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Abstract The cube attack proposed by Dinur and Shamir is one of the most important key-recovery

attacks against Trivium. Recently division property based cube attacks have been extensively studied

and significantly improved. In particular, the MILP modeling technique for the three-subset division

property without unknown subset proposed by Hao, et al. at EUROCRYPT 2020 and the new technique

with nested monomial predictions proposed by Hu, et al. at ASIACRYPT 2021 are best techniques to

recover exact superpolies in division property based cube attacks. Consequently, at this state of the art,

whether a superpoly can be recovered in division property based cube attacks is mainly decided by the

scale of the superpoly, that is, the number of terms. Hence the choice for proper cubes corresponding

to low-complexity superpolies is more critical now. Some effective cube construction methods were

proposed for experimental cube attacks, but not applicable to division property based cube attacks.

In this paper, the authors propose a heuristic cube criterion and a cube sieve algorithm, which can

be combined with the three-subset division property to recover a number of superpolies. Applied to

815-round Trivium, the authors recovered 417 superpolies from 441 cubes obtained by our algorithm

of sizes between 41 and 48. The success rate is 94.56%. There are 165 non-constant superpolies with

degree less than 14. In order to demonstrate the significance of the new algorithm, the authors tested

the best superpoly recovery technique at EUROCRYPT 2020 using random cubes of similar sizes on

815-round Trivium. The experimental result shows that no cube could be completely recovered within

a given period of time because the superpolies for random cubes are too complex.

Keywords Cube attacks, division property, key-recovery attacks, trivium.

1 Introduction

Trivium[1] is one of the eSTREAM hardware-oriented finalists, a bit oriented synchronous
stream cipher designed by Cannière and Preneel, and it is also an international standard under
ISO/IEC 29192-3:2012. Trivium is composed of a 288-stage quadratic nonlinear feedback shift
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register (NFSR) and a linear filtering function. Because of its simple design structure and high
level of security, Trivium has attracted extensive attention.

The cube attack is one of the most effective cryptanalytic techniques against Trivium at
present, first proposed by Dinur and Shamir at Eurocrypt 2009[2]. The basic idea of a cube
attack is as follows. The output bit of a stream cipher can be regarded as a tweakable polynomial
f(x, v), where x are secret key variables and v are public IV variables. Let I be a subset of IV
indices and tI =

∏
i∈I vi. Then, f(x, v) can be written as

f(x, v) = tI · pI ⊕ qI(x, v),

where each term of qI is not divisible by tI . In the preprocessing phase, by assigning all possible
combinations of 0/1 values to the IV variables indexed by I, 2|I| polynomials are obtained from
f and their symbolic sum pI is called the superpoly of I. Consequently, in the online phase,
an attacker can build a system of equations on secret key variables x by inquiring the values
of all the superpolies obtained in the preprocessing phase. Then some key bits information can
be recovered by solving the system of equations. It can be seen that the critical step of cube
attacks is to recover a bundle of nonconstant superpolies. In practice, whether a superpoly of a
cube can be recovered is decided by two factors. One is the superpoly recovery technique for an
iterated tweakable polynomial. The other is the choice of proper cubes. Generally a low-degree
superpoly is more easily to be recovered because of sparsity.

Since the cube attack was proposed, a series of improvements made the cube attack play
an increasingly important role in the cryptanalysis of stream ciphers, especially in the crypt-
analysis of Trivium. According to how to recover superpolies, cube attacks are classified into
experimental cube attacks (or traditional cube attacks) and division property based cube at-
tacks. In experimental cube attacks, superpolies are recovered by performing a large number
of linearity/quadratic tests, and so their efficiency and effectiveness heavily rely on the sizes of
cubes. Here are some benchmarks for experimental cube attacks on Trivium. In [2], where cube
attacks were first proposed, there were 35 linear superpolies recovered for 767-round Trivium.
In [3], Möbius transformation being introduced to cube attacks with which a set of subcubes can
be tested simultaneously, there were 12 linear superpolies and 6 quadratic superpolies recov-
ered for the 799-round Trivium. In [4], an effective method to construct useful cubes for linear
superpolies being proposed, there were 42 linear superpolies recovered for 805-round Trivium.
The power of the experimental cube attack is mainly restricted by the sizes of cubes which
should be within the experimental range, say less than 40. This was overcome by the division
property based cube attacks. The bit-based division property was first introduced to cube at-
tacks by Todo, et al. at CRYPTO 2017[5]. With the MILP modeling technique, the division
property can exploit superpolies for large cubes and so evaluate the security of a stream cipher
against large cubes. In [5, 6], the MILP-aided division property can reveal some key variables
not appearing in the superpoly of a given cube for up to 832-round Trivium utilizing a cube
of size 72. Later, some technical improvements were given in [7], a constant 0 superpoly was
given for 839-round Trivium using a cube of size 78 (The superpoly was later proved to be 0
in [8, 9]). In order to recover exact superpolies in division property based cube attacks, the
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authors in [8, 10] tried to build MILP models describing the three-subset division property
without unknown subset. Then, a balanced superpoly was recovered for 842-round Trivium
with a cube of size 78 in [10]. Then, Hu, et al. also recovered two superpolies for 842-round
Trivium with two cubes of size 76 and 77[11]. Very recently, a new framework for recovering the
exact ANFs of massive superpolies based on the monomial prediction technique was proposed
by Hu, et al. at ASIACRYPT 2021, and the exact ANFs of the superpolies for 843-, 844-, and
845-round Trivium are recovered in [12]. So far 845 is the largest number of rounds for Trivium
that a superpoly could be recovered. But the superpolies recovered in [12] are not theoretically
balanced. At FSE 2021, Sun proposed a new heuristic algorithm in [13] to search cubes with
a balanced secret variable from a preset of candidate cubes. Using the heuristic algorithm,
the author recovered a balanced superpoly for 843-round Trivium with a cube of size 78 and
presented practical attacks against 806- and 808-round Trivium. Beside the original idea of
cube attacks, there are some variants of cube attacks, say correlation cube attacks[14], dynamic
cube attacks[15–17], and cube testers[18–23].

Considering the state of the art in cube attacks, both for experimental cube attacks and the
division property based cube attacks, there are available techniques for recovering superpolies.
In particular, the only reason that a superpoly can not be exactly recovered in the division
property based cube attacks is that the algebraic normal form (ANF) of the superpoly is
too large. Since randomly selecting cubes is very low efficient, especially as the number of
initialization rounds increases, to further improve the effectiveness of cube attacks, constructing
proper cubes with low-degree superpolies seems to be critical. Besides, to recover a bundle of
superpolies not just one superpoly, cube selecting stage is also important.

Some heuristic methods to construct cubes for key-recovery attacks were proposed in [3, 4,
13, 24]. In [3], the authors proposed a new method to construct a candidate cube by jointing
two subcubes satisfying some specific properties. Then, all subcubes of the candidate cube
are tested using Möbius transformation to find linear/quadratic superpolies. In particular,
in [3], the authors said that the only way linear superpolies have been found for 799-round
Trivium was using this method to construct cubes. Thus, it is thought that randomly searching
cubes is almost impossible for experimental cube attacks against Trivium with more than 800
initialization rounds. In [24], Ye and Tian put forward a new concept of useful cubes and
a method to recover the superpolies of the useful cubes. According to the update function
of Trivium, the output function can be represented as a polynomial on the internal state at
some time instance t. For a given cube I, by using the numeric mapping method proposed in
[22], the algebraic degree of each term can be estimated. If the estimated degree of each term
involved in the output function is less than or equal to |I|, then the cube I is called a useful
cube. In [4], a new heuristic method for constructing cubes used to find linear superpolies is
proposed. In this method, the initial cube with a small size is gradually expanded to a large
cube according to some greedy strategy. Then, some subcubes of the large cube are tested
using Möbius transformation. Later in [13], the author proposed a heuristic algorithm to reject
useless cubes from a set of candidate cubes, and the remaining cubes are likely to have balanced
superpolies. However, there is no good method in [13] to construct a desirable set of candidate
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cubes. For instance, to attack 843-round Trivium, the preset set of candidate cubes is all cubes
with dimension 78 and to attack 806- and 808-round Trivium, the preset candidate cubes are
from [4].

Up to now the cube construction method proposed in [4] has the highest success rate and
was shown to be powerful among experimental cube attacks. However, because it relies on
Möbius transformation to test a large cube, the target number of rounds is restricted by an
experimental range in [4].

1.1 Our Contributions

In this paper, we devote our attention to the problem of constructing cubes potentially
yielding relatively low-degree superpolies compared with random cubes, since the ANF of a
low-degree polynomial has small size. We propose a heuristic cube criterion and a new cube
search algorithm. First, the new algorithm can construct large cubes whose sizes can be more
than 50. Second, the new algorithm will yield a very small set of candidate cubes which can be
used in the division property based cube attacks.

The heuristic cube criterion together with the cube sieve algorithm proposed in this paper is
mainly inspired by the work in [3]. It is observed that the output function f of Trivium can be
recursively expressed as a polynomial with 6 quadratic terms, say s1,1s1,2, s2,1s2,2, · · · , s6,1s6,2,
and so the superpoly pI of I in f is the sum of 6 superpolies pI,1, pI,2, · · · , pI,6 out of these 6
quadratic terms, i.e., pI =

⊕6
j=1 pI,j. Since canceling out terms between pI,1, pI,2, · · · , pI,6 is

very unlikely, for a cube I with a low-degree superpoly, it is necessary that for a large number
of partitions {I1, I2} with I1 ∪ I2 = I, the superpolies of I1 (resp. I2) in the 12 registers
s1,1, s1,2, s2,1, s2,2, · · · , s6,1, s6,2 should all be low-degree. Thus our main idea to sieve cube is
dividing a large cube into two disjoint small subcubes and testing the superpolies of two small
cubes on 12 related registers. First, in our cube sieve algorithm, this partition process will
repeat a sufficient number of times in order to ensure that the final output cubes have the
desirable property of low-degree superpolies with a high probability. Second, a new technique
based on Möbius transform is proposed to simultaneously test one partition for a number of
candidate cubes, that is to say, we simultaneously treat a set of candidate cubes. Third, after
experimental testing, the candidate cubes such that the number of disjoint partitions passing
through our test exceeds a given threshold are maintained and called valid cubes, which are
listed in some order. Valid cubes outputted by our algorithm could be used in the three-subset
division property based cube attacks. We remark that though quadratic/linearity tests are
used in our algorithm, the size of outputting valid cubes could exceed the experimental range.
For instance, by testing subcubes of size 25, we could construct valid cubes of size around 50.
Beisdes, before practically recovering the superpolies of valid cubes, their algebraic degrees are
undetermined since we only test a part of partitions not all. This implies that there is no strict
upperbound on the superpolies recovered from valid cubes, which is good for increasing success
probability.

To illustrate the feasibility of the attack strategy, we applied it to 815-round Trivium. In
the experiment, we kept 441 valid cubes obtained through our cube sieve algorithm whose
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sizes range from 41 to 48 and tried to recover their superpolies using the three-subset division
property modeling technique in [10]. We successfully recovered 417 superpolies, among which
there are 165 non-constant polynomials. It can be seen that the success rate of valid cubes for
recovering superpolies is about 94.56%. Consequently, using these superpolies, we can mount a
key-recovery attack against 815-round Trivium by setting up a system of nonlinear equations in
key variables. The attack complexity for full-key recovery is about 269+270+272. At the same
time, to verify the effectiveness of this work, we carried out a comparative experiment with
random cubes. We used the three-subset division property modeling technique in [10] to recover
the superpoly of a random cube. To save time, we set a time limit for each cube, that is, for a
cube, if its superpoly can not be restored within 12 hours, the process was stopped and a new
cube was randomly selected. As a result, a total of 71 cubes were selected randomly, but none
of their superpolies was recovered within the specified time. As a comparison, we summarize
the cube attacks based key-recovery attacks against the round-reduced Trivium in Table 1.

Table 1 A summary of key-recovery attacks on Trivium

Attack type # of rounds
Off-line phase

Total time ref.
cube size # of key bits

Practical

672 12 63 218.56 [2]

709 22−23 79 229.14 [25]

767 28−31 35 245.00 [2]

784 30−33 42 239 [3]

805 32−38 42 241.40 [4]

806 35−37 45 239.86 [13]

808 39−41 37 244.58 [13]

Theoretical

799 32−37 18 262.00 [3]

802 34−37 8 272.00 [26]

805 28 7 273.00 [14]

806 34−37 16 264 [4]

815 41−48 10† 272.46 Subsection 4.2

835 35 5 275.00 [14]

832 72 1 279.01 [5, 6, 8]

832 72 > 1 < 279.01 [24]

840 78 1 279.58 [10]

840 75 3 277.32 [11]

840 47−62 3.68‡ 276.32 [12]

841 78 1 279.58 [10]

841 76 2 278.58 [11]

841 56 1* 278� [12]

842 78 1 279.58 [10]

842 76 2 278.58 [11]
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Table 1 (Continued) A summary of key-recovery attacks on Trivium

Attack type # of rounds
Off-line phase

Total time ref.
cube size # of key bits

Theoretical

842 56 1* 278� [12]

843 54−57,76 5* 277 [12]

843 78 1 279.58 [13]

844 54−55 2* 278 [12]

845 54−55 2* 278 [12]

† : By using the recovered superpolies, we can extract averagely 10 bits of the key information.
‡ : By using the recovered superpolies in [12], the authors can extract averagely 3.68 bits of the

key information.
* : In [12], the recovered superpolies are considered to be balanced by experiments.
� : A superpoly recovered in [12], together with the two superpolies recovered in [11], can obtain

3 key bits, and the total complexity is 278.

1.2 Organizations

The rest of this paper is organized as follows. In Section 2, we give some basic definitions and
concepts. In Section 3, we describe in detail the heuristic cube sieve algorithm. In Section 4,
we apply our cube search algorithm to 815-round Trivium and make a comparison with random
cubes. Finally, Section 5 concludes this paper.

2 Preliminaries

2.1 Boolean Functions and Algebraic Degree

Let F2 denote the binary field and F
n
2 the n-dimensional vector space over F2. The mapping

from F
n
2 to F2 is called an n-variable Boolean function, and denote by Bn the set of all n-variable

Boolean functions. A Boolean function f ∈ Bn can be uniquely represented as a multivariable
polynomial over F2,

f(x1, x2, · · · , xn) =
⊕

c=(c1,c2,··· ,cn)∈F
n
2

acx
c1
1 xc2

2 · · ·xcn
n ,

which is called the algebraic normal form (ANF) of f , and where ac ∈ F2. The algebraic degree
of f , denoted by deg(f), is defined as

deg(f) = max{wt(c)|ac �= 0, c ∈ F
n
2},

where wt(c) is the Hamming weight of c. For ease of description, in this article, we refer to a
term with greater degree than 2 as a high-degree term.

2.2 Cube Attacks

Let x1, x2, · · · , xn be n variables. For a given set of indices I = {i1, i2, · · · , i|I|} ⊂ {1, 2, · · · , n},
we can determine a specific term tI = xi1xi2 · · ·xi|I| , where the variables involved in tI are called
cube variables, and we call I a cube index. Then, according to whether the terms in f ∈ Bn
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are divisible by tI , f can be uniquely decomposed as

f(x1, x2, · · · , xn) = tIptI ⊕ q(x1, x2, · · · , xn),

where each term in q(x1, x2, · · · , xn) is not divisible by tI , and ptI is independent of cube
variables. Let CI , which is called an |I|-dimensional cube, be a set of 2|I| values where cube
variables are taking all possible combinations of values, and all remaining variables (we call
noncube variables) are fixed to any value. The sum of f over all values of the cube CI is

∑

CI

f(x1, x2, · · · , xn) = ptI .

The polynomial ptI is called the superpoly of CI in f . For the sake of convenience, the above
summation process is called the cube summation, and ptI is called the superpoly of I in f .

In a cube attack against stream ciphers, the output bits can be regarded as a tweakable
Boolean function f(x, v) on key variables x = (x1, x2, · · · , xn) and the public IV variables
v = (v1, v2, · · · , vm). Because of a number of nonlinear iterations in the initialization stage,
the function f(x, v) is complicated. The core idea of cube attack is that, by selecting the
appropriate cube index I in the offline stage, and performing the cube summation on the
output function with noncube variables fixed to some arbitrary values, we can simplify f(x, v),
obtain the simple expression ptI on the key variables, and then establish the key equations.
The key information is obtained by solving the equations in the online stage.

2.3 The Bit-Based Division Property and Algebraic Degree Evaluation

The Bit-Based Division Property. The concept of division property, a generalization
of the integral property, was proposed in [27] at EUROCRYPT 2015. For Sbox-based block
ciphers, the authors described the propagation rules of division property for the basic opera-
tions such as And, Copy, and Xor. Consequently, according to the specific round function of
ciphers, the division property of ciphertext can be figured out by evaluating the propagation of
the division property of plaintext. Then, the division property can be used to detect the better
integral characteristics for word-oriented cryptographic primitives. Subsequently, at FSE 2016,
the bit-based division property was introduced in [28] so that the propagation of integral char-
acteristics can be described in a more precise manner. The definition of the bit-based division
property is as follows.

Definition 2.1 (Bit-Based Division Property) Let X be a multiset whose elements take
a value of F

n
2 . Let K be a set whose elements take an n-dimensional bit vector. When the

multiset X has the division property D1n

K
, it fulfils the following conditions,

⊕

x∈X

xμ =

⎧
⎨

⎩

unknown, if there exists k ∈ K s.t. μ � k,

0, otherwise,

where μ � k if μi ≥ ki for all i ∈ {1, 2, · · · , n}, and xμ =
∏n

i=1 xµi

i .

Let Er be an r-round iterative cipher of size n. Assume that X is the input set with the
division property D1n

K0
. Denote by Y the corresponding output set created from X by Er.
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Based on the propagation rules of basic operations proved in [28], the division property of
Y, denoted by D1n

Kr
, can be deduced by evaluating the propagation of the division property

for every round function. In other words, the division property of Y can be evaluated as
K0 → K1 → · · ·Ki → · · · → Kr, where D1n

Ki
is the division property of the internal state after i

rounds. However, as r increases, the size of Kr expands exponentially towards O(2n) requiring
huge memory resources. Therefore, Xiang, et al. proposed the MILP method and solved the
memory crisis in [29].

In order to apply the Mixed Integer Linear Programing (MILP) method to bit-based division
property, the author first introduced the concept of division trails at ASIACRYPT 2016, which
is defined as follows.

Definition 2.2 (Division Trail) Let us consider the propagation of division property
K0 → K1 → · · ·Ki → · · · → Kr. Moreover, for any vector k∗

i+1 ∈ Ki+1, there must exist
a vector k∗

i ∈ Ki such that k∗
i can propagate to k∗

i+1 by the propagation rule of division
property. Furthermore, for (k0, k1, · · · , kr) ∈ (K0 ×K1 × · · · ×Kr) if ki can propagate to ki+1

for i ∈ {0, 1, · · · , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Xiang, et al. proved that the basic propagation rules Copy, And, Xor of the division property
can be translated as some variables and constraints of an MILP model, see [29] for the details.
With this method, all possible division trials can be covered with an MILP model M and the
division property of particular output bits can be acquired by analyzing the solutions of M.
At CRYPTO 2017, Todo, et al. first applied the bit-based division property to cryptanalysis of
stream ciphers, described the propagation rules of division property in stream ciphers, and built
the MILP model for stream ciphers[6]. Besides, they proposed the division property based cube
attack, which can determine whether a given key variable must not appear in the superpoly of
a certain I, by solving the MILP model. Later, Hao, et al. proposed the Flag technique in [7],
which can describe the propagation of division property more precisely, to improve the division
property based cube attack, with other techniques introduced in [7]. Meanwhile, for a given set
of cube variables, the improved method can be used to estimate the degree of the superpoly for
Trivium-like ciphers, see [7] for detailed.

The Division Property Based Degree Evaluation. For applying the division property
to degree evaluation, the Proposition 4, proposed by Todo et al in paper [5, 6], was generalized
in paper [7], and the following proposition was obtained:

Proposition 2.3 Let f(x, v) be a polynomial, where x and v denote the secret and public
variables, respectively. For a set of indices I = {i1, i2, · · · , i|I|} ⊂ {1, 2, · · · , m}, let CI be a set
of 2|I| values where the variables in {vi1 , vi2 , · · · , vi|I|} are taking all possible combinations of
values. Let kI be an m-dimensional bit vector such that vkI = tI = vi1vi2 · · · vi|I| . Let kΛ be

an n-dimensional bit vector. Assuming there is no division trail such that (kΛ||kI)
f→ 1, the

monomial xkΛ is not involved in the superpoly of the cube CI .

According to Proposition 2.3, the existence of the division trail (kΛ||kI)
f→ 1 is in accordance

with the existence of the monomial xkΛ in the superpoly of I. Therefore, the attacker can
evaluate the algebraic degree of Trivium-like ciphers by solving the MILP model with the
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objective function and some concrete restriction conditions, and Proposition 2.3 guarantees
that the estimated degree must be the upper bound of the algebraic degree of the superpoly.

At present, the algebraic degree evaluation based on numeric mapping[22] and division prop-
erty are the two most effective methods for Trivium-like ciphers. Compared with the method
based on numeric mapping, the method based on division property is more accurate, but takes
more time. As the initialization rounds r of Trivium-like ciphers increases, it becomes more
difficult to return the upper bound of the degree of the superpoly.

2.4 A Method to Recover Superpoly Based on the Milp-Aided Division Property

The cube attack based on division property[6, 7] just tells us whether a given key variable
or a given monomial is definitely not in the superpoly. However, it cannot guarantee that
the superpoly is a non-constant polynomial, when it tells us that there is a certain monomial
involved in the superpoly. For this weakness, Ye and Tian have improved it in [9], and then
proposed a new method to recover the superpoly based on the MILP-aided division property.
Here, two important lemmas in [9] are simply described.

Lemma 2.4 For a set of indices I ⊂ {1, 2, · · · , n}, let kI be an m-dimensional bit vector
such that vkI =

∏
i∈I vi. Assume that u = (s(t))

ωu , where s(t) = (s(t)
1 , s

(t)
2 , · · · , s

(t)
N ) is an

N -dimensional vector made up of the internal state bits of the target cipher after t rounds of
iteration, and ωu = (ω1

u, ω2
u, · · · , ωN

u ) ∈ F
n
2 . Namely, u is a term which is the product of some

internal state bits of s(t). If there is no division trail such that (0, kI)
s(t)→ ω = (ω1, ω2, · · · , ωN)

for each ω � ωu = (ω1
u, ω2

u, · · · , ωN
u ), then the superpoly of I in u is 0-constant, where ω � ωu

means that ωi ≤ ωi
u for 1 ≤ i ≤ N , and in this case, the term u is called an invalid term.

Lemma 2.5 Let I be a set of cube indices. Assume that the output bit f is presented as a
polynomial in s(t), i.e., f = gt(s(t)). Then, according to Lemma 2.4, gt(s(t)) could be rewritten
as gt(s(t)) = g1

t (s(t))⊕ g2
t (s(t)), where each term u involved in g2

t (s(t)) is an invalid term for I.
It can be seen that, the superpoly of I in f = gt(s(t) is exactly the superpoly of I in g1

t (s(t)).

According to the above two lemmas, the authors can recover the superpoly of a given cube
indexed by the set I. Firstly, the output function f can be represented as a polynomial on the
internal state s(t), i.e., f = gt(s(t)). Then, every term u involved in gt(s(t)) is checked with
the MILP-aided division property, and the invalid terms need to be discarded. As a result,
the authors could obtain a simplified polynomial g1

t (s(t)), and on the basis of Lemma 2.5, the
superpoly of I in g1

t (s(t)) equals to the superpoly in gt(s(t)). Next, they further express g1
t (s(t))

as a polynomial on the internal state s(t−t1), and obtain the simplified polynomial g1
t−t1(s

(t−t1))
by repeating the above process. By performing the above procedure iteratively, they can finally
obtain a polynomial g1

0(s
(0)) such that the superpoly of I in g1

0(s
(0)) is exactly the superpoly

in f . Therefore, the superpoly ptI can be recovered easily according to how s(0) is initialized.

2.5 A Method to Construct Potentially Good Cubes

In [4], for Trivium-like ciphers, combining the idea of GreedyBitSet algorithm with division
property[18], Ye and Tian proposed a new algorithm to construct cubes which may have linear
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superpoly, through extending a starting cube set iteratively with steep IV variables and gentle
IV variables defined by the authors. The algorithm is divided into two stages.

Stage 1 Determine starting cube sets.
By analyzing the concrete structure of Trivium, the authors introduced the concept of the

preference bit, which is formally described in the following definitions.

Definition 2.6 (The Preference Bit) Among the six internal state bits in output function
of r-round Trivium, the internal state bit which is the most likely to contribute linear superpolies
is called the preference bit of r-round Trivium.

Then, the algorithm to predict the preference bit of r-round Trivium was proposed in [4].
For constructing the cubes possibly with linear superpoly, the authors expressed the preference
bits of r-round Trivium as a quadratic polynomial with only one quadratic term by using the
update function. If there is a cube yielding a linear superpoly on at least one of the state bits
involved in the quadratic term, then it is set as a starting cube.

Stage 2 Expand the starting cube with steep IV variables and gentle IV variables.
The authors extended the obtained initial cube index I ′ by adopting a greedy strategy. In

the greedy strategy, the criterion for each selection of IV variables is the estimated degree of
the superpoly, and in different cases, they chose one of the steep IV variable and the gentle
IV variable, which are defined in [4]. Firstly, the evaluated degree of the superpoly is reduced
rapidly by iteratively adding a steep IV variable to I ′. They want to construct the cubes which
have linear superpoly, therefore, if the degree estimation result is linear, no variables are added,
and the cube at this time is set to a candidate cube. If the superpoly becomes a 0-constant
polynomial after adding a steep IV variable, then the last added variable will be taken out of
I ′, and the gentle IV variables will be set to the cube variables iteratively, to control the degree
of the superpoly to approach the linearity slowly.

For 805-round Trivium, a number of candidate cubes were constructed by using this method,
and then for each candidate cubes, the authors detected all subcubes simultaneously by using
Möbius transformation, and all of candidate cubes could find a subcube with linear superpoly.
As a consequence, we think that, this method is able to construct candidate cubes, including
some subcubes which possibly have the linear superpoly with a high probability.

3 A Heuristic Algorithm to Sieve Cubes

With the increase of the number of initialization rounds of Trivium, the dimension of cubes
will also increase. To efficiently search cubes with low-degree superpolies, we propose a heuristic
cube criterion. Then, we put forward a cube sieve algorithm based on this criterion, which can
get valid cubes by sieving all the subcubes of the given cube I, and for convenience, we call
such the cube I a target cube in the following.

We will first briefly describe Trivium in Subsection 3.1. Then introduce the heuristic cube
criterion in Subsection 3.2. Finally the cube sieve algorithm for Trivium is given in Subsec-
tion 3.3.



2244 LIU CHEN · TIAN TIAN · QI WENFENG

3.1 Description of Trivium

The main building block of Trivium is a Galois nonlinear feedback shift register. At each
clock cycle, there are three bits of the internal state updated by different quadratic feedback
functions respectively, and the others are updated by shifting. Trivium is divided into three
registers, a total of 288 bits of the internal state. In the initialization phase, an 80-bit secret key
and an 80-bit IV are loaded in the internal state of Trivium. After updating the internal state
iteratively for 1152 rounds, Trivium starts to output keystream bits. We show the pseudo-code
of Trivium in Algorithm 1.

Algorithm 1: Trivium

Input: k = (k0, k1, · · · , k79), v = (v0, v1, · · · , v79), N

Output: z = (z1, z2, · · · , zN)
(s1, s2, · · · , s93) = (k0, k1, · · · , k79, 0, · · · , 0)1

(s94, s95, · · · , s177) = (v0, v1, · · · , v79, 0, · · · , 0)2

(s178, s179, · · · , s288) = (0, 0, · · · , 0, 1, 1, 1)3

for i from 1 to 1152 + N do4

if i > 1152 then5

Output: zi−1152 = s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s2886

t1 = s66 ⊕ s93 ⊕ s91s92 ⊕ s1717

t2 = s162 ⊕ s177 ⊕ s175s176 ⊕ s2648

t3 = s243 ⊕ s288 ⊕ s286s287 ⊕ s699

(s1, s2, · · · , s93) = (t3, s1, · · · , s92)10

(s94, s95, · · · , s177) = (t1, s94, · · · , s176)11

(s178, s179, · · · , s288) = (t2, s178, · · · , s287)12

3.2 A Heuristic Cube Criterion

The output function of Trivium is given by f = s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288,
which involves 6 internal state bits at the r-th round. According to the update function
tl = sisi+1 ⊕ si+2 ⊕ sk ⊕ sj in Trivium, each bit si of the internal state can be recursively
expressed as a polynomial with a single degree 2 monomial. For the sake of convenience, de-
note s1,1s1,2, s2,1s2,2, · · · , s6,1s6,2 by the 6 quadratic terms contained in the output function,
and there are 12 bits of the internal state involved in the high-degree part of the polynomial
expression of the output bit.

The cube CI can be determined by the index set I, for convenience of description and
without ambiguity, we also call the set I a cube in the following. For a given cube I, we assume
that the degree of the term tI determined by I is greater than the terms outside the high-degree
part of the output function f . In this case, the superpoly of I in f is exactly the superpoly in
the high-degree part of f , namely, the sum of the superpolies in the 6 quadratic terms contained
in f . Let {I ′, I ′′} ∈ PartI be a partition of I, which means that I ′, I ′′ satisfy the condition
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I ′ ∪ I ′′ = I, where PartI is the set including all the different partitions of I. Based on the
above assumptions, the superpoly of I satisfies the following property.

Property 3.1 For a given cube I, if the degree of the term tI =
∏

i∈I vi is greater than
the terms outside the high-degree part of the output function f , then the superpoly ptI of I in
f satisfies the following equation,

ptI =
⊕

{I′,I′′}∈PartI

6⊕

i=1

p′i,1p
′′
i,2, (1)

where p′i,j and p′′i,j are the superpoly of I ′ and I ′′ in si,j (i ∈ {1, 2, · · · , 6}, j ∈ {1, 2}).
Proof The bit si involved in f can be regarded as a polynomial in cube variables, and the

ANF of si is expressed as
si =

⊕

I′⊂I

p′itI′ ,

where p′i is the coefficient of the ANF, and tI′ =
∏

i∈I′ vi. If I ′ = ∅, then tI′ = 1. Therefore,
the quadratic term si,1si,2 can be represented as

si,1si,2 =
⊕

I′,I′′⊂I

p′i,1p
′′
i,2tI′tI′′ .

Evidently, the superpoly of I in si,1si,2 satisfies

pi =
⊕

{I′,I′′}∈PartI

p′i,1p
′′
i,2.

Since the superpoly ptI of I in f is the sum of the superpolies in the six quadratic terms,
Equation (1) holds.

According to Property 3.1, we present a new detection method called partition test.

Definition 3.2 (Partition Test) For a given cube I, partition I into disjoint two sub-
cubes {I ′, I ′′}. Then quadratic/linearity/constant tests are performed on the 12 bits si,j (i ∈
{1, 2, · · · , 6}, j ∈ {1, 2}) involved in the high-degree part of the output function f by using sub-
cubes I ′ and I ′′ respectively. If for any l ∈ {1, 2, · · · , 6}, there are degI′(p′l,1) + degI′′(p′′l,2) ≤ 2
and degI′′(p′′l,1)+degI′(p′l,2) ≤ 2, then we call the cube I passes one single partition test, where
degI′(p′i,j) denotes the degree of the superpoly p′i,j for I ′ in si,j for i ∈ {1, 2, · · · , 6}, j ∈ {1, 2}.

The idea of this partition test is estimating the degree of the polynomial
⊕6

i=1 p′i,1p
′′
i,2 by

using different partitions {I ′, I ′′} of I. In order to use partition test for a practical attack, we as-
sume that as the number of initialization rounds r of Trivium increases, in Equation (1), it hap-
pens less and less that the maximal degree monomials involved in the polynomial

⊕6
i=1 p′i,1p

′′
i,2

will cancel each other in the sum. So, if the given cube I does not pass the single partition
test, it does not mean that the superpoly of I must have high-degree terms. However, if the
cube fails in many partition tests, we believe that, there are plenty of terms with high-degree
in the superpoly, and the superpoly is difficult to be recovered. Based on the above point, we
give the following criterion.
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Heuristic Cube Criterion. For a given cube I, we perform N different partition tests
on it. If the more times the partition test for I fails, the more high-degree terms the superpoly
of I involves, then the more difficult it is to be recovered the ANF of the superpoly; In contrast,
if the more times the partition test for I is passed, it is considered that the superpoly of I

contains fewer high-degree terms, and the easier it is to be recovered.
According to this criterion, we can quickly judge whether the superpoly of I in output

function f is easy to be recovered or not, by multiple partition tests for a given cube I. Moreover,
since we test the cube I by using its subcubes after split, the number of the cipher operations
required by the test is only related to the dimension of the subcubes. In the next subsection,
we will give a heuristic cube sieve algorithm.

3.3 A Heuristic Cube Sieve Algorithm

The goal of the algorithm is to efficiently filter out the valid subcubes from the given target
cube I. We divide the actual sieving process into three stages.

The primary goal of the first phase is to produce partitions that meets the requirements.
We partition I differently for N times, and obtain a set

PartI
Δ= {{I ′i, I ′′i }|I ′i ∪ I ′′i = I and I ′i ∩ I ′′i = ∅ and

∣
∣|I ′i| − |I ′′i |

∣
∣ ≤ 1, i ∈ {1, 2, · · · , N}}.

It can be seen that, we have put forward several requirements for the partitions, and we will
explain the reasons for these conditions at the end of this section.

In the second phase, we perform the partition tests for I by using the partitions {I ′, I ′′} ∈
PartI . In order to improve detection efficiency, we introduce Möbius transformation into the
partition tests. In the single partition test, we first conduct experimental tests on the 12 bits
si,j (i ∈ {1, 2, · · · , 6}, j ∈ {1, 2}) involved in the high-degree part of f by using all subcubes
of I ′ at the same time, and record the degree evaluations of the superpolies of the subcubes
with the dimension greater than or equal to |I ′| − m. For I ′′, in the same way, we record the
degree evaluations of the superpolies of the subcubes with the dimension greater than or equal
to |I ′′| − m, where the parameter m determines the minimum dimension of the cube which we
need. We denote the result of the test as degI′ (pk,j) ∈ {−9, 0, 1, 2, 3}, where these values in the
set represent that the polynomials pk,j are a 0-constant polynomial, a 1-constant polynomial, a
linear polynomial, a quadratic polynomial and a polynomial with degree greater than 2. Next
we retrieve the results recorded, if there are I ′j ⊂ I ′i and I ′′l ⊂ I ′′i that satisfy the following
conditions,

degI′
j
(p′k,1) + degI′′

l
(p′′k,2) ≤ 2 and degI′′

j
(p′′k,1) + degI′

l
(p′k,2) ≤ 2, for any k ∈ {1, 2, · · · , 6}.

Then, it indicates that the subcube Ij,l
Δ= I ′j ∪ I ′′l has passed the single partition test, and

Ij,l is called candidate cube. Next, we establish the set Φ, which contains all candidate cubes
which pass a single test,

Φ ={Ij,l
Δ= I ′j ∪ I ′′l | degI′

j
(p′k,1) + degI′′

l
(p′′k,2) ≤ 2 and

degI′′
l

(p′′k,1) + degI′
j
(p′k,2) ≤ 2, for any k ∈ {1, 2, · · · , 6}}.
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By reason of above requirements for the cube I when it is split, we can guarantee in a
single partition test, for each subcubes with dimension greater than or equal to |I| − m, we
conduct one and only one partition test on it. Therefore, it is impossible that the same subcube
appears multiple times in the Φ. After N partition tests, N sets Φi (i ∈ {1, 2, · · · , N}) can be
obtained. Next, we construct the multiset MultiCube =

⋃N
i=1 Φi, count the candidate cube in

MultiCube, and create a table TI of candidate cubes based on the order of count from largest
to smallest.

At the last stage, the candidate cubes will be filtered according to the preset threshold K.
According to the heuristic cube criterion proposed in Subsection 3.2, we believe that the more
times the candidate cube passes the test, the easier it is to recover its superpoly. So, in the
practice, we will sieve the valid cubes from the candidate cubes by the preset threshold value
K. As we know, each subcube of I with degree greater than or equal to |I|−m has been tested
N times, and in the table TI , the count of candidate cubes indicates the number of times that
have passed partition tests. If the count of a subcube is less than N −K, we think it is difficult
to recover its superpoly, and discard it. On the contrary, we save the subcube, and define the
priority in order of counting from the largest to the smallest. Finally, we can obtain a collection
including valid cubes with a priority.

Now explain why the above requirements are set for the cube split. By observing the update
function of Trivium, it can be seen that the quadratic term si,1si,2 is the product of adjacent
state bits. When si,1 and si,2 are regarded as polynomials in key variables and IV variables,
they are similar in complexity. So, for a partition {I ′, I ′′} of I, the dimension difference of I ′ and
I ′′ is required to be at most 1, in order to avoid 0-constant polynomial in the superpolies p′i,1
of I ′ and p′′i,2 of I ′′ in si,j (i ∈ {1, 2, · · · , 6}, j ∈ {1, 2}) to make

⊕6
i=1 p′i,1p

′′
i,2 and

⊕6
i=1 p′′i,1p

′
i,2

0-constant polynomials. Because in a single partition test, if |I ′| is much bigger than |I ′′|, then
the superpolies of I ′ in si,j (i ∈ {1, 2, · · · , 6}, j ∈ {1, 2}) are more likely 0-constant polynomials,
and such test is meaningless. The second requirement is I ′ and I ′′ are disjoint, which can
guarantee that, in a single partition test, if the subsets I ′j , I

′
l ⊂ I ′ and I ′′h , I ′′k ⊂ I ′′ satisfy

I ′j �= I ′l or I ′′h �= I ′′k , then I ′j ∪ I ′′h �= I ′l ∪ I ′′k . Namely, in a single partition test, all detected
subcubes are different. Meanwhile, we only record the detection results of the subcubes of I ′

and I ′′ with dimension respectively greater than or equal to |I ′| − m and |I ′′| − m. So, in a
single partition test, we can guarantee all the subcubes with dimension greater than or equal
to |I| − m has one and only one partition test. It can be seen that, a single partition test
needs 2|I

′| + 2|I
′′| cipher operations and 2max{|I′|,|I′′|} bits memory, in consequence, these two

requirements can reduce computational complexity and storage complexity.

3.4 A Simple Instance

In order to make the algorithm easier to understand, we provide a simple instance to illus-
trate the specific implementation process. Given the output polynomial h = f · g which is a
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polynomial on key = (k1, k2, · · · , k6) and v = (v1, v2, · · · , v7), where there are

f(key, v) = k1k3k6v1v2v4v7 + k1v1v3v4 + k6v1v3v7 + k1k2v1v4v7

+ k5v1v5v7 + k5v2v4v5 + k2k4v2v5v7 + k2k3v4v5v7 + k1v1v2

+ k2k5v2v4 + k3k4v2v6 + k1v3v5 + k3v2 + k4v3 + k5v6,

g(key, v) = k2k4k5v3v5v6v7 + k3k4v1v2v7 + k6v3v4v5 + v1v3

+ k1k6v1v4 + k6v2v3 + k3v2v5 + k3k5v2v7 + k5k6v3v4

+ k1k5v4v6 + k1v3 + k4v5 + k6v7.

For the given cube I = {1, 2, 3, 4, 5, 7}, we use the sieve algorithm to find the subcubes with
the low-degree and sparse superpolies. For simplicity, we only consider the subcube whose
dimension is greater than or equal to 5, that is, m = 1.

Firstly, we will divide I into two 3-dimensional disjoint subcubes, I ′ and I ′′. Since the size
of I is small, we will detect all the partitions that meet the conditions, a total of 10 different
partitions, that is, N = 10.

Secondly, we test all the subcubes with dimension greater than 4 by using different partitions.
For simplicity, we take I ′ = {1, 3, 4}, I ′′ = {2, 5, 7} as an example to illustrate. Firstly, f and
g are detected by using I ′ and I ′′, and Table 2 can be obtained. Then search the table to
find subcubes meeting both conditions degI′

i
(f) + degI′′

i
(g) ≤ 2 and degI′′

i
(f) + degI′

i
(g) ≤ 2.

Meanwhile, all the subcubes satisfying conditions are

Φ = {{1, 2, 3, 4, 5, 7}, {1, 2, 3, 4, 5}, {1, 3, 4, 5, 7}, {1, 2, 3, 5, 7}}.

Table 2 Detection result by using I ′ and I ′′

subcube index I ′ degI′
i
(f) degI′

i
(g) subcube index I ′′ degI′′

i
(f) degI′′

i
(g)

{1, 3, 4} 1 −9 {2, 5, 7} 2 −9

{1, 3} −9 0 {2, 5} −9 1

{1, 4} −9 2 {2, 7} −9 2

{3, 4} −9 2 {5, 7} −9 −9

Finally, after 10 tests, we count the number of different elements in the multiset MultiCube,
and we show the result in Table 3.

Table 3 Statistical results for elements in the multiset

subcube index count

{1, 2, 3, 4, 5, 7} 10

{1, 2, 3, 4, 5} 10

{1, 2, 3, 4, 7} 8

{1, 2, 3, 5, 7} 9

{1, 2, 4, 5, 7} 8

{1, 3, 4, 5, 7} 9

{2, 3, 4, 5, 7} 8
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Therefore, it is considered that {1, 2, 3, 4, 5, 7} and {1, 2, 3, 4, 5} have the highest priority,
and in the stage of recovering superpolies, we use them preferentially. It can be seen that
{1, 2, 3, 5, 7} and {1, 3, 4, 5, 7} also have high priority. Judging from the test results, the su-
perpolies of {1, 2, 3, 4, 7}, {1, 2, 4, 5, 7} and {2, 3, 4, 5, 7} are the most difficult to be recovered.
Then, we give specific superpolies of all the subcubes, to verify whether this method is valid.
The superpolies of all subcubes are shown in Table 4. It can be seen that the complexity of the
actual superpolies is the same as the estimate given by the algorithm, indicating that the sieve
algorithm is effective.

Table 4 Specific superpolies of I ′

subcube index Superpoly

{1, 2, 3, 4, 5, 7} k1k3k6

{1, 2, 3, 4, 5} k1k3 + k1k6 + k5

{1, 2, 3, 4, 7} k1k3k5k6 + k1k2k6 + k1k3k4 + k1k3k5 + k1k3k6

{1, 2, 3, 5, 7} k1k3k4 + k2k4 + k3k6 + k5k6

{1, 2, 4, 5, 7} k1k2k4k6 + k1k3k4k6 + k1k2k3 + k1k3k6 + k2k3k4 + k3k4k5

{1, 3, 4, 5, 7} k1k2k6 + k2k3 + k6

{2, 3, 4, 5, 7} k2k4k5k6 + k2k3k6 + k2k4k6

4 Applications to Trivium

In this section, based on the sieve algorithm given in Subsection 3.3, we propose a new
attack strategy, which can efficiently search cubes with low-degree and sparse superpolies. We
describe the new strategy in Subsection 4.1, and then present the actual results for 815-round
Trivium in Subsection 4.2. Meanwhile, in order to show that the strategy is meaningful, we
provided a comparative experiment in Subsection 4.3.

To make the results verifiable, we submitted the codes and the all experimental results to
GitHub†.

4.1 A New Attack Strategy

We divided the whole strategy into three parts, namely, constructing a target cube, sieving
valid cubes, and recovering the superpolies according to their priority.

In the phase of constructing a target cube, we adopt the method in paper [4]. It can be
seen that, the cube sieve algorithm proposed in this paper is to detect a batch of subcubes of
the target cube, and return the subcubes which pass the detection. However, this algorithm
is probabilistic, it is more necessary to find the target cube with valid subcubes with a higher
probability, so as to ensure that the subcubes we obtained can be used to recover superpolies
successfully. For this reason, we chose this method proposed in [4]. Next, we will filter a batch
of subcubes of the target cube with the cube sieve algorithm, and obtain some valid subcubes
with priority. Finally, we use the method introduced by Ye and Tian to recover the superpolies
of the subcubes we filtered, because the superpolies we want to recover are not limited to linear

†https://github.com/LiuChen522699/A-new-method-for-searching-cubes-and-its-application-to-815-round-

Trivium.git.
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and quadratic, and the method of experimental tests is not feasible. In addition, in the cube
sieve algorithm, whether the superpolies are easy to be recovered or not, is judged according to
the frequency of the occurrence of the high-degree terms, and the valid cubes have fewer such
terms. Coincidentally, the method proposed by Ye et al is easier to recover these cubes.

To demonstrate the effectiveness of this strategy, we perform an actual attack on 815-round
Trivium.

4.2 Experimental Results On 815-Round Trivium

In this section, we apply the new strategy to 815-round Trivium and give the experimental
results.

In the stage of constructing the target cubes, firstly, we found some starting cubes whose
dimension are 16 by using the preference bit. Now, the 5 starting cubes used in this paper are
shown in Table 5.

Table 5 Starting cubes

I1 = {0, 1, 2, 3, 5, 12, 19, 20, 33, 38, 42, 57, 58, 59, 63, 77}
I2 = {1, 4, 5, 6, 13, 23, 30, 36, 39, 41, 46, 47, 65, 67, 73, 75}
I3 = {2, 3, 10, 13, 20, 24, 30, 31, 38, 45, 52, 61, 63, 65, 73, 74}
I4 = {1, 11, 13, 19, 32, 33, 35, 36, 38, 51, 55, 57, 62, 64, 72, 78}
I5 = {5, 6, 7, 10, 11, 18, 26, 27, 29, 32, 34, 36, 48, 67, 71, 75}

Then, by using the GreedyBitSet algorithm, the starting cubes were expanded by adding
steep IV variables. In the next stage, instead of adding gentle IV variables, we chose appropri-
ate IV variables to construct the target cubes according to the estimated algebraic degree of
superpolies of the cubes added different non-cube IV variables, as shown in Table 6.

Table 6 Cubes extended with steep IV variables, and the degree evaluation with further extension

cubes extended with steep IV variables
further

extension

degree

evaluation

I ′
1 = {0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16,

17, 18, 19, 20, 23, 25, 27, 29, 31, 33, 36, 38, 40, 42,

44, 46, 51, 53, 57, 58, 59, 60, 63, 66, 67, 70, 77, 79}

I ′
1 ∪ {28} 3

I ′
1 ∪ {49} 1

I ′
1 ∪ {34} 1

I ′
2 = {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 13, 15, 16,

17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 32, 33,

36, 39, 41, 46, 47, 50, 52, 54, 56, 58, 60, 61,

65, 67, 69, 71, 73, 75, 79}

I ′
2 ∪ {38} 2

I ′
2 ∪ {62} 2

I ′
2 ∪ {63} 2

I ′
2 ∪ {74} 0

I ′
3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17,

18, 20, 22, 24, 26, 28, 30, 31, 32, 35, 37, 38, 41, 42,

45, 48, 50, 52, 54, 61, 63, 65, 67, 70, 73, 74, 78}
I ′
3 ∪ {33, 39} 2

I ′
4 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 16, 17,

18, 19, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35,

36, 38, 40, 42, 43, 46, 51, 53, 55, 57, 60, 62, 64, 66,

68, 70, 72, 78}
I ′
4 ∪ {61} 1

I ′
5 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16,

17, 18, 1921, 23, 25, 26, 27, 29, 30, 32, 34, 36, 38,

40, 46, 48, 50, 53, 56, 58, 63, 65, 67, 69, 71, 75, 78}

I ′
5 ∪ {60} 1

I ′
5 ∪ {73} 1
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Finally, we constructed the following target cubes and predefine the dimension of the sub-
cubes to be detected, as shown in Table 7.

Table 7 Target cubes

Target cubes dim Parameter m

I6 = I ′
1 ∪ {34, 49} 44 3

I7 = I ′
1 ∪ {28, 34} 44 3

I8 = I ′
1 ∪ {28, 49} 44 3

I9 = I ′
2 ∪ {38, 62} 46 4

I10 = I ′
2 ∪ {63, 74} 46 4

I11 = I ′
3 ∪ {33, 39} 44 3

I12 = I ′
4 ∪ {61} 48 3

I13 = I ′
5 ∪ {60, 73} 46 4

In the stage of filtering subcubes, N = 1200 and K = 80 were preset, that is, subcubes which
meet the dimension requirement of the target cubes are performed 1200 different partition tests,
and the subcubes which pass less than 1120 are discarded. However, in actual experiment, we
only recovered the superpolies of the part of subcubes with higher priority, but not all the
subcubes that passed the test. For I5, I6, and I7, we preset the parameter m = 3, that is,
detect all subcubes whose dimension are greater than or equal to 41. Then, a total of 107
subcubes passed the test were selected from I6, I7, I8, and recovered a total of 34 non-constant
polynomials. For I9 and I10, we detected all subcubes whose dimension are greater than or
equal to 42, and used the first 186 subcubes with higher priority to recover superpolies, then
we obtained 88 non-constant polynomials. For I11, we used the first 35 subcubes with the
dimension greater than 41 to recover their superpolies, and 9 non-constant polynomials were
obtained. For I12, we used the first 104 subcubes which have the dimension greater than 44
to restore the superpolies, and we got 30 non-constant polynomials. For I13, we used the first
9 subcubes which have the dimension greater than 43 to restore the superpolies, and we got 4
non-constant polynomials. Most of the other polynomials are 0-constant polynomials. Among
the detected subcubes, only a few had the superpolies which are difficult to be recovered.

Next, we used the obtained polynomials to establish nonlinear equations. In order to effec-
tively use the recovered superpolies, we simplified the equations by assigning a few key bits.
First, when k58 = 1, we could use 11 balanced polynomials to establish equations, and through
analysis, the solution space of the equations was 269; When k58 = 0 and k56 = 1, we could use
10 balanced polynomials to establish equations, and its solution space was 270; When k58 = 0
and k56 = 0, we could use 8 balanced polynomials to establish equations, and the solution space
was 272.

As a consequence, we can restore all the key-bit information, by calling 269+270+272 cipher
operations.
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4.3 A Comparison with Random Cubes

Recall that Hao, et al. proposed a modeling technique for the three-subset division property
in [10], which is one of the best superpoly recovery method using MILP-aided division property.
It can be seen that cubes exploited in [10] are of size 78 which is very large. In the following
experiment, it is shown that the superpoly recovery method in [10] based on random cubes of
moderate sizes did not work on 815-round Trivium.

In this experiment, we randomly selected cubes with the same dimension as the cubes in
Subsection 4.2 and used the three-subset division property method in [10] to recover superpolies.
Because it depended on MILP solvers, the specific time complexity could not be estimated.
Generally, a superpoly had more terms, the MILP model is solved more slowly. Therefore, we
required that the time to restore a single superpoly should not exceed 12 hours, so as to avoid
spending a large amount of time on extremely complex polynomials. We used a PC with Intel
Core i7-8700 @ 3.20GHz CPU. In a month, we tested 71 random cubes, but no superpoly was
recovered. Hence, though the division property based cube attacks could recover superpolies
for large cubes, selecting cubes with sparse superpolies is also necessary.

5 Conclusions

In this paper, we propose a new method to construct cubes with low-degree superpolies. The
core idea is to estimate the frequency of high-degree terms in a superpoly through repeatedly
partitioning a large cube into two small disjoint subcubes, so as to judge whether the superpoly
is easy to be recovered. Although the partition tests are basically experimental, the finally
constructed cube is large. In particular, the new method could be used in the three-subset
division property based cube attacks. We applied it to 815-round Trivium for instance on a
PC. As a result, we recovered 165 non-constant superpolies whose cube sizes range from 41 to
48. Compared with random cubes of similar sizes, it is very effective in recovering superpolies.
We believe that the new method could be used to construct cubes of sizes around 60 with a
bit more computation complexity, since subcubes of size 30 in the partition tests are obviously
within experimental range and could be tested efficiently.

Observing 165 superpolies recovered for 815-round Trivium, it can be found that many are
unbalanced. Whether this is due to the structure of Trivium or our cube sieve algorithm is
unclear. Raising the success probability for balanced superpolies will be one subject of our
future work.
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