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Abstract Triangular decomposition with different properties has been used for various types of prob-

lem solving. In this paper, the concepts of pure chains and square-free pure triangular decomposition

(SFPTD) of zero-dimensional polynomial systems are defined. Because of its good properties, SFPTD

may be a key way to many problems related to zero-dimensional polynomial systems. Inspired by the

work of Wang (2016) and of Dong and Mou (2019), the authors propose an algorithm for computing

SFPTD based on Gröbner bases computation. The novelty of the algorithm is that the authors make

use of saturated ideals and separant to ensure that the zero sets of any two pure chains are disjoint

and every pure chain is square-free, respectively. On one hand, the authors prove the arithmetic com-

plexity of the new algorithm can be single exponential in the square of the number of variables, which

seems to be among the rare complexity analysis results for triangular-decomposition methods. On the

other hand, the authors show experimentally that, on a large number of examples in the literature, the

new algorithm is far more efficient than a popular triangular-decomposition method based on pseudo-

division, and the methods based on SFPTD for real solution isolation and for computing radicals of

zero-dimensional ideals are very efficient.

Keywords Gröbner basis, pure chain, square-free pure chain, triangular decomposition, zero-dimen-

sional polynomial system.

1 Introduction

Decomposing a polynomial system to finitely many triangular sets with corresponding zero
decomposition, called triangular decomposition of polynomial systems, is one of the fundamental
tools in computational ideal theory. Wu first proposed a triangular-decomposition algorithm for
computing characteristic sets in [1], which was applied to geometry theorem proving. Since then,
triangular decomposition methods have been applied successfully to not only geometry theorem
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proving but also lots of problems with diverse backgrounds, such as automated reasoning,
real solution isolation, real solution classification and computing the radical of a polynomial
ideal[1–13], to name a few. Different applications may require different types of triangular sets
and triangular decomposition with specific properties (see the book [14] for reference). In the
passed several decades, many specific triangular sets or triangular systems have been defined,
e.g., regular chains, normal chains and square-free triangular sets. And, lots of triangular-
decomposition algorithms have been proposed, see for example [4, 15–24]. Nevertheless, classical
triangular-decomposition algorithms are mainly based on factorization and pseudo-division and
are well known not so efficient on big examples. Another significant but somehow neglected
aspect is that, there are few results about the complexity of classical triangular-decomposition
algorithms.

The Gröbner basis method, first proposed by Buchberger in [25], has been extensively stud-
ied and applied to lots of research fields. It is well known that the complexity of computing
Gröbner bases can be double-exponential time in general case and single-exponential time for
zero-dimensional ideals[26, 27]. There are some famous algorithms for computing Gröbner bases
(see for example [28, 29]) and corresponding tools are available in some computer algebra sys-
tems, e.g., Maple, Mathematica and Magma.

Then, one may ask whether there exists a connection between triangular sets and Gröbner
bases and whether one can obtain triangular decomposition by Gröbner bases computation.
For zero-dimensional polynomial systems, Lazard’s work[30] and Möller’s work[31] solved the
problem, as Lazard gave different algorithms to obtain triangular sets from Gröbner bases
with respect to (w.r.t.) the lex ordering or other monomial orderings and Möller proposed a
triangular-decomposition algorithm by means of reduced Gröbner bases with respect to the lex
ordering (written as reduced LEX Gröbner bases). In general case, the problem was well solved
in Wang’s work[32] in 2016. The key concept is the W -characteristic set, which is a minimal
triangular set extracted from a reduced LEX Gröbner basis. Wang proved that if the variable
ordering condition is satisfied for a W -characteristic set, then the regularity and normality
of the W -characteristic set are equivalent. Later, Dong and Mou proposed some algorithms
in [19, 21] for characteristic decomposition which is also a type of triangular decomposition
consisting of normal chains. Owe to efficient computation of Gröbner bases, their algorithms
perform better on some complicated polynomial systems than the classical algorithms.

In this paper, we only consider zero-dimensional systems. We define a new type of triangular
sets, namely pure chains (see Definition 3.1). And then, a new type of triangular decomposition,
called square-free pure triangular decomposition (SFPTD) (see Definition 3.3), is introduced
for real solution isolation. We observe that SFPTD can also be applied to computing radicals
of zero-dimensional ideals. So, the main goal of this paper is to efficiently compute SFPTD of
zero-dimensional systems. More formally, we have the following problem statement:
Input: A nonempty finite set F ⊆ Q[x1, · · · , xn] \ {0}.
Output: An SFPTD {T1, · · · , Ts} of F , where each Ti is a square-free pure chain, such that

• the zero set of F equals the union of all zero sets of Ti, and
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• any two zero sets of Ti and Tj (i �= j) have no intersection,

if F is zero-dimensional; FAIL otherwise.
We list our main contributions as follows:
1) Inspired by [19, Algorithm 1], we propose an algorithm (Algorithm 1) for computing

SFPTD.
2) We prove that the arithmetic complexity of Algorithm 1 can be single exponential in the

square of the number of variables.
3) We implemented Algorithm 1 with Maple2021. Our experiments show that Algorithm 1

is far more efficient than the classical method for zs-rc decomposition in [9] (see the group of
columns TD in Table 2).

4) By the methods based on SFPTD, one can compute isolating cubes of real solutions to
the system, and the radical of the ideal generated by the system, efficiently (see the groups of
columns RSI and RA in Table 2).

The rest of this paper is organized as follows. In Section 2, we recall some basic concepts
and existing results about the theories of Gröbner bases and triangular sets. In Section 3, we
define pure chains and propose Algorithm 1 to compute SFPTD of zero-dimensional systems.
The termination and correctness of Algorithm 1 is guaranteed by Theorem 3.11. In Section 4,
we analyze the arithmetic complexity of Algorithm 1. In Section 5, we present two applications
of SFPTD: Real solution isolation and computing the radical of a zero-dimensional ideal. In
Section 6, we explain the implementation details and show the experimental results. Section 7
concludes the paper.

2 Preliminary

In the section, we recall some basic concepts and existing results about the theories of
Gröbner bases and triangular sets. The reader is referred to [14, 33] for more details.

2.1 Zero-Dimensional Systems

Let x1, · · · , xn be n variables and let x denote the vector (x1, · · · , xn). Throughout the
paper, we fix the variable ordering x1 < · · · < xn.

Denote by Q and C the set of rational and complex numbers, respectively. For any A ∈
{Q, C}, we denote by A[x] or A[x1, · · · , xn] the corresponding polynomial ring generated by the
variables x1, · · · , xn. For any F ⊆ Q[x], we denote by 〈F 〉 the ideal generated by F in C[x].
For any ideal I ⊆ C[x], V(I) denotes the affine variety {(a1, · · · , an) ∈ Cn | f(a1, · · · , an) =
0 for all f ∈ I}. In particular, V(F ) := V(〈F 〉), where F ⊆ Q[x]. Let f ∈ C[x]. We denote the
total degree of f and the degree of f with respect to xi by deg(f) and deg(f, xi), respectively.
Fix an admissible monomial ordering. Denote by LT(f) and LM(f) the leading term and the
leading monomial of f , respectively.

Definition 2.1 For F ⊆ Q[x], F is a zero-dimensional system or 〈F 〉 is a zero-dimensional
ideal, if V(F ) is a finite set.
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Definition 2.2 Fix a monomial ordering and let F ⊆ Q[x]. A finite subset G =
{g1, · · · , gt} ⊆ Q[x] is called a Gröbner basis of 〈F 〉 if 〈LT(g1), · · · , LT(gt)〉 = 〈LT(〈F 〉)〉, where
LT(〈F 〉) = {LT(f) | f ∈ 〈F 〉}.

Proposition 2.3 ([33, Chap. 8.3]) Let F ⊆ Q[x1, · · · , xn]. The following statements are
equivalent:

(a) F is a zero-dimensional system,
(b) for every Gröbner basis G of 〈F 〉, G contains n polynomials g1, · · · , gn such that LM(gi) =

xki

i (ki ≥ 1),
(c) there exist a monomial ordering ≺ and a Gröbner basis of 〈F 〉 with respect to ≺ which

contains n polynomials g1, · · · , gn such that LM(gi) = xki

i (ki ≥ 1).

2.2 Triangular Sets

For f ∈ Q[x] \ Q, we denote by lv(f) the main variable of f and by ini(f) the initial (or
leading coefficient with respect to lv(f)) of f . For F ⊆ Q[x], lv(F ) := {lv(f) | f ∈ F} and
ini(F ) := {ini(f) | f ∈ F}.

Definition 2.4 Let T = [T1, · · · , Tt] be a finite nonempty list of nonconstant polynomials
in Q[x]. We call T a triangular set if lv(T1) < · · · < lv(Tt).

Let F ⊆ Q[x], f1 and f2 be two polynomials in Q[x], and T = [T1, · · · , Tt] be a triangular
set in Q[x]. The saturated ideal of F with respect to f1 is defined as 〈F 〉 : f∞

1 := {g ∈
C[x] | there exists i ≥ 0 such that f i

1g ∈ 〈F 〉}. And, we denote by sat(T ) the saturated
ideal of T , namely 〈T 〉 : (ini(T1) · · · ini(Tt))∞. The resultant of f1 and f2 with respect to
lv(f2) is denoted by res(f1, f2, lv(f2)), and the resultant of f and T is defined as res(f, T ) :=
res(· · · res(res(f, Tt, lv(Tt)), Tt−1, lv(Tt−1)), · · · , T1, lv(T1)).

Definition 2.5 Let T = [T1, · · · , Tt] ⊆ Q[x] be a triangular set. The triangular set is
called a regular chain or is said to be regular, if ini(T1) �= 0 and for each i (2 ≤ i ≤ t),
res(ini(Ti), [T1, · · · , Ti−1]) �= 0. The triangular set is called a normal chain or is said to be
normal, if ini(T ) does not involve the main variables of T .

Remark 2.6 It is clear that any normal chain is a regular chain.

Definition 2.7 For any f ∈ Q[x] \ Q, we denote by sep(f) the separant of f , i.e.,
∂f/∂ lv(f). A triangular set T = [T1, · · · , Tt] in Q[x] is said to be square-free, if the discrimi-
nant of T1 with respect to lv(T1) is not equal to 0, and for each i (2 ≤ i ≤ t), res(sep(Ti), [T1, · · · ,

Ti]) �= 0.

2.3 W -Characteristic Sets

Definition 2.8 ([32, Def. 3.1]) Let F ⊆ Q[x] and G ⊆ Q[x] be the reduced Gröbner basis
of 〈F 〉 with respect to the lex ordering ≺lex. Define Gi := {g ∈ G | lv(g) = xi} for i = 1, · · · , n.
In every nonempty Gi, there exists a unique polynomial gi such that LM(gi) ≺lex LM(g) for any
g ∈ Gi \ {gi}. The ordered list of all gi is called the W-characteristic set of F .

Recall that we fix the variable ordering x1 < · · · < xn. We say that the variable ordering
condition is satisfied for a W -characteristic set C, if the variables in {x1, · · · , xn} \ lv(C) are
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ordered before lv(C). The following theorem presents two properties of W -characteristic sets.

Theorem 2.9 ([32, Prop. 3.1 & Thm. 3.9]) Let C = [C1, · · · , Ct] be the W -characteristic
set of F ⊆ Q[x1, · · · , xn], where 1 ≤ t ≤ n. We have

(a) 〈C〉 ⊆ 〈F 〉 ⊆ sat(C), and
(b) if the variable ordering condition is satisfied for C and C is not a normal chain, then

there exists an integer k (1 ≤ k < t) such that [C1, · · · , Ck] is normal and [C1, · · · , Ck+1] is not
regular.

3 Square-Free Pure Triangular Decomposition

For real solution isolation, we need to compute a finite number of square-free regular chains
whose zero sets are pairwise disjoint. In fact, we can compute some triangular sets stronger
than regular chains and we define them as pure chains in Subsection 3.1. For computing
square-free/regular chains, a popular method is the method of relatively simplicial decompo-
sition (see [12, Chapter 2] for more details), which is based on subresultant computation and
pseudo-division. Different to the method, we propose an algorithm to compute square-free
pure triangular decomposition by means of Gröbner bases in Subsection 3.2. We explain two
sub-algorithms of the algorithm in Subsection 3.3 and Subsection 3.4, respectively.

3.1 Pure Chains

Definition 3.1 Let T = [T1, · · · , Tn] ⊆ Q[x1, · · · , xn] be a triangular set. The triangular
set is called a pure chain or is said to be pure, if ini(T ) ⊆ Q \ {0} and lv(Ti) = xi for
i = 1, · · · , n. A pure chain is said to be reduced, if for each i (1 ≤ i ≤ n), ini(Ti) = 1 and
deg(Ti, xi) > deg(Tj , xi) where j > i.

Obviously, any pure chain is a normal chain. And, pure chains have very good properties.

Proposition 3.2 Fix the lex monomial ordering and let T = [T1, · · · , Tn] ⊆ Q[x] be a
pure chain. Then,

(a) sat(T ) = 〈T 〉,
(b) LM(Ti) = xji

i (ji ≥ 1) for i = 1, · · · , n,
(c) T is an LEX Gröbner basis, and
(d) T is a zero-dimensional system.

Furthermore, T is reduced if and only if T is a reduced LEX Gröbner basis.

Proof (a) It is because ini(T ) ⊆ Q \ {0}. (b) It is clear. (c) By (b), for any i1 �= i2, the
greatest common divisor of LM(Ti1) and LM(Ti2) is 1. Then, by [33, Lemma 5.66], we complete
the proof. (d) It is obvious by (b), (c) and Proposition 2.3.

Definition 3.3 Let F ⊆ Q[x] be a zero-dimensional system. A square-free pure triangular
decomposition (SFPTD) of F is a finite set of square-free pure chains {T1, · · · , Ts}, where
Ti ⊆ Q[x], such that V(F ) =

⋃s
i=1 V(Ti) and V(Ti) ∩ V(Tj) = ∅ for any i �= j.
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3.2 The Two-Step Algorithm

For any zero-dimensional system F ⊆ Q[x], we propose Algorithm 1 to compute an SFPTD
of F . The algorithm has the following two steps.

Step 1 Decompose F to a finite number of pure chains such that their zero sets are pairwise
disjoint. There are many existing methods to complete this step, like the method in [31]. In
order to analyze the complexity of Algorithm 1, we present an algorithm named PureDec here.
The algorithm is very similar to [19, Algorithm 1] in a zero-dimensional case and the details
will be given in Algorithm 2.

Algorithm 1 SfPureDec

Input : a nonempty finite set F ⊆ Q[x] \ {0} and the vector x

Output: ans = {T1, · · · , Ts}, a finite set of square-free pure chains such that

V(F ) =
⋃

Ti∈ans

V(Ti) and V(Ti) ∩ V(Tj) = ∅ for any i �= j,

if F is zero-dimensional; FAIL otherwise

1 Λ ← PureDec(F,x)

2 if Λ = FAIL then

3 return FAIL

4 else

5 return
⋃

P∈Λ
SubSfPureDec(P,x)

Algorithm 2 PureDec (Sub-Algorithm of Algorithm 1)
Input : a nonempty finite set F ⊆ Q[x] \ {0} and the vector x

Output: ans = {T1, · · · , Ts}, a finite set of pure chains such that

V(F ) =
⋃

Ti∈ans

V(Ti) and V(Ti) ∩ V(Tj) = ∅ for any i �= j,

if F is zero-dimensional; FAIL otherwise

1 ans ← ∅, Φ ← {F}, num ← 0

2 while Φ �= ∅ do

3 num ← num + 1

4 Choose P from Φ and set Φ ← Φ \ {P}

5 G ← the reduced LEX Gröbner basis of 〈P 〉

6 if G �= {1} then

7 if num = 1 and there exists xi such that for any g ∈ G, LM(g) �= xk
i (k ≥ 1) then

8 return FAIL

9 C ← [C1, · · · , Cm] (m ≤ n) which is the W-characteristic set of G

10 # In fact, we have m = n (see the termination proof of Theorem 3.7).

11 if C is a pure chain then

12 ans ← ans ∪ {C}

13 else

14 Ck ← the first polynomial of C that makes [C1, · · · , Ck] not pure

15 Gsat ← the reduced Gröbner basis of 〈C1, · · · , Ck−1〉 : ini(Ck)
∞ w.r.t. any monomial ordering

16 Φ ← Φ ∪ {G ∪ {ini(Ck)}} ∪ {G ∪ Gsat}

17 return ans
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Step 2 Compute an SFPTD of every pure chain in Step 1. The step is done by our
proposed algorithm, named SubSfPureDec. The details will be given in Algorithm 3 in
Subsection 3.4. It is clear that the union of all SFPTD is an SFPTD of F .

Remark that if the input system is not zero-dimensional, Algorithm 1 returns FAIL in Line 3.

3.3 Step 1 Decomposing to Pure Chains

Since the algorithm PureDec is similar to [19, Algorithm 1], we do not explain it step by
step and only give the pseudocode in Algorithm 2.

Remark 3.4 Except for the following two aspects, Algorithm 2 is essentially the same
as [19, Algorithm 1] in a zero-dimensional case. In order to guarantee the zero sets to be
pairwise disjoint, Algorithm 2 computes 〈C1, · · · , Ck−1〉 : ini(Ck)∞ in Line 15 instead of the
ideal quotient of 〈C1, · · · , Ck−1〉 by ini(Ck) (see [19, Algorithm 1-Line 19]). And Algorithm 2
can detect whether the input system is zero-dimensional.

The correctness and termination of [19, Algorithm 1] is guaranteed by [19, Thm. 2]. Natu-
rally, we can show the correctness and termination of Algorithm 2 in a similar way. However,
for the sake of our complexity analysis in Section 4, we prepare two lemmas and give a complete
proof.

Lemma 3.5 Let C be the W -characteristic set of F ⊆ Q[x]. If C is a pure chain, then
〈F 〉 = 〈C〉.

Proof It is clear by Proposition 3.2 (a) and Theorem 2.9 (a).
For any affine variety V ⊆ Cn, define the radical ideal I(V ) := {f ∈ C[x] | f(a1, · · · , an) =

0 for any (a1, · · · , an) ∈ V }.
Lemma 3.6 Let T ⊆ Q[x] be a pure chain and f ∈ Q[x]. If res(f, T ) = 0, there exists

g ∈ C[x] \ 〈T 〉 such that fg ∈ 〈T 〉.

Proof Let V1 := V(T ) and V2 := V(T ) \ V(f). Since T is a zero-dimensional system by
Proposition 3.2 (d), V2 is an affine variety. By [12, Theorem 2.2], res(f, T ) = 0 if and only if
V(T ) ∩ V(f) �= ∅, i.e., V1 �= ∅ and V2 is a proper subset of V1. Then, it is equivalent to that
there exists q ∈ I(V2) \ I(V1). Note that fq ∈ I(V1). Then, there exists some integer k1 ≥ 1
such that (fq)k1 ∈ 〈T 〉. Let k2 be the smallest integer number such that fk2qk1 ∈ 〈T 〉. Since
q /∈ I(V1), k2 ≥ 1. Thus, we take g = fk2−1qk1 which is not in 〈T 〉.

Theorem 3.7 Algorithm 2 terminates correctly.

Proof (Correctness) For the input polynomial set F , let G0 be the reduced LEX Gröbner
basis of 〈F 〉. By Proposition 2.3, if there exists xi such that for any g ∈ G0, LM(g) �= xk

i (k ≥ 1),
then F is not zero-dimensional. Algorithm 2 returns FAIL in Line 8.

Otherwise, F is zero-dimensional. In every loop, we pick a polynomial set P from Φ. Let
G (G �= {1}) be the reduced LEX Gröbner basis of 〈P 〉 and C = [C1, · · · , Cm] (m ≤ n) be the
W -characteristic set of G. If C is pure, then we add C to the output set in Line 12. If C is not
pure, Φ is updated with two sets in Line 16. Therefore, we only need to prove that

(I) V(G) = V(C), where C is pure,
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(II) V(G∪{ini(Ck)})∩V(G∪Gsat) = ∅ and V(G) = V(G∪{ini(Ck)})∪V(G∪Gsat), where
Ck is the first polynomial that makes [C1, · · · , Ck] not pure and Gsat is a Gröbner basis of
〈C1, · · · , Ck−1〉 : ini(Ck)∞.

By Lemma 3.5, (I) is clear. It remains to prove (II). Since [C1, · · · , Ck−1] is pure, by
Proposition 3.2 (d), {C1, · · · , Ck−1} is zero-dimensional. Then, by [34, Chap. 4.4, Thm. 10],
we have V(〈C1, · · · , Ck−1〉 : ini(Ck)∞) = V(C1, · · · , Ck−1) \ V(ini(Ck)). Hence, V(G ∪ Gsat) =
V(G) ∩ (V(C1, · · · , Ck−1) \ V(ini(Ck))). Note that V(G) ⊆ V(C1, · · · , Ck−1). So, V(G ∪ Gsat) =
V(G)\V(ini(Ck)). Then, because V(G∪{ini(Ck)}) = V(G)∩V(ini(Ck)), the proof is completed.

(Termination) If F is not zero-dimensional, the termination is obvious. Otherwise, the
termination is equivalent to that every ideal generated by the added set in Line 16 is strictly
larger than that generated by the removed one. So, we only need to prove that 〈G∪{ini(Ck)}〉
and 〈G ∪ Gsat〉 are both strictly larger than 〈G〉. Because G is a reduced Gröbner basis, we
have ini(Ck) /∈ 〈G〉. Then, 〈G ∪ {ini(Ck)}〉 is strictly larger than 〈G〉. It remains to prove
〈G〉 � 〈G ∪ Gsat〉.

Firstly, we prove that C = [C1, · · · , Cn] with lv(Ci) = xi, i.e., lv(C) = {x1, · · · , xn}. Since
the input F is zero-dimensional, by the proof of the correctness, every polynomial set in Φ is also
zero-dimensional. Then, by Proposition 2.3 and Definition 2.8, we have lv(C) = {x1, · · · , xn}.

Secondly, we prove that res(ini(Ck), [C1, · · · , Ck−1]) = 0. Note that Ck is the first poly-
nomial that makes [C1, · · · , Ck] not pure. Then, [C1, · · · , Ck] and C are not normal, but
[C1, · · · , Ck−1] is normal. Since lv(C) = {x1, · · · , xn}, the variable ordering condition is satis-
fied for C. So, by Theorem 2.9 (b), [C1, · · · , Ck] is not regular. Then, res(ini(Ck), [C1, · · · ,

Ck−1]) = 0.
Finally, we prove 〈G〉 � 〈G ∪ Gsat〉, which is equivalent to proving that there exists g ∈

〈Gsat〉\ 〈G〉. Note that [C1, · · · , Ck−1] is a pure chain in Q[x1, · · · , xk−1]. So, by the conclusion
in the above paragraph and by Lemma 3.6, there exists g ∈ C[x1, · · · , xk−1] \ 〈C1, · · · , Ck−1〉
such that g·ini(Ck) ∈ 〈C1, · · · , Ck−1〉. Recall that 〈Gsat〉 = 〈C1, · · · , Ck−1〉 : ini(Ck)∞. So, we
have g ∈ 〈Gsat〉. Then, we only need to prove g /∈ 〈G〉. Note that 〈G〉∩C[x1, · · · , xk−1] = 〈G∩
C[x1, · · · , xk−1]〉 and [C1, · · · , Ck−1] is the W -characteristic set of G ∩ C[x1, · · · , xk−1]. Thus,
by Lemma 3.5, 〈G〉 ∩ C[x1, · · · , xk−1] = 〈C1, · · · , Ck−1〉. Then, because g ∈ C[x1, · · · , xk−1]
\ 〈C1, · · · , Ck−1〉, g /∈ 〈G〉.

Corollary 3.8 If a zero-dimensional system F ⊆ Q[x] is decomposed to a finite set of
pure chains {T1, · · · , Ts} by Algorithm 2, then for each i, Ti is reduced and 〈F 〉 ⊆ 〈Ti〉.

Proof It is clear by the proof of Theorem 3.7, by Proposition 3.2 and by Lemma 3.5.

3.4 Step 2: Computing SFPTD of Pure Chains

The algorithm SubSfPureDec (Algorithm 3) computes an SFPTD of any pure chain T ⊆
Q[x1, · · · , xn]. Let Φ be a set of pure chains for SFPTD (initialized as {T }), and ans be a set
of computed square-free pure chains (initialized as ∅). Every loop step, we pick a pure chain
P = [P1, · · · , Pn] from Φ and remove it from Φ, until Φ is empty.

1) If P is square-free, then we add P to ans.
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2) If P is not square-free, then we compute k (k ≥ 1) which is the smallest integer
such that [P1, · · · , Pk] is not square-free. If k = 1, then Φ is updated with the pure chains
[ξ1, P2, · · · , Pn], · · · , [ξm, P2, · · · , Pn], where ξi is an irreducible factor of P1. If k > 1, we com-
pute the reduced Gröbner basis Gsat of 〈P1, · · · , Pk〉 : sep(Pk)∞ with respect to any monomial
ordering. Then, we decompose P ∪ {sep(Pk)} and P ∪ Gsat into two finite sets of pure chains
by Algorithm 2, respectively. And, Φ is updated with pure chains in the two sets.

Algorithm 3 is illustrated on the following example.

Algorithm 3 SubSfPureDec (Sub-Algorithm of Algorithm 1)
Input : a pure chain T = [T1, · · · , Tn] ⊆ Q[x] and the vector x

Output: ans = {Q1, · · · ,Qs}, a finite set of square-free pure chains such that

V(T ) =
⋃

Qi∈ans

V(Qi) and V(Qi) ∩ V(Qj) = ∅ for any i �= j

1 ans ← ∅, Φ ← {T }

2 while Φ �= ∅ do

3 Choose P = [P1, · · · , Pn] from Φ and set Φ ← Φ \ {P}

4 if P is square-free then

5 ans ← ans ∪ {P}

6 else

7 Pk ← the first polynomial that makes [P1, · · · , Pk] not square-free

8 if k = 1 then

9 ξ1, · · · , ξm ← all irreducible factors of P1

10 # Here, ξi ∈ Q[x] for i = 1, · · · ,m.

11 Φ ← Φ ∪ {[ξ1, P2, · · · , Pn], · · · , [ξm, P2, · · · , Pn]}

12 else

13 Gsat ← the reduced Gröbner basis of 〈P1, · · · , Pk〉 : sep(Pk)
∞ w.r.t. any monomial ordering

14 Φ ← Φ ∪ PureDec(P ∪ {sep(Pk)},x) ∪ PureDec(P ∪ Gsat,x)

15 return ans

Example 3.9 Consider the pure chain T = [T1, T2] = [x2−x, y2−2xy+1] ⊆ Q[x, y] with
x < y. Note that T is not square-free and T2 is the first polynomial that makes it not square-
free. Since sep(T2) = 2y − 2x and the reduced LEX Gröbner basis of 〈T1, T2〉 : sep(T2)∞ is
{x, y2+1}, we decompose T ∪{sep(T2)} into {[x−1, y−1]} and T ∪{x, y2 +1} into {[x, y2+1]}
by Algorithm 2, respectively. Then, Φ is updated with two pure chains [x − 1, y − 1] and
[x, y2 + 1]. Because both pure chains are square-free, Algorithm 3 terminates with Φ = ∅ and
{[x − 1, y − 1], [x, y2 + 1]} is an SFPTD of T .

Theorem 3.10 Algorithm 3 terminates correctly.

Proof (Correctness) We choose a pure chain P from Φ in every loop. If P is square-
free, then it is added to the output set in Line 5. Otherwise, Φ is updated with some pure
chains in Line 11 or Line 14 (note that since P is zero-dimensional by Proposition 3.2 (d),
Algorithm 2 does not return FAIL in Line 14). So, it is obvious that we only need to prove that
V(P) = V(P∪{sep(Pk)})∪V(P∪Gsat) and V(P∪{sep(Pk)})∩V(P∪Gsat) = ∅, where Pk (k > 1)
is the first polynomial that makes [P1, · · · , Pk] not square-free and Gsat is a Gröbner basis of
〈P1, · · · , Pk〉 : (sep(Pk))∞. Note that {P1, · · · , Pk} is also zero-dimensional by Proposition 3.2
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(d). Then, similar to the correctness proof of Theorem 3.7, we have V(P ∪ Gsat) = V(P) \
V(sep(Pk)) and V(P ∪ {sep(Pk)}) = V(P) ∩ V(sep(Pk)).

(Termination) The termination is equivalent to that every ideal generated by the added pure
chain in Line 11 or Line 14 is strictly larger than that generated by the removed one. Note that
it is clear for every pure chain added in Line 11. Thus, by Corollary 3.8, we only need to prove
that 〈P ∪ {sep(Pk)}〉 and 〈P ∪ Gsat〉 are both strictly larger than 〈P〉.

Firstly, we prove 〈P〉 � 〈P ∪ {sep(Pk)}〉. Since P = [P1, · · · , Pn] is a pure chain, by
Proposition 3.2, P is an LEX Gröbner basis, and LT(Pi) = cix

ji

i where ci ∈ Q \ {0} and ji ≥ 1.
Then, LT(〈P〉) = 〈LT(P)〉 = 〈c1x

j1
1 , · · · , cnxjn

n 〉, and either LT(sep(Pk)) = jkckxjk−1
k (jk > 1)

or LT(sep(Pk)) = ck (jk = 1). So, LT(sep(Pk)) �∈ LT(〈P〉). Thus, sep(Pk) /∈ 〈P〉. The proof is
completed.

Secondly, we prove 〈P〉 � 〈P ∪ Gsat〉, which is equivalent to proving that there exists g ∈
〈Gsat〉\〈P〉. Note that [P1, · · · , Pk−1] is square-free, but [P1, · · · , Pk] is not. So, res(sep(Pk), [P1,

· · · , Pk]) = 0. Then, because [P1, · · · , Pk] is a pure chain in Q[x1, · · · , xk], by Lemma 3.6,
there exists g ∈ C[x1, · · · , xk] \ 〈P1, · · · , Pk〉 such that g · sep(Pk) ∈ 〈P1, · · · , Pk〉. Recall that
〈Gsat〉 = 〈P1, · · · , Pk〉 : (sep(Pk))∞. So, g ∈ 〈Gsat〉. It remains to prove g /∈ 〈P〉. Be-
cause P is an LEX Gröbner basis, we have 〈P〉 ∩ C[x1, · · · , xk] = 〈P1, · · · , Pk〉. Note that
g ∈ C[x1, · · · , xk] \ 〈P1, · · · , Pk〉. So, g �∈ 〈P〉.

Theorem 3.11 Algorithm 1 terminates correctly.

Proof It is obvious by Theorem 3.7 and Theorem 3.10.

4 Arithmetic Complexity Analysis

In the section, we analyze the complexity of our algorithms. Here, we only consider arith-
metic complexity which counts the number of field operations (not bit operations). We first
introduce the concept of multiplicity and some results we will use later.

For any point p = (a1, · · · , an) ∈ Cn, we denote by C[x]p the set
{

f

g
| f, g ∈ C[x], g(a1, · · · , an) �= 0

}

.

For any ideal I ⊆ C[x], we denote by D(I) the dimension of the C-vector space C[x]/I. For
any P ⊆ Q[x], define D(P ) := D(〈P 〉) and denote by deg(P ) the maximum degree of elements
of P .

Definition 4.1 ([35, Chap. 4, Def. 2.1]) Let I ⊆ C[x] be a zero-dimensional ideal and p ∈
V(I). The multiplicity of p, denoted MI(p), is the dimension of the C-vector space C[x]p/IC[x]p.

Theorem 4.2 ([35, Chap. 4, Cor. 2.5]) Let I ⊆ C[x] be a zero-dimensional ideal. We have
D(I) =

∑
α∈V(I) MI(α).

Note that the most complicated computation in our algorithms is Gröbner bases compu-
tation of an ideal with its generator polynomials and of a saturated ideal. The arithmetic
complexity of them is given in the following theorem and corollary, respectively.
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Theorem 4.3 ([26, Prop. 8.1], [27, Thm. 3]) Let P ⊆ Q[x1, · · · , xn] be a zero-dimensional
system, and G be the reduced Gröbner basis of 〈P 〉 with respect to any monomial ordering. Then,

(a) deg(G) ≤ D(P ), and
(b) the arithmetic complexity of computing G, denoted CGB(n, deg(P )), can be polynomial

in deg(P )n.

Corollary 4.4 Let P ⊆ Q[x1, · · · , xn] be a zero-dimensional system, f ∈ Q[x1, · · · , xn]
and G be the reduced LEX Gröbner basis of 〈P 〉 : f∞. Then, the arithmetic complexity of
computing G is CGB(n + 1, max(deg(P ), deg(f) + 1)).

Proof Let τ be a new variable and G0 be the reduced LEX Gröbner basis of the ideal 〈P ∪
{1−τf}〉 for x1 < · · · < xn < τ . By [34, Chap. 4.4, Thm. 14], we have G = G0∩Q[x1, · · · , xn].
Therefore, the arithmetic complexity of computing G is equal to it of computing G0, which is
CGB(n + 1, max(deg(P ), deg(f) + 1)) by Theorem 4.3.

Remark that in Theorem 4.3, CGB(n, deg(P )) depends on algorithms used for computing
Gröbner bases. And in Corollary 4.4, we only prove the complexity of computing the reduced
LEX Gröbner basis of a saturated ideal, while that of computing the reduced Gröbner basis
with respect to any monomial ordering can be used in our complexity analysis. Let P and f be
the same as in Corollary 4.4. We notice that [31] shows an LEX Gröbner basis of 〈P 〉 : f can be
computed costing at most O(D(P )3) arithmetical operations. It seems that a reduced Gröbner
basis of 〈P 〉 : f∞ may be computed within the same complexity. Naturally, if saturated ideals
computation has better complexity, then the complexity of our algorithms will be better.

4.1 Complexity of Algorithm 2

Let F ⊆ Q[x1, · · · , xn] be a zero-dimensional system, d := deg(F ) and D := max(d, D(F ))
in the whole subsection. For convenience, we assume V(F ) �= ∅.

Remark 4.5 By Bézout’s theorem, D ≤ dn.

Theorem 4.6 Algorithm 2 decomposes F into a finite set of pure chains with the arith-
metic complexity

(2D(F ) − 1) · (CGB(n, D) + CGB(n, D(F ))), (1)

which can be polynomial in Dn.

In order to prove Theorem 4.6, we prepare some lemmas.
Given the input F , suppose that Algorithm 2 terminates with N (N ≥ 1) times of loops.

Let Pi be the picked polynomial set in the i-th loop. Consider a binary tree T with P1, · · · , PN

as nodes. If 〈Pi〉 �= 〈1〉 and the W -characteristic set of Pi is not pure, the node Pi has two
child nodes Pi1 = {G ∪ {ini(Ck)}} and Pi2 = {G ∪ Gsat} (see Line 16), where i < ij ≤ N for
j = 1, 2. Otherwise, the node Pi is a leaf. We denote by child(Pi) the set of all child nodes of
Pi (if Pi is a leaf, child(Pi) = ∅). The root node of tree T is P1 = F .
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For each node Pi of tree T , we define a value:

Value(Pi) :=

⎧
⎨

⎩

D(Pi), V(Pi) �= ∅,
1, V(Pi) = ∅.

(2)

Note that V(Pi) = ∅ if and only if D(Pi) = 0, and thus D(Pi) ≤ Value(Pi).

Lemma 4.7 If 〈F 〉 � 〈G〉 ⊆ C[x], then
(a) M〈G〉(p) ≤ M〈F 〉(p) for any p ∈ V(G), and
(b) D(G) < D(F ).

Proof It is obvious by the definitions of multiplicity and dimension.

Lemma 4.8 For tree T , we have
∑

Pij
∈child(Pi)

Value(Pij ) ≤ D(Pi), (3)

∑

Piis a leaf of T

Value(Pi) ≤ D(F ). (4)

Proof We prove (3) first. If Pi is a leaf, it is clear. Otherwise, we have 〈Pi〉 �= 〈1〉,
i.e., V(Pi) �= ∅. Note that V(Pi) = V(Pi1 ) ∪ V(Pi2 ) by the proof of Theorem 3.7. Then, at
least one variety of child nodes is not ∅. We also note that 〈Pi〉 � 〈Pij 〉 for j = 1, 2 and
V (Pi1 ) ∩ V (Pi2 ) = ∅ by the proof of Theorem 3.7. Thus, if neither V(Pi1) nor V(Pi2) is an
empty set, then by Theorem 4.2 and Lemma 4.7 (a),

∑

Pij
∈child(Pi)

Value(Pij ) =
∑

j=1,2

D(Pij )

=
∑

j=1,2

∑

p∈V(Pij
)

M〈Pij
〉(p)

≤
∑

p∈V(Pi)

M〈Pi〉(p) = D(Pi). (5)

If V(Pi1 ) = ∅ and V(Pi2) �= ∅, then by Lemma 4.7 (b),
∑

Pij
∈child(Pi)

Value(Pij ) = 1 + D(Pi2 ) ≤ D(Pi). (6)

By (5) and (6), (3) is proved. Then, it is clear that (4) holds by induction.

Lemma 4.9 For every node Pi (i = 1, · · · , N) of tree T , let Gi be the reduced LEX
Gröbner basis of 〈Pi〉. Then,

(a) deg(Gi) ≤ D(F ),
(b) deg(Pi) ≤ max(d, D(F )).

Proof (a) By Theorem 4.3, deg(Gi) ≤ D(Pi). Then, we prove D(Pi) ≤ D(F ) by induction
on i. It is clear for i = 1. Assume it holds for 1, · · · , i−1. By Lemma 4.8, Value(Pi) ≤ D(Pi∗),
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where Pi∗ is the parent of Pi. Since i∗ < i, by the assumption, D(Pi∗) ≤ D(F ). Thus,
D(Pi) ≤ Value(Pi) ≤ D(Pi∗) ≤ D(F ).

(b) The maximum degree of elements of P1 = F is d. Note that each node Pj (2 ≤
j ≤ N) has a parent Pj∗ (1 ≤ j∗ < j). So, Pj is one of G ∪ {ini(Ck)} and G ∪ Gsat in
Line 16, where G is the reduced LEX Gröbner basis of 〈Pj∗〉. We only need to prove that
deg(G ∪ {ini(Ck)}) ≤ D(F ) and deg(G ∪ Gsat) ≤ D(F ). By (a), we have deg(G) ≤ D(F ).
Then, since Ck ∈ G, we have deg(ini(Ck)) ≤ D(F ). It remains to prove deg(Gsat) ≤ D(F ).
By Theorem 4.3 (a), deg(Gsat) ≤ D(Gsat). Because 〈C1, · · · , Ck−1〉 ⊆ 〈Gsat〉, by Lemma 4.7
(b), D(Gsat) ≤ D(C1, · · · , Ck−1). By Lemma 3.5, 〈C1, · · · , Ck−1〉 = 〈G∩ C[x1, · · · , xk−1]〉. So,
D(〈C1, · · · , Ck−1〉) is equal to the dimension of C[x1, · · · , xk−1]/(〈G〉 ∩ C[x1, · · · , xk−1]). Note
that C[x1, · · · , xk−1]/(〈G〉 ∩ C[x1, · · · , xk−1]) is equal to the quotient ring C[x1, · · · , xn]/〈G〉
limited on C[x1, · · · , xk−1]. Then, the dimension is at most D(G), i.e., D(Pj∗). Note that
D(Pj∗ ) ≤ D(F ) by the proof of (a). We complete the proof.

Lemma 4.10 The number of leaves of tree T is at most D(F ). The number of nodes of
tree T is at most 2D(F ) − 1, i.e., N ≤ 2D(F ) − 1.

Proof Note that Value(Pi) ≥ 1 for i = 1, · · · , N . Then, by (4) of Lemma 4.8, the number
of leaves is at most D(F ). Note that every node is either a leaf or has two child nodes. So, the
number of nodes is at most 2D(F ) − 1.

Proof of Theorem 4.6 By Lemma 4.10, the number of times of loops N ≤ 2D(F ) − 1. In
each loop, the most complicated computation is Gröbner bases computation in Line 5 and Line
15. By Lemma 4.9 (b), the computation in Line 5 has the complexity CGB(n, D). By Corollary
4.4 and Lemma 4.9 (a), the complexity of the computation in Line 15 is CGB(k, D(F )). Note
that k ≤ n. Thus, (1) is proved. By Theorem 4.3 (b), (1) can be polynomial in Dn.

4.2 Complexity of Algorithm 3 & Algorithm 1

Let F , d and D be the same as in Section 4.1. We also assume V(F ) �= ∅.
Theorem 4.11 An SFPTD of a reduced pure chain T ⊆ Q[x] can be computed by Al-

gorithm 3 within a complexity of polynomial in D(T )n. An SFPTD of F can be computed by
Algorithm 1 within a complexity of polynomial in dn2

.

To prove Theorem 4.11, we prepare some lemmas first.
Given a reduced pure chain T , suppose that Algorithm 3 terminates with M (M ≥ 1) times

of loops. Let Pi be the picked reduced pure chain in the i-th loop (see Corollary 3.8). Consider
a tree T̃ with some nodes P1, · · · ,PM and some other nodes {1}. If Pi is not square-free,
then the node Pi has one or more reduced pure chains in Line 11 or Line 14 as child nodes.
Otherwise, the node Pi has no child node. If Pi has and only has one child node, let the set
{1} be its second child node. The root node of tree T̃ is P1 = T . We also define a value of
every node Pi as in (2).

Lemma 4.12 For every node P of tree T̃ , deg(P) ≤ D(P).

Proof If P = {1}, the conclusion is clear. Otherwise, P is a reduced pure chain. Then, by
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Proposition 3.2 and Theorem 4.3 (a), we complete the proof.

Lemma 4.13 For tree T̃ , we have
∑

Pij
∈child(Pi)

Value(Pij ) ≤ D(Pi) and
∑

Piis a leaf of T̃

Value(Pi) ≤ D(T ).

Proof Note that in Line 11, 〈P1, · · · , Pn〉 � 〈ξi, P2, · · · , Pn〉 for i = 1, · · · , m, V(P1, · · · , Pn)
=

⋃m
i=1 V(ξi, P2, · · · , Pn) and V(ξi, P2, · · · , Pn) ∩ V(ξj , P2, · · · , Pn) = ∅ for i �= j. Then, it is

similar to the proof of Lemma 4.8.

Lemma 4.14 The number of nodes of tree T̃ is at most 2D(T ) − 1 which implies M ≤
2D(T ) − 1.

Proof Note that if a node is not a leaf, then it has at least two child nodes. Then, it is
similar to the proof of Lemma 4.10.

Proof of Theorem 4.11 Firstly, we analyze the complexity of Algorithm 3. By Lemma 4.14,
the number of loop steps M ≤ 2D(T )−1. In each loop, the most complicated computation is in
Line 13 and Line 14. By Corollary 4.4 and by Lemma 4.12, the complexity of computing Gsat

in Line 13 is CGB(n+1, D(P)), where P is the reduced pure chain chose in Line 3. By Theorem
4.3 (b), it can be polynomial in D(P)n. It remains to analyze the complexity of computation in
Line 14. Similar to the proof of Lemma 4.9, we have D(P) ≤ D(T ) and deg(Gsat) ≤ D(P). And
by Lemma 4.12, deg(P) ≤ D(P). Thus, it is clear that deg(P ∪{sep(Pk)}), D(P ∪{sep(Pk)}),
deg(P ∪ Gsat) and D(P ∪Gsat) are all less than or equal to D(T ). Then, by Theorem 4.6, the
complexity can be polynomial in D(T )n. Therefore, after multiplying M , the complexity of
Algorithm 1 can still be polynomial in D(T )n.

Secondly, we analyze the complexity of Algorithm 1. By Theorem 4.6, the complexity of
the calculation in Line 1 can be polynomial in Dn. Suppose the reduced pure chains (see
Corollary 3.8) computed in Line 1 are T1, · · · , Tt. By Lemma 4.10, t ≤ D(F ). By (4) of
Lemma 4.8, D(Ti) ≤ Value(Ti) ≤ D(F ). Thus, by the conclusion in the above paragraph, the
complexity of the calculation in Line 5 can be polynomial in D(F )n. Then, the complexity of
Algorithm 1 can be polynomial in max(Dn, D(F )n) = Dn. Since D < dn (see Remark 4.5), the
complexity can be polynomial in dn2

.
Recall that Theorem 4.6 and Theorem 4.11 talk about arithmetic complexity without ana-

lyzing the growth of the size of coefficients. In fact, the size of the coefficients in the algorithms
may increase very fast.

5 Two Applications of SFPTD

In the section, we present two applications of SFPTD: Real solution isolation and computing
radicals. Given a zero-dimensional system F ⊆ Q[x], we first compute an SFPTD {T1, · · · , Ts}
of F by Algorithm 1.

In order to compute the isolating cubes of real solutions of F , we compute the isolating
cubes of every square-free pure chain Ti by [7, Algorithm NREALZERO]. The method is called
NRSI in Section 6.

We denote by
√

I the radical of an ideal I ⊆ C[x]. We claim that
√

〈F 〉 =
⋂s

i=1〈Ti〉.
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The proof of the claim is as follows. Since {T1, · · · , Ts} is an SFPTD of F , we have V(F ) =
⋃s

i=1 V(Ti). Then, V(F ) = V(
⋂s

i=1〈Ti〉). So,
√

〈F 〉 =
⋂s

i=1

√
〈Ti〉. Note that every Ti is a

square-free pure chain. Then, by [36, Corollary 3.3] and by Proposition 3.2 (a), 〈Ti〉 is radical.
Thus, we complete the proof. The method for computing

√
〈F 〉 by the intersection of ideals is

called IRA in Section 6.

6 Experiments

We implemented Algorithm 1, the methods NRSI and IRA with Maple2021, where we
use the Maple command Groebner[Basis] for computing Gröbner bases in Algorithm 2–Line
5&Line 15 and Algorithm 3–Line 13.

In the section, we explain implementation details and show the experimental results of partial
testing examples. All testing examples, code and experimental results are available online via:
https://github.com/lihaokun/StrongSfTriDec. All tests were conducted on 16-Core Intel
Core i7-12900KF@3.20GHz with 128GB of memory and Windows 11.

6.1 Description of the Experimentation

Testing examples are collected from the literatures [7, 9, 18] and the website http://

homepages.math.uic.edu/~jan/demo.html. We just get rid of the ones that are repeated
or not zero-dimensional. Owing to space constraints, we only present 44 “difficult” examples
(total 151 examples) in Table 1. Timings are in seconds. “OT” means out of the timing 3600
seconds, and “LOSS” means kernel connection lost during calculation of Maple. The column
“sys” denotes the name of the polynomial system. The column “n/d” stands for the number of
variables/the maximum degree of elements in the system.

We record the time to compute triangular decomposition by Algorithm 1 (see the column
Algorithm 1) and two Maple commands (see the column mp-rc) in the group of columns TD.
The two commands used are RegularChains[Triangularize] with the option radical=yes,
and RegularChains[ChainTools][SeparateSolutions]. The first command, which is also
used in [9], decomposes the system to a finite number of square-free regular chains. Although
the zero sets of these square-free regular chains are pairwise disjoint in general, we ensure it
again by the second command. In the experiment, the second command takes almost no time.
In fact, since a pure chain is a regular chain, SFPTD is stronger than such decomposition.

In the group of columns RSI, we record the time of real solution isolation computed by the
method NRSI (see the column NRSI), the Mathematica12 command Solve (see the column
mt-solve) and the Maple command RootFinding[Isolate] (see the column mp-rf).

In the group of columns RA, we record the time to compute radicals by the method IRA
(see the column IRA) and the Maple command PolynomialIdeals[Radical] (see the column
mp-radical).

6.2 Statistical Experimental Results

We show the statistical experimental results of all 151 examples in Table 2. The number of
examples that can be solved within 3600 seconds is recorded in the row Solved. The number of
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LOSS (OT) examples is recorded in the row LOSS (OT). We record the sum of the computing
time of all solved examples (written as solved time) in the row Time (Solved). For every LOSS or
OT example, we record their computing time as 3600 seconds. And, the sum of the computing
time of all examples is recorded in the row Time.

For triangular decomposition, Algorithm 1 performs significantly better than mp-rc. There
are 31 examples which can only be solved by Algorithm 1. And the solved time of Algorithm 1
is a half of that of mp-rc. One main reason why Algorithm 1 performs better is that the outputs
of Algorithm 1 usually have less components. Denote by m1 and m2 the numbers of components
computed by Algorithm 1 and mp-rc on the same example, respectively. We observe that

Table 1 Timings for computing triangular decomposition of zero-dimensional systems,

isolating cubes of real solutions, and radicals of zero-dimesional ideals

TD RSI RA

sys n/d Algorithm 1 mp-rc NRSI mt-solve mp-rf IRA mp-radical

nld-4-5 5/4 35.30 OT 35.64 1095.42 1522.17 368.91 88.79

nld-6-4 4/6 83.83 OT 86.06 103.09 2918.52 183.19 878.51

nld-9-3 3/9 22.22 0.65 47.50 2.71 191.98 39.02 OT

nld-10-3 3/10 109.90 0.50 130.42 12.39 670.93 117.18 OT

nql-10-4 10/4 0.01 0.09 0.14 0.00 OT 0.02 OT

nql-15-2 15/2 0.01 0.17 0.18 0.02 OT 0.01 OT

Reif 16/2 0.02 0.80 0.02 OT 0.07 0.02 0.17

simple-nql-20-30 20/30 0.01 0.28 0.66 0.12 OT 0.01 LOSS

Trinks-2 6/3 0.01 OT 0.02 0.01 0.11 0.03 0.04

Trinks-difficult 6/3 0.12 OT 0.16 0.02 0.31 0.18 0.26

Uteshev-Bikker 4/3 0.29 OT 0.63 0.25 1.16 0.49 1.22

wang ex34 14/5 0.09 34.64 0.11 OT 0.21 0.14 0.07

wang ex40 6/2 0.15 OT 0.77 0.37 0.36 0.26 0.65

boon 6/4 0.09 OT 0.19 0.02 0.13 0.13 0.35

cpdm5 5/3 19.25 OT 19.64 13.46 2.90 55.57 16.28

eco8 8/3 0.33 LOSS 0.75 2.03 0.27 0.44 1.49

redcyc6 6/11 1.01 OT 1.34 0.38 1.91 3.38 9.43

redcyc7 7/13 44.22 LOSS 55.25 OT 1684.53 570.98 166.93

extcyc6 6/6 5.88 OT 7.36 43.90 3.25 38.25 15.62

cassou 4/8 0.23 OT 0.29 0.06 0.36 0.35 0.76

virasoro 8/2 125.48 OT 128.64 OT 31.66 2477.53 146.24

d1 12/3 4.90 OT 8.37 0.77 6.03 13.95 675.68

kin1 12/3 22.00 OT 39.90 1.16 19.69 39.74 902.41

des18 3 8/3 22.15 OT 22.83 1.74 1.99 32.89 3.61

kinema 9/2 0.85 OT 1.27 1.34 0.56 1.19 2.78

rbpl24 9/2 14.54 OT 19.82 6.54 10.87 20.33 408.90
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Table 1 (Continued) Timings for computing triangular decomposition of zero-

dimensional systems, isolating cubes of real solutions,

and radicals of zero-dimesional ideals

TD RSI RA

sys n/d Algorithm 1 mp-rc NRSI mt-solve mp-rf IRA mp-radical

reimer5 5/6 0.42 OT 0.97 5.17 1.55 0.60 5.29

filter9 9/4 2.66 OT 6.33 4.73 36.24 3.85 45.37

katsura6 7/2 0.99 OT 2.92 2.37 0.47 1.35 8.46

katsura7 8/2 12.42 LOSS 33.09 40.46 1.68 15.18 29.53

katsura8 9/2 291.76 OT 757.49 920.58 13.24 340.98 OT

katsura9 10/2 OT LOSS OT OT 151.71 OT OT

katsura10 11/2 OT OT OT OT 2123.81 OT OT

utbikker 4/3 1.25 OT 1.43 0.24 1.31 2.13 3.35

kotsireas 6/5 4.16 OT 4.41 2.81 1.59 8.77 6.91

chandra6 6/2 1.94 OT 3.27 0.37 0.75 3.03 1.82

tangents0 6/2 0.92 OT 1.07 0.10 0.69 1.38 0.76

assur44 8/3 4.79 OT 5.95 10.65 2.79 6.33 7.11

cyclic6 6/6 1.18 OT 1.52 1.02 1.24 3.93 12.68

cyclic7 7/7 76.70 OT 90.17 OT 691.37 859.50 290.58

cyclic9 9/9 OT OT OT OT OT OT OT

cyclic10 10/10 OT LOSS OT OT OT OT OT

cyclic11 11/11 OT LOSS OT OT OT OT OT

kss3 10/2 212.92 212.86 216.60 2.67 249.54 OT 540.37

Table 2 Statistical experimental results of all testing examples (151 examples)

TD RSI RA

Algorithm 1 mp-rc NRSI mt-solve mp-rf IRA mp-radical

Solved 146 115 146 141 145 145 140

LOSS 0 6 0 0 0 0 0

OT 5 30 5 10 6 6 11

Time (Solved) 1191.37 2842.90 1842.40 2301.10 11238.8 5438.7 6695.10

Time 19191.37 110842.90 19842.40 38301.10 32838.8 27038.7 42695.10

m1 < m2 for 61 examples. Especially, for 54 of those 61 examples, we have m1 ≤ 1
2m2. On

the contrary, there are no examples where m1 > m2. And m1 = m2 for 54 examples where
m1 = m2 = 1 for 39 examples.

For real solution isolation, mt-solve performs better than NRSI on small examples which
can be solved in 2 seconds, but the solved time of NRSI is approximately 450 seconds less
than that of mt-solve. And, there are 5 difficult examples solved successfully by NRSI which
cannot be solved by mt-solve. NRSI solves 3 examples that mp-rf does not, while mp-rf solves
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2 examples that NRSI does not. However, the solved time of NRSI is approximately 10000
seconds less than that of mp-rf. It is worth noting that for the system katsura8, the computing
time of NRSI is three times that of SFPTD. This is because the computed SFPTD has huge
coefficients.

To compute radicals, the method IRA solves 145 examples successfully, while mp-radical
solves 140. The solved time of IRA is about 1200 seconds less than that of mp-radical. Since it
is difficult to compute intersections of ideals (see the systems redcyc7 and kss3), IRA does not
perform as well as we expect.

7 Conclusion

In the paper, we propose an algorithm for computing SFPTD and prove that the arithmetic
complexity can be single exponential time (note that there are few results about the complexity
of triangular-decomposition algorithms). Our algorithm is partly inspired by [19, Algorithm
1] and thus it is based on Gröbner bases. The novelty of our algorithm is that we make use
of separant and saturated ideals to ensure that every pure chain is square-free and the zero
sets of any two pure chains have no intersection, respectively. It is worth noting that although
SFPTD is stronger than zs-rc decomposition in [9], our algorithm is much more efficient than
the classical method in experiments. The only disadvantage of our algorithm is that a computed
SFPTD of a big system always has huge coefficients. So, it sometimes takes a large amount
of time to compute isolating cubes of every square-free pure chain or compute intersections of
ideals. We will consider giving a bit complexity analysis of our algorithm in the future.
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