

T
t ]ut + Et[ht+1pt]lt

) − λ2

4ω
Et[ct+1] + λφt(xt − 1Tut). (12)
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Lemma 3.3 implies that L(ut, φt) defined in (12) is a strictly convex function with respect to
ut. Thus, we have

u∗
t = argmin

ut

L(ut, φt) = −E
−1
t [Qt+1ete

T
t ]

(
Et[mt+1etpt]lt − λ

2ω
(
Et[qt+1et] + φt1

)
)
. (13)

Substituting u∗
t to (12) yields the optimal lagrange multiplier

φ∗t =
1T

E
−1
t [Qt+1ete

T
t ]

(
2ω
λ Et[mt+1etpt]lt − Et[qt+1et]

)
+ 2ω

λ xt

1TE
−1
t [Qt+1eteT

t ]1
.

Then the result (10) as well as the expression (11) of the value function Jt(xt, lt) can be derived,
where parameters Qt, Rt, mt, qt, ht and ct are defined in (9).

Theorem 3.5 Under the optimal policy u∗
t of (P(λ)), the following expressions hold on

for the terminal net wealth xT − lT :

Et[x∗T − l∗T ] = qtxt + htlt +
λ

2ω
ct, (14)

Et[(x∗T − l∗T )2] = Qtx
2
t +Rtl

2
t + 2mtxtlt +

λ2

4ω2
ct, (15)

Vart[x∗T − l∗T ] = (Qt − q2t )x2
t + (Rt − h2

t )l
2
t + 2(mt − qtht)xtlt

− λ

ω
(qtxtct + htltct) − λ2

4ω2
(c2t − ct). (16)

We use induction method to prove the formulations (14) and (15). The equation (16) is
then derived easily by them. The proof is simple but long. Please see Appendix A.2.

Theorem 3.6 The policy (10) solves the primary problem (P) with λ being

λ∗ =
1 + 2ω(q0x0 + h0l0)

1 − c0
, (17)

and the optimal mean-variance pair of the terminal net wealth xT − lT are given by

E[x∗T − l∗T ] =
q0x0 + h0l0

1 − c0
+

c0
2ω(1 − c0)

, (18)

Var[x∗T − l∗T ]=
(
Q0− q20

1−c0

)
x2

0+
(
R0 − h2

0

1−c0

)
l20+2

(
m0− q0h0

1−c0

)
x0l0+

c0
4ω2(1−c0) . (19)

Moreover, the MV efficient frontier of net wealth is
(

E[x∗T − l∗T ] − q0x0 + h0l0
1 − c0

)2

=
c0

1 − c0

(
Var[x∗T − l∗T ] −

(
Q0 − q20

1 − c0

)
x2

0

−
(
R0 − h2

0

1 − c0

)
l20 − 2

(
m0 − q0h0

1 − c0

)
x0l0

)
. (20)

Proof At t = 0, we have

λ∗ = 1 + 2ω(q0x0 + h0l0) + λ∗c0



MULTI-PERIOD MVAL PORTFOLIO MANAGEMENT WITH CORRELATION 2523

by substituting (14) into (7), which further gives the expression (17). Then the rest results of
the theorem can be easily derived by Theorem 3.5. Note that the efficient frontier (20) is well
defined due to 0 < c0 < 1 in Lemma 3.3.

Theorem 3.6 suggests the correlation information of realized random returns before time t
has a significant impact on the value of the stochastic parameters Qt, Rt, mt, qt, ht, ct, which
further affects u∗

t . This implies that, even if the initial boundary conditions are the same, the
portfolio strategy and MV efficient frontier can still be different due to the different correlation
structures of random returns.

Generally speaking, once the stochastic processes of {et}|T−1
t=0 and {pt}|T−1

t=0 are specified,
we can employ some numerical methods for the systems of (9) to compute u∗

t . Note that if
the sequences {et}|T−1

t=0 and {pt}|T−1
t=0 are statistically independent over time, all the conditional

expectations in (9) would become the unconditional expectations, resulting in deterministic
parameters. However, if {et}|T−1

t=0 and {pt}|T−1
t=0 exhibit serial correlation over time, all the

conditional expectations Et[·] become dependent on the filtration Ft. In other words, all pa-
rameters Qt, Rt, mt, qt, ht, ct become random variables. In such cases, numerical methods are
typically necessary to discretize the sample space and solve the systems of (9) for each sample
path.

We then turn to consider the special case that the problem without the general correlation
structure. Assume that all the random returns et and pt are uncorrelated, i.e., et and pt are
statistically independent and serially independent over time. Under this case, the conditional
expectation Et[·] reduces to unconditional expectation E[·]. This implies that,

Et[Qt+1ete
T
t ] = Qt+1E[ete

T
t ], Et[qt+1et] = qt+1E[et], Et[Rt+1p

2
t ] = Rt+1E[p2

t ],

Et[mt+1e
T
t pt] = mt+1E[pt]E[eT

t ], Et[ht+1pt] = ht+1E[pt],

for all t = 0, 1, · · · , T − 1. Furthermore, the stochastic processes defined in (9) become deter-
ministic for t = 0, 1, · · · , T − 1,

Qt =
T−1∏

k=t

Q̂k, mt = −Qt

( T−1∏

k=t

m̂k

)
, qt = Qt

( T−1∏

k=t

q̂k

)
,

Rt = Rt+1E[p2
t ] −

m2
t+1

Qt+1
E[eT

t ]E−1[ete
T
t ]E[et]E[p2

t ] +
m2

t

Qt
, (21)

ht = ht+1E[pt] − mt+1qt+1

Qt+1
E[eT

t ]E−1[ete
T
t ]E[et]E[pt] +

mtqt
Qt

,

ct = ct+1 +
q2t+1

Qt+1
E[eT

t ]E−1[ete
T
t ]E[et] − q2t

Qt
,

with Q̂t � 1/1T
E
−1[ete

T
t ]1, m̂t � 1T

E
−1[ete

T
t ]E[et]E[pt], q̂t � 1T

E
−1[ete

T
t ]E[et]. By combin-

ing (10), (17), (20), and (21), we can easily obtain the optimal investment policies and MV
efficient frontier for the problem (P) with independent random returns.
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3.2 The Solution for Problem (Pf )

To solve the problem (Pf ), in which the risk-free asset is included, we define the following
random variables ρt, ηt, and ζt as follows:

ρt = Et[ρt+1] − Et[ρt+1d
T
t ]E−1

t [ρt+1dtd
T
t ]Et[ρt+1dt], (22)

ηt = Et[ptηt+1] − Et[ρt+1d
T
t ]E−1

t [ρt+1dtd
T
t ]Et[ptηt+1dt], (23)

ζt = Et[p2
t ζt+1] − Et[ptηt+1d

T
t ]E−1

t [ρt+1dtd
T
t ]Et[ptηt+1dt], (24)

for t = T − 1, · · · , 0 with ρT = 1, ηT = −1, ζT = 1. Define further the discount factor as
γt :=

∏T−1
k=t rk with γT = 1. Then the process ρt has the following property.

Lemma 3.7 For all t = T − 1, · · · , 0, it has 0 < ρt < 1 almost surely.

The proof of Lemma 3.7 is omitted here since Lemma 3.7 is just a special case of Lemma 1
in [17] with s = T .

Theorem 3.8 The optimal portfolio policy for problem (Pf ) is

u∗
t =−Et[ρt+1dtd

T
t ]−1

[(
rtxt−

t∏

k=0

rkx0− 1+2ωη0l0
2ωρ0γt+1

)
Et[ρt+1dt]+

1
γt+1

Et[ptηt+1dt]
]
, (25)

with the MV efficient frontier of the net wealth being
(

E[x∗T − l∗T ] − γ0x0 − η0l0
ρ0

)2

=
1 − ρ0

ρ0

(
Var[x∗T − l∗T ] −

(
ζ0 − η2

0

ρ0

)
l20

)
. (26)

The similar result as the equation (20) has been reported by Zhang and Li[20], where the
dynamic programming approach is adopted. However, as we have claimed, the problem (Pf )
is a special case of the problem (P) if we regard one risky asset to be risk-free. Let êt ∈ R

n+1

be the augmented return vector, i.e., êt =
(
rt, e

T
t

)T, for t = 0, · · · , T − 1. Due to the special
structure of êt, we can consider a problem (P) whose portfolio decision vector is dimension
n+1, where the first one is for the risk-free asset and the remained n elements are for the risky
assets. Then, the random variables Qt, Rt, mt, qt, ht and ct defined in (9) can be simplified as

Qt = γ2
t ρt, Rt = ζt, mt = γtηt, qt = γtρt, ht = ηt, ct = 1 − ρt, (27)

where ρt, ηt, and ζt are defined in (22), (23), and (24). We can easily verify the equation (27)
hold by using induction method, and details are shown in Appendix A.3. Thus, the optimal
portfolio policy (25) can be achieved by rewriting the portfolio policy given in Theorem 3.6 and
using the random variables ρt, ηt and ζt, t = 0, · · · , T − 1. Note that the efficient frontier (26)
is well defined due to Lemma 3.7.

When all random returns et and pt are uncorrelated, we can rewrite (22), (23), and (24) as

ρt = ρt+1

(
1 − E[dT

t ]E−1[dtd
T
t ]E[dt]

)
,

ηt = ηt+1

(
E[pt] − E[dT

t ]E−1[dtd
T
t ]E[dt]E[pt]

)
, (28)

ζt = ζt+1E[p2
t ] −

η2
t+1

ρt+1
E[p2

t ]E[dT
t ]E−1[dtd

T
t ]E[dt].
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Note that ρt, ηt and ζt are all deterministic variables for t = 0, 1, · · · , T − 1. The following
corollary sheds light on the optimal investment policy and MV efficient frontier in the absence
of the correlation structure among random returns.

Corollary 3.9 Under the assumption of independent random returns, the optimal port-
folio strategy becomes

u∗
t = −E[dtd

T
t ]−1

[(
rtxt −

t∏

k=0

rkx0 − 1 + 2ωη0l0
2ωρ0γt+1

)
E[dt] +

ηt+1

ρt+1γt+1
E[pt]E[dt]

]
, (29)

where t = 0, 1, · · · , T − 1. In addition, the MV efficient frontier can be expressed as (26) when
ρt, ηt, and ζt follow the deterministic processes (28).

The results given in Corollary 3.9 are consistent with those presented by Leippold, et al.[10].

3.3 Extension to a Market Model with No-Shorting Constraints

Inspired by certain markets with no-shorting constraints, we are also interested in the multi-
period MVAL problem with shorting prohibition and general correlation. That is to say, we
consider the following feasible portfolio set

Ut :=
{
ut ∈ R

n
∣∣ut ≥ 0n×1

}
, t = 0, · · · , T − 1, (30)

which gives rise to the following optimization problem

(P ′) : min
ut

ωVar[xT − lT ] − E[xT − lT ]

s.t. {xt, lt,ut} satisfies the dynamics (1), (2), (3) and (30), t = 0, · · · , T − 1

and

(P ′
f ) : min

ut

ωVar[xT − lT ] − E[xT − lT ]

s.t. {xt, lt,ut} satisfies the dynamics (3), (4) and (30), t = 0, · · · , T − 1.

It should be noted that (P) and (Pf ) are unconstrained optimization problems, whereas the
problems (P ′) and (P ′

f ) involve constraints. This fundamental distinction requires us to ap-
proach these models in different ways.

Wu, et al.[6] proposed an interesting state separation theorem and successfully derive the
explicit solution for the constrained scalar-state stochastic linear-quadratic control problem.
However, it is quite difficult to obtain the analytic optimal portfolio policy for our constrained
MVAL problem since there are two state variables xt and lt in the model (see, e.g., [6]). To
overcome this difficulty, we need to introduce an alternative method to identify the optimal
portfolio policy for our constrained MVAL problem. In order to achieve this objective, we may
have to turn to follow the approach of “Progressive Hedging Algorithm”, which was developed
by [31] and adopted by [32]. Roughly speaking, Dynamic programming (DP) is an algorithm
that is based on time decomposition, while the progressive hedging algorithm (PHA) proposed
by [31] is a scenario decomposition-based scheme. PHA was developed specifically to solve
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multistage stochastic decision-making problems with finite number of scenarios. Undoubtedly,
this is a subject that deserves further investigation. In our future research, we intend to delve
more deeply into this issue.

4 An Illustrative Example

We consider a simple example with n = 2 and T = 4 to illustrate the solution procedure
developed in previous sections and show how the investment performance is affected by the
correlation of stocks and liability. Assume that the investor invests in a market where short
selling is permitted, and let x0 = 2, l0 = 1, ω = 2. Suppose et and pt follow a joined AR(1)
process as follows

(eT
t+1, pt+1)T = Γ + Ψ(eT

t , pt)T + εt, (31)

with Ψ= Φ �
(

αA γC

γCT 0.02

)
and initial value e−1 = (1.07, 1.05)T, p−1 = 1.1. Other pa-

rameters associated with the AR(1) process are A=
(

1.8 −0.6
−0.6 3.6

)×10−3, C=(1.6,−1.2)T×10−2,
Γ = (1.05, 1.05, 1.07)T, and εt ∈ R

3 is a white noise vector. Note that, the parameter α controls
the correlation of et between different time periods and the parameter γ controls the correlation
between et and pt. To simplify the discussion, we choose εt normal distributed with variance
0.09 and randomly generate 8 values (8 nodes) in interval (−0.5, 0.5) at time t = 0. The tree
structure then will have 4096 branches in T = 4. By using Theorems 3.4 and 3.6, we can
express all the random variables, Qt, Rt, mt, qt, ht and ct and compute the portfolio policy for
each node of the scenario tree explicitly. From the equation (20), we can plot the MV efficient
frontier of the net wealth xT − lT , which is affected by different parameters α, γ, the investment
horizon T and the exist of risk-free asset††.

4.1 The Impact of α

We present the MV efficient frontiers with different α when γ = 0 and γ 	= 0 in Figure 1.
It can be seen that for fixed γ, the efficient frontier generated from larger α dominates the one
generated from smaller α whenever γ = 0 or γ 	= 0. That means the performance of dynamic
MVAL policy is enhanced if the correlation of the returns between different stage is strong,
i.e., the statistics has more predict power. Furthermore, the differences of each α when there
is correlation between et and pt are bigger than that of no correlation.

4.2 The Impact of γ

One of the contribution of our paper is that the correlation between et and pt is considered.
We plot the MV efficient frontiers with different γ by fixing α = 1 in Figure 2. It can be seen that
the efficient frontier of γ = 0 is worst. And the larger the |γ|, the better the efficient frontier.
In addition, for the same |γ|, the efficient frontiers when et and pt are negative correlated are
better than that of positive correlated, which coincides with the real market.

††Based on the equations (10) and (20), it can be observed that the parameter ω solely influences the portfolio

strategy and has no influence on the efficient frontier.
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Figure 1 The efficient frontiers of different α

for the problem (P)

0.4 0.45 0.5 0.55 0.6 0.65 0.7
1.2

1.4

1.6

1.8

2

2.2

2.4

Var

Figure 2 The efficient frontiers of different γ

for the problem (P)

4.3 The Impact of Risk-Free Asset

Figure 3 plots the efficient frontiers when one risk-free asset is included, in which the risk-
free rate is 1%. We can observe that for the same parameters α and γ, to gain the same
expection for the problem (P) as (Pf ) takes higher risk for the price. Furthermore, the gap of
the efficient frontiers generated from the problems (Pf ) and (P), respectively, is enhanced when
α is increased. Furthermore, we investigate the influences of the risk-free rate and investment
horizon on the problem (Pf ). Figure 4 plots the efficient frontiers with different rf and T for
the problem (Pf ) when α = γ = 1. From Figure 4, we can easily see that the longer investment
horizon outperforms its corresponding shorter horizon. On the other hand, the movement of the
efficient frontier is opposite to that of the risk-free rate. This further implies that our investment
strategy can yield superior performance in a market environment with lower risk-free returns.
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Figure 3 The efficient frontiers for the prob-

lems (P) and (Pf )
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Figure 4 The efficient frontiers of different rf

and T for the problem (Pf )
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4.4 The Impact of Correlation and Investment Horizon

Let us begin by examining the effect of correlation. For simplicity, we will focus on the
different processes given by (31) with Ψ = ψΦ, and suppose that α = 1 and γ = 2 without
loss of generality. Note that, the parameter ψ measures the degree of correlation between risky
assets and liability. Actually, the AR(1) processes with ψ = 0 would become simple processes
which suggest that all random returns are statistically independent,

(eT
t+1, pt+1)T = Γ + εt. (32)

Figure 5 illustrates the efficient frontiers with differing values of ψ. Notably, the efficient
frontiers obtained for various correlation degrees outperform those generated by random returns
that are statistically independent. Moreover, the larger the |ψ|, the better the efficient frontier.
It’s worth noting that negative correlation can lead to better investment performance compared
to positive correlation.

Clearly, the efficient frontier would be influenced by the investment horizon T as it impacts
the values of parameters Qt, Rt, mt, qt, ht, and ct. Figure 6 illustrates the efficient frontiers for
different investment horizons T , under both correlated and statistically independent scenarios.
The findings suggest that as the investment horizon increases, the (P) model’s performance im-
proves. In addition, we also see that investors can achieve considerable investment performance
within a relatively short investment horizon when the market displays asset return correlation.
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Figure 5 The efficient frontiers of different ψ

for the problem (P)
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Figure 6 The efficient frontiers of different T

for the problem (P)

5 Conclusion

In this paper, we study the multi-period MVAL problem in which returns of the assets and
liability have general correlations. Without assuming any particular stochastic process of the
random returns, we derive the portfolio policy, MV efficient frontier and the impact of general
correlation for this problem. Although the explicit solution is developed for our general MVAL
model, the practical implementation of this model is far from trivial. Calibrating our model in
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real-life ALM practice by using the real market data for some particular stochastic process of
the random returns could be an interesting future research topic.
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Appendix

A.1 The Proof of Lemma 3.3

Before giving the details, we introduce the following lemma.

Lemma A.1 Given a > 0, h,v ∈ R
n, and H ∈ §n

++ is invertible. If H − hhT � 0 and
1 − vTH−1h 	= 0, then we have

hTH−1h = 1 − 1
hT(H − hhT)−1h

, (33)

(H − hvT)−1 = H−1 +
H−1hvTH−1

1 − vTH−1h
, (34)

and
⎡

⎣ a2 ahT

ah H

⎤

⎦

−1

=

⎡

⎣ 1 − 1
ahT

0 I

⎤

⎦

⎡

⎣
1
a2 0

0 (H − hhT)−1

⎤

⎦

⎡

⎣ 1 0

− 1
ah I

⎤

⎦ , (35)

where I and 0 denote the identity matrix and the zero matrix, respectively.

Proof The proof of lemma A.1 can be found in [33].
Now we focus on proving Lemma 3.3. Note that, Assumption 2.1 also indicates that Et[ete

T
t ]

are positive definite for all t = 0, 1, · · · , T − 1. Thus, it has ET−1[QT eT−1e
T
T−1] � 0 that holds

true since QT = 1, which further implies QT−1 > 0 (see the definition of QT−1 given in (9)).
Now we assume that Qt+1 > 0 holds. At time t, we have Et[Qt+1ete

T
t ] � 0, which yields Qt > 0.

From the above analysis, it is not hard to obtain Et[Qt+1ete
T
t ] � 0 for t = 0, 1, · · · , T − 1.

Then we need to prove that 0 < ct < 1 holds for all t = 0, 1, · · · , T − 1. To simplify the
notations, we introduce two new symbols, namely, Gt � Et[Qt+1ete

T
t ] and Wt � Et[qt+1et],

which allow us to rewrite Qt, qt, ct as follows

Qt =
1

1TG−1
t 1

, qt =
1TG−1

t Wt

1TG−1
t 1

, ct = Et[ct+1] − q2t
Qt

+ W T
t G−1

t Wt, (36)

for t = 0, 1, · · · , T − 1. As Gt � 0 for t = 0, 1, · · · , T − 1, it follows that gTG−1
t g > 0 for any

non-zero vector g ∈ R
n. Therefore, the following inequality holds

(W T
t G−1

t Wt)(1TG−1
t 1)

[
W T

t G−1
t Wt − q2t

Qt

]

=W T
t G−1

t Wt

[
(W T

t G−1
t Wt)(1TG−1

t 1) − (1TG−1
t Wt)2

]

=
[
(1TG−1

t Wt)Wt − (W T
t G−1

t Wt)1
]T

G−1
t

[
(1TG−1

t Wt)Wt − (W T
t G−1

t Wt)1
]
> 0,

where t = 0, 1, · · · , T − 1. Thus, we can obtain the following inequality since W T
t G−1

t Wt > 0
and 1TG−1

t 1 > 0,

W T
t G−1

t Wt − q2t
Qt

> 0, t = 0, 1, · · · , T − 1. (37)
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By using the results (36) and (37), we can easily obtain cT−1 > 0 since cT = 0. On the
other hand, the result (33) implies the following result holds true

W T
T−1G

−1
T−1WT−1 = 1 − 1

W T
T−1(GT−1 − WT−1W T

T−1)−1WT−1
.

Note that GT−1 −WT−1W
T
T−1 = ET−1[eT−1e

T
T−1]−ET−1[eT−1]ET−1[eT

T−1] � 0. Thus, it has

1 − cT−1 = 1 +
q2T−1

QT−1
−

[
1 − 1

W T
T−1(GT−1 − WT−1W T

T−1)−1WT−1

]
>

q2T−1

QT−1
> 0,

which further implies cT−1 < 1.

Now, we suppose that the inequality 1 > 1− ct+1 >
q2

t+1
Qt+1

> 0 holds at time t+1, which also
means that 0 < ct+1 < 1. Clearly, ct > 0 holds due to (36) and (37), which implies 1 − ct < 1.
Next, we need to prove that 1 − ct >

q2
t

Qt
. Note that Qt+1 > 0 and Y (z) = Qt+1z

2 + 2qt+1z is
a quadratic function, we can derive

Qt+1(gTet)(gTet) + 2qt+1(gTet) + (1 − ct+1) ≥ 1 − ct+1 −
q2t+1

Qt+1
> 0,

for any g ∈ R
n. Taking conditional expectation with respect to Ft yields

gTGtg + 2gTWt + 1 − Et[ct+1] > 0, ∀ g ∈ R
n,

which further means that
⎡

⎣ Gt Wt

W T
t 1 − Et[ct+1]

⎤

⎦ � 0. (38)

Since 1 − Et[ct+1] > 0, we can apply Schur’s Complement Theorem (see, e.g., [33]) to (38) and
gives rise to Gt − WtW T

t

1−Et[ct+1]
� 0. This also implies

Gt

(
1 − Et[ct+1]

) − WtW
T
t � 0.

Note that Gt(1 − Et[ct+1]) � 0 and using (33), we have

1 − ct = 1 − Et[ct+1] − W T
t G−1

t Wt +
q2t
Qt

=
(
1 − Et[ct+1]

)[
1 − W T

t

(
Gt

(
1 − Et[ct+1]

))−1

Wt

]
+
q2t
Qt

=
1 − Et[ct+1]

W T
t

[
Gt

(
1 − Et[ct+1]

) − WtW T
t

]−1

Wt

+
q2t
Qt

>
q2t
Qt

> 0,

which further implies ct < 1, and thus the proof is completed.
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A.2 The Proof of Theorem 3.5

Proof We use induction method to prove the formulations (14) and (15). Obviously, (14)
and (15) are true at time T . Suppose that (14) is true at time t+ 1, then we have

Et[x∗T − l∗T ] = Et

[
Et+1[x∗T − l∗T ]

]
= Et[qt+1e

T
t ]ut + Et[ht+1pt]lt +

λ

2ω
Et[ct+1].

Substituting (10) into the above equation and by (9) we can derive

Et[x∗T − l∗T ]

=Et[qt+1e
T
t ]E−1

t [Qt+1ete
T
t ]

(
λ

2ω

(
Et[qt+1et] − qt1

)
+Qtxt1 + lt

(
mt1− Et[mt+1ptet]

))

+ Et[ht+1pt]lt +
λ

2ω
Et[ct+1]

=qtxt + htlt +
λ

2ω
ct.

Similarly, for (15), we assume it holds true at time t+ 1, then we have

Et[(x∗T − l∗T )2]

=Et

[
Et+1[(x∗T − l∗T )2]

]

=Et

[
Qt+1x

2
t+1 +Rt+1l

2
t+1 + 2mt+1xt+1lt+1 +

λ2

4ω2
ct+1

]

=uT
t Et[Qt+1ete

T
t ]ut + Et[Rt+1p

2
t ]l

2
t + 2Et[mt+1pte

T
t ]utlt +

λ2

4ω2
Et[ct+1].

By using (9) and (10) we can derive

Et[(x∗T − l∗T )2]

=
(
λ

2ω

(
Et[qt+1et] − qt1

)
+Qtxt1 + lt

(
mt1 − Et[mt+1ptet]

))T

E
−1
t [Qt+1ete

T
t ]

×
(
λ

2ω

(
Et[qt+1et] − qt1

)
+Qtxt1 + lt

(
mt1− Et[mt+1ptet]

))
+ Et[Rt+1p

2
t ]l

2
t

+ 2Et[mt+1pte
T
t ]E−1

t [Qt+1ete
T
t ]

(
λ

2ω

(
Et[qt+1et] − qt1

)
+Qtxt1

+ lt

(
mt1− Et[mt+1ptet]

))
lt +

λ2

4ω2
Et[ct+1]

=
1

1TE
−1
t [Qt+1eteT

t ]1
x2

t +
(

Et[Rt+1p
2
t ] − Et[mt+1e

T
t pt]E−1

t [Qt+1ete
T
t ]Et[mt+1etpt]

+

(
1T

E
−1
t [Qt+1ete

T
t ]Et[mt+1etpt]

)2

1TE
−1
t [Qt+1eteT

t ]1

)
l2t + 2

1T
E
−1
t [Qt+1ete

T
t ]Et[mt+1etpt]

1TE
−1
t [Qt+1eteT

t ]1
xtlt

+
λ2

4ω2

(
Et[ct+1] −

(
1T

E
−1
t [Qt+1ete

T
t ]Et[qt+1et]

)2

1TE
−1
t [Qt+1eteT

t ]1
+ Et[qt+1e

T
t ]E−1

t [Qt+1ete
T
t ]Et[qt+1et]

)

=Qtx
2
t +Rtl

2
t + 2mtxtlt +

λ2

4ω2
ct.
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The equation (16) can be derived easily by substituting (14) and (15) into

Vart[x∗T − l∗T ] = Et[(x∗T − l∗T )2] − (
Et[x∗T − l∗T ]

)2
.

The proof is completed.

A.3 The Proof of Verifying Equation (27)

To simplify the expression, define

Bt = Et[ρt+1d
T
t ]E−1

t [ρt+1dtd
T
t ]Et[ρt+1dt],

B̂t = Et[ρt+1d
T
t ]E−1

t [ρt+1dtd
T
t ]Et[ptηt+1dt],

B̃t = Et[ptηt+1d
T
t ]E−1

t [ρt+1dtd
T
t ]Et[ptηt+1dt],

then

ρt = Et[ρt+1] −Bt, ηt = Et[ptηt+1] − B̂t, ζt = Et[p2
t ζt+1] − B̃t.

Now we can verify the equation (27) is true. Obviously, when t = T , the claim (27) holds.
Assume that the equation (27) is true at stage t + 1. Then, using the equation (35), we can
easily obtain

E
−1
t [Qt+1êtê

T
t ] =

1
γ2

t+1

⎡

⎣ r2t α̂t rtb
T
t

rtbt Ht

⎤

⎦

−1

=
1

γ2
t+1

⎡

⎣ 1 − 1
rtα̂t

bT
t

0 I

⎤

⎦

⎡

⎣
1

r2
t α̂t

0

0 α̂t

(
α̂tHt − btb

T
t

)−1

⎤

⎦

⎡

⎣ 1 0

− 1
rtα̂t

bt I

⎤

⎦

and

(1 1T)E−1
t [Qt+1ete

T
t ](1 1T)T =

1
γ2

t α̂t
+

1
γ2

t α̂t
(bt − rtα̂t1)T(α̂tHt − btb

T
t )−1(bt − rtα̂t1),

where α̂t = Et[ρt+1], bt = Et[ρt+1et], and Ht = Et[ρt+1ete
T
t ]. Note that

Et[ρt+1dt] = bt − rtα̂t1, α̂tHt − btb
T
t = α̂tEt[ρt+1dtd

T
t ] − Et[ρt+1dt]Et[ρt+1d

T
t ].

And according to (9) and (34), we have

Qt = 1/
(
(1 1T)E−1

t [Qt+1êtê
T
t ](1 1T)T

)

=
γ2

t α̂t

1 + Et[ρt+1dT
t ]

(
α̂tEt[ρt+1dtdT

t ] − Et[ρt+1dt]Et[ρt+1dT
t ]

)−1
Et[ρt+1dt]

= γ2
t (α̂t −Bt)

= γ2
t ρt.
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Using (35) again, we have

(1 1T)E−1
t [Qt+1êtê

T
t ]Et[qt+1êt] = (1 1T)E−1

t [Qt+1êtê
T
t ](α̂tγt γt+1b

T
t )T =

1
γt
,

(1 1T)E−1
t [Qt+1êtê

T
t ]Et[mt+1ptêt] = (1 1T)E−1

t [Qt+1êtê
T
t ](βtγt γt+1D

T
t )T

=
βt

γtα̂t
+

βt

γtα̂t
(bt − rtα̂t1)T(α̂tHt − btb

T
t )−1

(
bt − α̂t

βt
Dt

)
,

Et[mt+1ptê
T
t ]E−1

t [Qt+1êtê
T
t ]Et[qt+1êt] = (βtγt γt+1D

T
t )E−1

t [Qt+1êtê
T
t ](α̂tγt γt+1b

T
t )T = βt,

Et[mt+1ptê
T
t ]E−1

t [Qt+1êtê
T
t ]Et[mt+1ptêt] = (βtγt γt+1D

T
t )E−1

t [Qt+1êtê
T
t ](βtγt γt+1D

T
t )T

=
β2

t

α̂t
+
β2

t

α̂t

(
Bt

α̂t −Bt

)
− 2βt

(
B̂t

α̂t −Bt

)
+
α̂tB̃t − B̃tBt + B̂2

t

α̂t −Bt

=
η2

t

ρt
+ B̃t,

Et[qt+1ê
T
t ]E−1

t [Qt+1êtê
T
t ]Et[qt+1êt] = (α̂tγt γt+1b

T
t )E−1

t [Qt+1êtê
T
t ](α̂tγt γt+1b

T
t )T = α̂t,

with βt = Et[ηt+1pt], Dt = Et[ηt+1ptet]. Note that

bt − α̂t

βt
Dt =

(
Et[ρt+1et] − α̂trt1

) − α̂t

(
Dt − βtrt1

βt

)
= Et[ρt+1dt] − α̂t

βt
Et[ηt+1ptdt].

And combining (9) with (34), we have

qt =
(1 1T)E−1

t [Qt+1êtê
T
t ]Et[qt+1êt]

(1 1T)E−1
t [Qt+1êtêTt ](1 1T)T

= γtρt,

mt =
(1 1T)E−1

t [Qt+1êtê
T
t ]Et[mt+1ptêt]

(1 1T)E−1
t [Qt+1êtêTt ](1 1T)T

= γ2
t ρt

(
βt

γtα̂t
+

βt

γtα̂t

(
α̂t

α̂t −Bt
− 1

)
− 1
γt

(
B̂t

α̂t −Bt

))
= γtηt,

ht = E[ηt+1pt] − βt +
mtqt
Qt

= E[ηt+1pt] − βt + γtηt × γtρt

γ2
t ρt

= ηt,

Rt = Et[ζt+1p
2
t ] −

(
η2

t

ρt
+ B̃t

)
+
m2

t

Qt
= Et[ζt+1p

2
t ] −

(
η2

t

ρt
+ B̃t

)
+
η2

t

ρt
= ζt,

ct = Et[1 − ρt+1] − q2t
Qt

+ α̂t = 1 − Et[ρt+1] − ρt + α̂t = 1 − ρt.

Then the proof is completed.


