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Abstract The optimal control problem with a long run average cost is investigated for unknown

linear discrete-time systems with additive noise. The authors propose a value iteration-based stochastic

adaptive dynamic programming (VI-based SADP) algorithm, based on which the optimal controller

is obtained. Different from the existing relevant work, the algorithm does not need to estimate the

expectation (conditional expectation) and variance (conditional variance) of states or other relevant

variables, and the convergence of the algorithm can be proved rigorously. A simulation example is

given to verify the effectiveness of the proposed approach.

Keywords Discrete-time linear systems, optimal control, stochastic adaptive dynamic programming.

1 Introduction

Optimal control plays an essential role in modern control theory[1]. The majority of previous
optimal control methods require perfect knowledge of system dynamics. However, in the real
world, formulating an accurate mathematical dynamic model is hard. To tackle this difficulty,
some methods are proposed to solve optimal control and related problems of unknown systems
(e.g., [2–6] and the references therein).

For deterministic discrete-time linear systems, Kiumarsi, et al.[7] solved an H∞ control prob-
lem by applying an off-policy reinforcement learning (RL) algorithm; Lewis and Vamvoudakis[8]

developed both policy iteration and value iteration-based adaptive dynamic programming (PI
and VI-based ADP) algorithms to solve the linear quadratic (LQ) regulation problem; Rizvi
and Lin[9] also proposed both PI and VI-based Q-learning approaches to solve the LQ regu-
lation problem without resorting to a discounting factor; Kiumarsi, et al.[10] gave a PI-based
Q-learning RL algorithm for the LQ optimal tracking control problem; Jiang, et al.[11] devel-
oped off-line PI, online PI, and Q-learning PI RL algorithms for the optimal tracking control
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problem of networked control systems with dropout. For deterministic discrete-time nonlinear
systems, He and Jagannathan[12] designed a neural network-based (NN-based) RL algorithm to
solve the optimal tracking control problem with input constraints; Wei and Liu[13] developed
a PI-based deterministic Q-learning algorithm to solve the optimal control problems via NN;
Wang, et al.[14] proposed a PI-based ADP approach via NN for robust control problem.

Actual systems are usually affected by noise. Generally, stochastic models are more in line
with practical problems than deterministic ones. Recently, the optimal control and related
problems of unknown stochastic discrete-time ones have achieved some attentions both in the-
oretical methods ([15–25]) and in applications ([26–28]). For discrete-time linear systems with
multiplicative noise, Liu, et al.[15] solved LQ optimal control problem of unknown mean-field
discrete-time systems based on VI ADP via NN; Liu, et al.[16] solved the LQ Stackelberg game
problem by VI-based ADP via NN; Gravell, et al.[17] gave a PI-based ADP algorithm for stochas-
tic LQ zero-sum game problem. For discrete-time linear systems with additive noise, Wang and
Yang[18] obtained nearly optimal control laws for the optimal control problem by VI-based ADP
method; Han, et al.[19] developed a PI-based ADP technique to solve the fault-tolerant optimal
tracking control problem; Wong and Lee[20] solved an optimal control problem by establishing
a PI-based Q-learning RL algorithm; Yaghmaie and Gustafsson[21] developed an off-policy PI-
based RL method for the LQ optimal control problem; Abbasi-Yadkori, et al.[22] proposed a
new model-free algorithm via reduction to expert prediction for LQ optimal control problem.
For discrete-time stochastic nonlinear systems, Xu, et al.[23] developed a learning-based predic-
tive control algorithm via NN for the optimal control; Liang, et al.[24, 25] respectively proposed
a local PI and an improved VI ADP algorithm via NN to slove the optimal control problem
under the assumption that the past and the current system noises are independent and the
state space and the admissible control set are countable.

However, most of these work make use of the expectation (conditional expectation) and
variance (conditional variance) of states or other relevant variables in the algorithm design
(e.g., [15–25]), which may result in some limitations or disadvantages: 1) Many trajectory
information or data are needed to estimate the expectation and variance; 2) the control policy
designed is not optimal owing to the existence of the estimate error; 3) the convergence of the
algorithm or the optimality of the controller is hard to analyze or prove rigorously.

In this paper, we investigate the long run average optimal control problem for unknown linear
discrete-time systems with additive noise. The performance index is a long time-averaged cost
which has a broad practical background[29, 30]. To tackle this problem, we propose a value
iteration-based stochastic adaptive dynamic programming (VI-based SADP) algorithm. We
use the stochastic recursive least squares method to obtain the estimated value of the relevant
parameters. Compared with existing methods[15–25], our proposed algorithm can obtain the
optimal controller by directly using the value of the system states without estimating the
expectation (conditional expectation) and variance (conditional variance) of states or other
variables. The system state space and the admissible control set can be uncountable in our
method. Different from [19–22], the coefficient matrix of the additive noise term can be any
unknown matrix instead of a known or unit matrix.
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It should be pointed out that there are some similar works[31–33] about stochastic optimal
control based on system parameter estimation. Compared with [31], each value iteration in this
paper does not need to solve the algebraic Riccati equation. Different from the autoregressive-
moving average with exogenous input model in [32, 33], the state space model is considered
in this paper, and moreover, the autoregressive-moving average with exogenous input model
can be transformed into a state space model, where the type of coefficient matrices is a special
case in our model. These similar works use a kind of indirect adaptive optimal control meth-
ods, in which controls are recomputed from an estimated system model at each step and this
computation is inherently complex[34].

The contributions of our work includes: 1) We propose a value iteration-based stochastic
adaptive dynamic programming algorithm, based on which the optimal controller is obtained;
2) the convergence of the value iteration-based stochastic adaptive dynamic programming al-
gorithm and the optimality of the controller can be proved rigorously under some reasonable
conditions; 3) we directly use the value of system states without estimating the expectation
(conditional expectation) and variance (conditional variance) of states or other variables in the
algorithm design.

The remainder of the paper is organized as follows. In Section 2, we present the formulation
of the optimal control problem and review the optimal control method for known discrete-time
systems. In Section 3, we give the VI-based SADP design for unknown linear discrete-time
systems with additive noise. In Section 4, we provide the VI-based SADP algorithm, the
optimal controller, the algorithm’s convergence result, and the optimal result of the control
policy. In Section 5, we offer a simulation example to show the effectiveness of the algorithm
and the controller. In Section 6, we give some concluding remarks.

Notations ‖ ·‖ represents the Euclidean norm for vectors, or the induced matrix norm for
matrices. Sr is the normed space with the induced matrix norm of all r-by-r real symmetric
matrices. N denotes the set of natural numbers. E(·) denotes mathematical expectation. For
any M ∈ Sr, denote λmin(M) as the minimum eigenvalue of M . F+ represents the pseudo-
inverse of the matrix F . For a symmetric matrix P = (pij) ∈ R

m×m, define vector-valued
function vecs(P ) = [p11 2p12 · · · 2p1m p22 2p23 · · · 2pm−1,m pmm]T ∈ R

1
2 m(m+1). For

an arbitrary column vector v = [v1 v2 · · · vn]T ∈ R
n, vector-valued function vecv(v) =

[v2
1 v1v2 · · · v1vn v2

2 v2v3 · · · vn−1vn v2
n]T ∈ R

1
2 n(n+1). ⊗ indicates the Kronecker product

operator and vec( ̂A) = [âT
1 âT

2 · · · âT
m]T, where âi ∈ R

n are the columns of ̂A ∈ R
n×m.

2 Problem Formulation

Consider the following discrete time stochastic system

xk+1 = Axk + Buk + Cωk+1, (1)

where xk ∈ R
r is the system state, uk ∈ R

r1 is the control input, and {ωk ∈ R
d, k = 0, 1, · · · }

is the noise defined in a probability space (Ω ,F , P ) with respect to a nondecreasing family
of σ-algebras {Fk}. The coefficients A, B, and C are assumed to be unknown deterministic
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matrices with appropriate dimensions.
Consider the long run average cost function

J(u) = lim sup
k→∞

1
k

k−1
∑

i=0

(xT
i Qxi + uT

i Rui), (2)

where Q = QT > 0 and R = RT > 0.
The admissible control set is[36]

Uad =
{

u| ‖xk‖2 = o(k),
k−1
∑

i=0

(‖ui‖2 + ‖xi‖2) = O(k) a.s., ui ∈ Fi, i ≥ 0
}

. (3)

We consider the following assumptions.
(A1) x0 ∈ F0.
(A2) (A, B) is controllable and (A, D) is observable, where D is any matrix satisfying

DT D = Q.
(A3) {ωk,Fk}∞k=0 is an almost surely bounded martingale difference sequence, ωk,1, ωk,2,

· · · , ωk,d are mutually independent for give k, and
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E(ω3
k,s|Fk−1) = 0 a.s.,

E{ω2
k,s|Fk−1} = ξ2

s > 0 a.s.,

lim
k→∞

1
k

k
∑

i=1

ωiω
T
i = V > 0 a.s.,

lim
k→∞

1
k

k−1
∑

i=0

(ω2
i,s − ξ2

s)2 �= 0 a.s.,

(4)

for s = 1, 2, · · · , d, where ωk = [ωk,1, ωk,2, · · · , ωk,d]T and V ∈ R
d×d is a deterministic matrix.

(A4) The sign of a certain non-zero element in matrices A and B is known, and det(A) �= 0.
(A5) The coefficient matrix C of additive noise is of row full rank.

Remark 2.1 (i) Since (A, B) is controllable, we can choose K such that A − BK is a
stable matrix and let uk = −Kxk. Then under (A3) ({ωk}∞k=0 is not necessarily a.s. bounded),
it can be verified that uk ∈ Uad (similar to [35]).

(ii) Different from the requirement on the noise in [31–33], we assume that the noise is
almost surely bounded in (A3). In fact, (A3) can be alternated by the following: {ωk,Fk} is
a sequence of d-dimensional independent and identically distributed random vectors satisfying
(4) and E(ωk) = 0 and ωk,1, ωk,2, · · · , ωk,d are mutually independent for give k and E(‖ωk‖8)
exists.

When system coefficients A, B, and C are known, the following result holds according to
Theorem 3.5 and Remark 3.4 of [36].

Lemma 2.2 (Theorem 3.5 of [36]) If (A2) holds and {ωk,Fk}∞k=0 is a martingale differ-
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ence sequence with
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

sup
k≥0

E(‖ωk‖2|Fk−1) <∞ a.s.,

lim
k→∞

1
k

k
∑

i=1

ωiω
T
i = V > 0 a.s.,

(5)

then the algebraic Riccati equation

P ∗ = ATP ∗A−ATP ∗B(R + BTP ∗B)−1BTP ∗A + Q (6)

has a unique positive definite solution P ∗, the optimal control minimizing J(u) given by (2) is

u∗
k = −(R + BTP ∗B)−1BTP ∗Axk := −K∗xk (7)

and the matrix

F ∗ = A−BK∗ (8)

is stable. The optimal value of the cost function is J(u∗) = tr(P ∗CV CT).

If V is known, then we can obtain the optimal value of the cost function (2). Generally the
algebraic Riccati equation (6) is hard to solve and some iteration algorithms were proposed to
approximate P ∗ (see [37, 38]).

VI Algorithm
Step 1 Set n = 0, P0 = 0, K0 = 0 and select a sufficiently small constant ε > 0.
Step 2 Compute Pn+1 by

Pn+1 = ATPnA−ATPnB(R + BTPnB)−1BTPnA + Q. (9)

Step 3 Update the policy

Kn+1 = (R + BTPn+1B)−1BTPn+1A. (10)

Step 4 Stop if ‖Pn+1−Pn‖ < ε, and let Pn be an approximation of P ∗, otherwise set n← n+1
and go to Step 2.

In [38], it is proved that the sequences {Pn}∞n=0 and {Kn}∞n=0 computed from the above VI
algorithm can converge to the solution P ∗ of the algebraic Riccati equation (6) and the optimal
control gain K∗ respectively.

In the above VI algorithm, we need to know the parameters A and B of the discrete-time
linear system. To obtain the optimal value of the cost function (2), V in (4) and the coefficient
matrix C of the additive noise are required to be known. However, in some practical problems,
the matrices A, B, C, and V are difficult to be accurately obtained. In this work, we will develop
a VI-based SADP method to obtain the optimal controller.
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3 VI-Based SADP Design for Optimal Control

3.1 System Parameters Transformation

Let ui ∈ Uad, i = 0, 1, · · · , k − 1, where k is the running time of the system. For all P ∈ Sr

and xi ∈ R
r, by xi+1 = Axi + Bui + Cωi+1, we have

xT
i+1Pxi+1 = (Axi + Bui + Cωi+1)TP (Axi + Bui + Cωi+1)

=
[

xT
i uT

i

]

⎡

⎣

ATPA ATPB

BTPA BTPB

⎤

⎦

⎡

⎣

xi

ui

⎤

⎦+ 2(Axi + Bui)TPCωi+1

+ωT
i+1C

TPCωi+1. (11)

Define

H :=

⎡

⎣

H11 H12

H21 H22

⎤

⎦ =

⎡

⎣

ATPA ATPB

BTPA BTPB

⎤

⎦ . (12)

It follows from (11) and (12) that

xT
i+1Pxi+1 =

[

xT
i uT

i

]

H

⎡

⎣

xi

ui

⎤

⎦+ 2(Axi + Bui)TPCωi+1 + ωT
i+1C

TPCωi+1

=

⎡

⎣vecv

⎛

⎝

⎡

⎣

xi

ui

⎤

⎦

⎞

⎠

⎤

⎦

T

vecs(H) + 2(Axi + Bui)TPCωi+1 + ωT
i+1C

TPCωi+1. (13)

Adding tr(PCV CT) to the right of (13), and subtracting tr(PCV CT), we get

xT
i+1Pxi+1 =

⎡

⎣vecv

⎛

⎝

⎡

⎣

xi

ui

⎤

⎦

⎞

⎠

⎤

⎦

T

vecs(H) + tr(PCV CT) + 2(Axi + Bui)TPCωi+1

+ωT
i+1C

TPCωi+1 − tr(PCV CT). (14)

Define

θ(A, B, C, V, P ) :=

⎡

⎣

vecs(H)

tr(PCV CT)

⎤

⎦ , θ(A, B, C, V, P ) ∈ R
(r+r1)(r+r1+1)

2 +1, (15)

ϕi := [
(

vecv
(

[xT
i uT

i ]T
))T 1]T, ϕi ∈ R

(r+r1)(r+r1+1)
2 +1, (16)

and

εi := 2(Axi + Bui)TPCωi+1 + ωT
i+1C

TPCωi+1 − tr(PCV CT). (17)

Then, we obtain
xT

i+1Pxi+1 = ϕT
i θ(A, B, C, V, P ) + εi. (18)
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We define three transformations T1, T2 and T3, such that

H11 = ATPA = T1(θ(A, B, C, V, P )), H21 = BTPA = T2(θ(A, B, C, V, P )),

H12 = ATPB = [T2(θ(A, B, C, V, P ))]T, H22 = BTPB = T3(θ(A, B, C, V, P )). (19)

Now, we need to solve θ(A, B, C, V, P ) from (18). In the following, we use the recursive stochas-
tic least squares method ([36], Chap. 4) to approximately solve θ(A, B, C, V, P ) from (18).

3.2 Estimation of Unknown Term θ(A, B, C, V, P )

Multiplying ϕi on both sides of (18), we have that for any finite running time k,

1
k

k−1
∑

i=0

ϕiϕ
T
i θ(A, B, C, V, P ) +

1
k

k−1
∑

i=0

ϕiεi =
1
k

k−1
∑

i=0

(ϕix
T
i+1Pxi+1). (20)

If 1
k

∑k−1
i=0 ϕiϕ

T
i is reversible, then from (20), we can get that

θ(A, B, C, V, P ) =
(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1 1
k

k−1
∑

i=0

ϕix
T
i+1Pxi+1

−
(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1 1
k

k−1
∑

i=0

ϕiεi. (21)

Since εi is unknown and 1
k

∑k−1
i=0 ϕiϕ

T
i may be irreversible, θ(A, B, C, V, P ) can not be calculated

by (21). We use the recursive algorithm for stochastic least squares estimate ([36], Chap. 4):

̂θ(A, B, C, V, P, k + 1) = ̂θ(A, B, C, V, P, k) + bkGkϕk(xT
k+1Pxk+1 − ϕT

k
̂θ(A, B, C, V, P, k))

= ̂θ(A, B, C, V, P, k) + bkGkϕk[(vecv(xk+1))Tvecs(P )

−ϕT
k
̂θ(A, B, C, V, P, k)] (22)

and
⎧

⎨

⎩

Gk+1 = Gk − bkGkϕkϕT
k Gk,

bk = (1 + ϕT
k Gkϕk)−1.

(23)

We set G0 = β0I (r+r1)(r+r1+1)
2 +1

, 1
e > β0 > 0, where e is the natural constant, and set

̂θ(A, B, C, V, P, 0) = 
0. For such a selection of ̂θ(A, B, C, V, P, 0) and G0 we get

̂θ(A, B, C, V, P, k) =
(

1
k

k−1
∑

i=0

ϕiϕ
T
i +

1
β0k

I (r+r1)(r+r1+1)
2 +1

)−1

×1
k

k−1
∑

i=0

ϕix
T
i+1Pxi+1. (24)

In the following, we prove limk→∞ ̂θ(A, B, C, V, P, k) = θ(A, B, C, V, P ) a.s..
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3.3 Convergence of ̂θ(A, B, C, V, P, k)

Let xi := [xi,1 xi,2 · · · xi,r ]T ∈ R
r and ui := [ui,1 ui,2 · · · ui,r1 ]T ∈ R

r1 . For the
convergence of ̂θ(A, B, C, V, P, k), we need a persistent excitation condition:

(A6) There exist constants k0 > (r+r1)(r+r1+1)
2 + 1 and α0 > 0, such that 1

k

∑k−1
i=0 ϕiϕ

T
i >

α0I (r+r1)(r+r1+1)
2 +1

for all k > k0.
We can design a controller with stochastic excitation to make the system states satisfy (A6).

For example,

ui = ui + ei := −Kxi + ei, (25)

where K is chosen such that A−BK is a stable matrix, ei is the excitation signal. Similar to
Chapter 6 of [36], we need some conditions for ei:

(C1) For i ≥ 0, ei ∈ Fi. {ei}∞i=0 is a sequence of r1-dimensional independent and identically
distributed random vectors, and {ei}∞i=0 is independent of {ωi}∞i=0 satisfying E(ei) = 
0 and
E(eie

T
i ) = limk→∞ 1

k

∑k−1
i=0 eie

T
i = Ir1 .

(C2) Denote ei := [ei,1 ei,2 · · · ei,r1 ]T, and let ei,1, ei,2, · · · , ei,r1 be mutually independent.
{ei,1}∞i=0, {ei,2}∞i=0, · · · , {ei,r1}∞i=0, {ωi,s}∞i=0 (s = 1, 2, · · · , d) are mutually independent se-
quences with E(e3

i,b) = 0 for b = 1, 2, · · · , r1, where ωi,s is given by ωk := [ωk,1 ωk,2 · · · ωk,d]T.
(C3) There exists a constant α > 0 such that supi |ei,b| ≤ α a.s. for b = 1, 2, · · · , r1.

Remark 3.1 (i) Different from conditions for ei in Chapter 6 of [36], we require that ei

satisfies (C2).
(ii) The family of σ-algebras {Fi} is rich enough such that both ωi and ei are Fi-measurable,

otherwise, we need to extend Fi appropriately ([36]).
(iii) By (C3) and (A3) ({ωk}∞k=0 is not necessarily a.s. bounded), it can be verified that

ui ∈ Uad with ui defined by (25) (similar to [31]).

The following lemma implies that the control law (25) can make the system states satisfy
(A6).

Lemma 3.2 For the closed loop system (1) and (25) under (A1)–(A3) and (A5), there
are constants α0 > 0 and k0 > 0 such that

λmin

( k−1
∑

i=0

ϕiϕ
T
i

)

≥ α0k, ∀k ≥ k0. (26)

Proof See Appendix A.
Thus, we have the following convergence result.

Theorem 3.3 If (A1)–(A3) and (A5)–(A6) hold, then

lim
k→∞

̂θ(A, B, C, V, P, k) = θ(A, B, C, V, P ) a.s., (27)

where ̂θ(A, B, C, V, P, k) and θ(A, B, C, V, P ) are given by (22) and (21) respectively.

Proof See Appendix B.
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4 VI-Based SADP Algorithm, Optimal Controller, and Related Anal-

ysis

By (22) and mathematical induction, we see that ̂θ(A, B, C, V, P, k) is linear in P . Hence,
we have ̂θ(A, B, C, V, P, k) = Mkvecs(P ), where Mk ∈ R

(
(r+r1)(r+r1+1)

2 +1)× r(r+1)
2 and M0 = 0.

Since (11) is satisfied for any P ∈ Sr, by replacing ̂θ(A, B, C, V, P, k) in (22) with Mkvecs(P ),
we obtain

Mk+1 = Mk + bkGkϕk[(vecv(xk+1))T − ϕT
k Mk]. (28)

By the convergence of ̂θ(A, B, C, V, P, k), we get

lim
k→∞

Mk = M a.s., (29)

where M satisfies θ(A, B, C, V, P ) = Mvecs(P ) for all P ∈ Sr. Let A = [a1 a2 · · · ar],
B = [b1 b2 · · · br1 ] and CV CT = (hs1j), where, for b = 1, 2, · · · , r, ab = [a1b a2b · · · arb]

T ∈ R
r

is the bth column of A and for ǰ = 1, 2, · · · , r1, bǰ = [b1ǰ b2ǰ · · · brǰ]
T ∈ R

r is the ǰth column
of B.

Define f(ab, bǰ) := [2a1bb1ǰ a1bb2ǰ +a2bb1ǰ · · · 2arbbrǰ]
T ∈ R

r(r+1)
2 for b = 1, 2, · · · , r, ǰ =

1, 2, · · · , r1; f(ab, âb) := [2a1ba1̂b a1ba2̂b + a2ba1̂b · · · 2arbar̂b]
T ∈ R

r(r+1)
2 for b �= ̂b, b, ̂b =

1, 2, · · · , r; g(CV CT) := [h11 h12 · · · h1r h22 h23 · · · hrr]T ∈ R
r(r+1)

2 , and f(bǰ, b̂j) :=

[2b1ǰb1̂j b1ǰb2̂j + b2ǰb1̂j · · · 2brǰbr̂j]
T ∈ R

r(r+1)
2 for ǰ �= ̂j, ǰ, ̂j = 1, 2, · · · , r1. Then

M = [vecv(a1) f(a1, a2) · · · f(a1, br1) vecv(a2) · · · vecv(br1) g(CV CT)]T.
Now, we give our VI-based SADP Algorithm:

Algorithm 1 VI-Based SADP Algorithm

Step 1 Set k = 0, ̂P0 > 0, M0 = 0, ̂K0 = 0, x0 = x0
0 = 
0 and select a sufficiently small

constant ε > 0.
Step 2 Input uk = −Kxk + ek into the system (1), where K is chosen such that A−BK is a
stable matrix and ek is chosen to satisfy (C1)–(C3).
Step 3 Compute Mk+1 by (23) and (28).
Step 4 Compute

̂θ1(A, B, C, V, ̂Pk, k + 1) := Mk+1vecs( ̂Pk),
̂Pk+1 = T1(̂θ1(A, B, C, V, ̂Pk, k + 1))−

(

T2(̂θ1(A, B, C, V, ̂Pk, k + 1))
)T

×(R + T3(̂θ1(A, B, C, V, ̂Pk, k + 1)))+T2(̂θ1(A, B, C, V, ̂Pk, k + 1)) + Q, (30)
̂θ2(A, B, C, V, ̂Pk+1 , k + 1) := Mk+1vecs( ̂Pk+1),
̂Kk+1 = (R + T3(̂θ2(A, B, C, V, ̂Pk+1, k + 1)))+T2(̂θ2(A, B, C, V, ̂Pk+1 , k + 1)). (31)

Step 5 If ̂Pk+1 ≯ 0, then ̂Pk+1 ← ̂P0, set k ← k + 1 and go to Step 2. If ̂Pk+1 > 0 and
‖ ̂Pk+1 − ̂Pk‖ < ε, then let ̂Pk be an approximation of P ∗, otherwise set k ← k + 1 and go to
Step 2.
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In Algorithm 1, ‖ ̂Pk+1 − ̂Pk‖ < ε is a termination condition, which means that we stop the
iteration once ̂Pk changes by only a small amount in an iteration. Without this termination
condition, we can obtain two sequences { ̂Pk}∞k=0 and { ̂Kk}∞k=0 and the following convergence
result.

Theorem 4.1 For Algorithm 1 under (A1)–(A5), we have limk→∞ ̂Pk = P ∗ a.s. and
limk→∞ ̂Kk = K∗ a.s., where { ̂Pk}∞k=0 and { ̂Kk}∞k=0 are given by (30) and (31) respectively.

Proof See Appendix C.
For the optimality of the control policy, we have the following result:

Theorem 4.2 For the system (1) and the cost function (2), if (A1)–(A5) are satisfied,
then

û0
k = − ̂Kkx0

k (32)

is the optimal controller, where ̂Kk is given by (31) and x0
k is the closed-loop solution under the

controller û0
k.

Proof See Appendix D.

Remark 4.3 Since limk→∞ ̂Pk = P ∗ a.s. and limk→∞ Mk = M a.s., we have limk→∞
Mkvecs( ̂Pk) = Mvecs(P ∗) = θ(A, B, C, V, P ∗). The element in the last row of θ(A, B, C, V, P ∗)
is tr(P ∗CV CT). Hence, when C and V are unknown, we can obtain an estimate of the optimal
value of the cost function (2) by Algorithm 1.

5 Numerical Simulation

In this section, we present a simulation example to show the effectiveness of our VI-based
SADP algorithm and the designed controller.

Consider the two-order stochastic linear discrete-time system

xk+1 =

⎡

⎣

1 0.7

−0.2 0.3

⎤

⎦xk +

⎡

⎣

1 1

0 0.8

⎤

⎦uk +

⎡

⎣

2 0

0 1

⎤

⎦ωk+1, (33)

where ωk ∼ U(D) for k = 0, 1, · · · , D = {x = (x1, x2)T : −0.5 ≤ xi ≤ 0.5, i = 1, 2} and
ω0, ω1, · · · are independent and identically distributed. ωi,1 and ωi,2 are mutually independent,
and ωi,s ∼ U(−0.5, 0.5) for s = 1, 2. The cost function is considered as (2) with R = Q = I2.
By VI Algorithm when system parameters A, B, and C are known, we have

P ∗ =

⎡

⎣

1.5288 0.2201

0.2201 1.1947

⎤

⎦ , K∗ =

⎡

⎣

0.4606 0.2386

0.1878 0.3125

⎤

⎦ .

If the matrix

V =

⎡

⎢

⎣

1
12

0

0
1
12

⎤

⎥

⎦
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is known, then we get that the optimal value of the cost function is 0.6092.
For our proposed the VI-based SADP Algorithm 1, we take that the initial state is chosen

as x0 = [0 0]T . Let uk = −Kxk + ek, where

K =

⎡

⎣

0.5 0.7

0 0

⎤

⎦ ,

and ek ∼ U( ̂D) for k = 0, 1, · · · , ̂D = {x = (x1, x2)T : −
√

3 ≤ xi ≤
√

3, i = 1, 2} and
e0, e1, · · · are independent and identically distributed. ei,1 and ei,2 are mutually independent,
and ei,b ∼ U(−

√
3,
√

3) for b = 1, 2.
From Figure 1(a) and 1(b), we can see that the elements of ̂Pk and ̂Kk converge to the corre-

sponding optimal values ̂P ∗ and ̂K∗, respectively. In Figure 1(c),
(

Mkvecs( ̂Pk)
)

last
represents

the element of the last row of Mkvecs( ̂Pk), and we get that the estimated value of tr(P ∗CV CT)
is 0.6100, which is closely to the optimal value 0.6092. Figure 1(d) shows that the cost function
J(û0) under the controller û0

k = − ̂Kkx0
k can asymptotically approximate the optimal value.

k

(a) Convergence of ̂Pk

k

(b) Convergence of ̂Kk

k

(c) Convergence of
(

Mkvecs( ̂Pk)
)

last

k

(d) Convergence of Jk(û0) under the controller û0
k

Figure 1 Convergence of ̂Pk, ̂Kk,
(

Mkvecs( ̂Pk)
)

last
in Algorithm 1, and Jk(û0)

under the controller û0
k
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Table 1 shows that ‖ ̂Pk+1 − ̂Pk‖ < 0.01 is satisfied when k > 4800, ‖ ̂Pk+1 − ̂Pk‖ < 0.005 is
satisfied when k > 7500, and ‖ ̂Pk+1 − ̂Pk‖ < 0.0025 is satisfied when k > 9500.

Table 1 Different values of ε

ε k0 ‖ ̂Pk+1 − ̂Pk‖ < ε, k > k0

0.01 4800 Yes

0.005 7500 Yes

0.0025 9500 Yes

6 Concluding Remarks

In this paper, we developed a VI-based SADP algorithm to solve the optimal control problem
of unknown linear discrete-time systems with additive noise. Our proposed algorithm can
directly use the value of system states to obtain the optimal controllers and the optimal cost
function without estimating expectation (conditional expectation) and variance (conditional
variance) of states or other variables. It should be pointed out that for unknown linear systems
with additive noise, the analysis of the optimal control is hard. In this paper, we made a
try to give an SADP algorithm for the optimal control of such systems and supply rigorous
convergence analysis of the algorithm and the optimality analysis of the controller. In our
future work, we will investigate the method of stochastic adaptive dynamic programming for
more general cases.
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Appendix A: Proof of Lemma 3.2

Firstly, we show that {ui}∞i=0 and {xi}∞i=0 are a.s. bounded.
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By (25) and ei ∈ Fi, we get ui ∈ Fi. For (1) and ui−1 = −Kxi−1 + ei−1, we have

xi = (A−BK)ix0 +
i−1
∑

l=0

(A−BK)lBei−l−1 +
i−1
∑

l=0

(A−BK)lCωi−l. (34)

Since A−BK is the stable matrix, there are S0 > 0 and λ ∈ (0, 1) such that ‖A−BK‖i ≤ S0λ
i

for all i ≥ 0 by [35].
It follows from a.s. boundedness of {ωk}∞k=0, ‖A−BK‖i ≤ S0λ

i
, and (C3) that there exists

a constant α > 0 such that supi |xi,b| < α a.s. for b = 1, 2, · · · , r. This together with (25) and
(C3) implies that there exists a constant α̃ > 0 such that supi |ui,b| < α̃ a.s. for b = 1, 2, · · · , r1.

Secondly, we prove that (26) is true by the proof idea of Theorem 6.2 in [36].
Since (26) is equivalent to

lim inf
k→∞

k−1λmin

( k−1
∑

i=0

ϕiϕ
T
i

)

> 0, (35)

we will prove that (35) holds in the following.
Now, (1) can be written in the following form (I − Az)xk+1 = Bzuk+1 + Cωk+1, where z

denotes the shift-back operator: zxk+1 = xk. det(I −Az) denotes the determinant of I − Az.
Let

gk := (det(I −Az))2ϕk, (36)

det(I −Az) = a0 + a1z + · · ·+ apz
p, p ≤ r, (37)

where a0, a1, · · · , ap depend on the elements of A.
By the Cauchy-Schwarz inequality, we have

λmin

( k−1
∑

i=0

gig
T
i

)

= inf
‖y‖=1

k−1
∑

i=0

(yTgig
T
i y) ≤ (p + 1)2

( p
∑

j=0

a2
j

)2

λmin

( k−1
∑

i=0

ϕiϕ
T
i

)

. (38)

Thus, for (35) it suffices to show that

lim inf
k→∞

k−1λmin

( k−1
∑

i=0

gig
T
i

)

> 0. (39)

Now we use proof by contradiction to prove (39).
If (39) were not true, then there would exist a vector sequence {βkm}:

βkm = [αkm,1 αkm,2 · · · α
km,

(r+r1)(r+r1+1)
2 +1

]T ∈ R
(r+r1)(r+r1+1)

2 +1,

such that ‖βkm‖ = 1 and

lim
m→∞ k−1

m

( km−1
∑

i=0

(βT
km

gi)2
)

= 0. (40)
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Adj(I −Az) denotes the adjoint matrix of I −Az. Let

(Adj(I −Az))T = [a1(z) a2(z) · · · ar(z)], (41)

[(det(I −Az))Ir1 0r1×d]T = [det(I −Az)γ1 det(I −Az)γ2 · · · det(I −Az)γr1 ], (42)

where, for b = 1, 2, · · · , r, ab(z) ∈ R
r is the bth column of (Adj(I − Az))T, and for b =

1, 2, · · · , r1, γb ∈ R
r1+d is the column vector of the bth row with 1 and other rows with 0.

Notice that

(det(I −Az))xk = (Adj(I −Az))[Bz C]

⎡

⎣

uk

ωk

⎤

⎦ , (43)

(det(I −Az))uk = [(det(I −Az))Ir1 0]

⎡

⎣

uk

ωk

⎤

⎦ , (44)

and definition of ϕi. Then we have

βT
km

gi =

[

αkm,1

⎛

⎝vec

⎛

⎝

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
1 (z)[Bz C]

⎞

⎠

⎞

⎠

T

+ αkm,2

⎛

⎝vec

⎛

⎝

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
2 (z)

×[Bz C]

))T

+ · · ·+ α
km,

(r+r1)(r+r1+1)
2

(det(I −Az))2(vec(γr1γ
T
r1

))T
]

×

⎛

⎝

⎡

⎣

ui

ωi

⎤

⎦⊗

⎡

⎣

ui

ωi

⎤

⎦

⎞

⎠+ α
km,

(r+r1)(r+r1+1)
2 +1

(

det(I −Az)
)2

. (45)

Let

Lkm(z) = αkm,1

⎛

⎝vec

⎛

⎝

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
1 (z)[Bz C]

⎞

⎠

⎞

⎠

T

+ αkm,2

⎛

⎝vec

⎛

⎝

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
2 (z)

×[Bz C]

))T

+ · · ·+ α
km,

(r+r1)(r+r1+1)
2

(

det(I −Az)
)2(vec(γr1γ

T
r1

))T

=
2p
∑

j=0

[ρ(j)
km,1 ρ

(j)
km,2 · · · ρ

(j)
km,(r1+d)2 ]z

j, (46)

where, for τ = 1, 2, · · · , (r1 + d)2, ρ
(j)
km,τ ∈ R. By ‖βkm‖ = 1, we have that ρ

(j)
km,1, ρ

(j)
km,2, · · · ,

ρ
(j)
km,(r1+d)2 are bounded. By (45) and (46), we get

lim
m→∞ k−1

m

km−1
∑

i=0

(βT
km

gi)2 = lim
m→∞ k−1

m

km−1
∑

i=0

[

ρ
(0)
km,1u

2
i,1 + (ρ(0)

km,2 + ρ
(0)
km,r1+d+1)ui,1ui,2

+ · · ·+ ρ
(2p)
km,(r1+d)2ω

2
i−p,d + α

km,
(r+r1)(r+r1+1)

2 +1

×
(

det(I −Az)
)2
]2

= 0. (47)
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By (25), (47) and combining terms containing ei,1, we have

lim
m→∞ k−1

m

km−1
∑

i=0

(βT
km

gi)2 = lim
m→∞ k−1

m

km−1
∑

i=0

[(

2ρ
(0)
km,1ui,1 +

(

ρ
(0)
km,2 + ρ

(0)
km,r1+d+1

)

ui,2

+ · · ·+
(

γ
(p,0)
km,r1+d + γ

(p,0)
km,(r1+d−1)(r1+d)+1

)

ωi−p,d

)

ei,1

+ρ
(0)
km,1u

2
i,1 + ρ

(0)
km,1e

2
i,1 + · · ·+ ρ

(2p)
km,(r1+d)2ω

2
i−p,d

+α
km,

(r+r1)(r+r1+1)
2 +1

(

det(I −Az)
)2
]2

= 0, (48)

where γ
(p,0)
km,r1+d ∈ R, and the sum of the coefficients of ui−1,1ωi−(p−1),d, ui−2,1ωi−(p−2),d, · · · ,

ui−p,1ωi,d and γ
(p,0)
km,r1+d is ρ

(p)
km,r1+d. For γ

(p,0)
km,(r1+d−1)(r1+d)+1, ρ

(̆i)
km,1, ρ

(̆i)
km,2, · · · , ρ

(̆i)
km,(r1+d)2 ,

ĭ = 1, 2, · · · , 2p − 1, we have the same argument. The coefficients of all terms in (48) are
bounded by ‖βkm‖ = 1.

Let G(1)
i = σ{ej,1, ej+1,2, · · · , ej+1,r1 , ωj+1,1, ωj+1,2, · · · , ωj+1,d, 0 ≤ j ≤ i}. It follows from

(C1) and (C2) that {ei,1,G(1)
i } and {e3

i,1,G
(1)
i } are martingale difference sequences. Notice the

facts that xi,b, ui,b, ei,b, ui,b, and ωi,s are a.s. bounded for b = 1, 2, · · · , r, b = 1, 2, · · · , r1, and

s = 1, 2, · · · , d and ρ
(j)
km,1, ρ

(j)
km,2, · · · , ρ

(j)
km,(r1+d)2 , α

km,
(r+r1)(r+r1+1)

2 +1

(

det(I − Az)
)2

, and βkm

are bounded for j = 0, 1, · · · , 2p. Then, by Theorem 2.8 of [36] we have that for any η > 0,

k−1
m

km−1
∑

i=0

[

ρ
(0)
km,1u

2
i,1 + ρ

(0)
km,1e

2
i,1 + · · ·+ ρ

(2p)
km,(r1+d)2ω

2
i−p,d + α

km,
(r+r1)(r+r1+1)

2 +1

×
(

det(I −Az)
)2
][

2ρ
(0)
km,1ui,1 + (ρ(0)

km,2 + ρ
(0)
km,r1+d+1)ui,2

+ · · ·+ (γ(p,0)
km,r1+d + γ

(p,0)
km,(r1+d−1)(r1+d)+1)ωi−p,d

]

ei,1

= O
(

k−1
m × k

1
2
m log

1
2+η(km + e)

)

→ 0 (m→∞) a.s.. (49)

This together with (48) implies

lim
m→∞ k−1

m

km−1
∑

i=0

[(

2ρ
(0)
km,1ui,1 + (ρ(0)

km,2 + ρ
(0)
km,r1+d+1)ui,2

+ · · ·+ (γ(p,0)
km,r1+d + γ

(p,0)
km,(r1+d−1)(r1+d)+1)ωi−p,d

)

ei,1

]2

= 0 (50)

and

lim
m→∞ k−1

m

km−1
∑

i=0

(

ρ
(0)
km,1u

2
i,1 + ρ

(0)
km,1e

2
i,1 + · · ·+ ρ

(2p)
km,(r1+d)2ω

2
i−p,d

+α
km,

(r+r1)(r+r1+1)
2 +1

(

det(I −Az)
)2)2

= 0. (51)
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It follows from (C1) and (C2) that {e2
i,1− 1,G(1)

i } is the martingale difference sequence. Notice
the facts that ui,b, ui,b, and ωi,s are a.s. bounded for b = 1, 2, · · · , r1 and s = 1, 2, · · · , d and
ρ
(l1)
km,1, ρ

(l1)
km,2, · · · , ρ

(l1)
km,(r1+d)2 , and βkm are bounded for l1 = 0, 1, · · · , p. Then, by Theorem 2.8

of [36], we obtain

lim
m→∞ k−1

m

km−1
∑

i=0

(

2ρ
(0)
km,1ui,1 + (ρ(0)

km,2 + ρ
(0)
km,r1+d+1)ui,2

+ · · ·+ (γ(p,0)
km,r1+d + γ

(p,0)
km,(r1+d−1)(r1+d)+1)ωi−p,d

)2(e2
i,1 − 1)

= 0, (52)

and by (50)

lim
m→∞ k−1

m

km−1
∑

i=0

(

2ρ
(0)
km,1ui,1 + (ρ(0)

km,2 + ρ
(0)
km,r1+d+1)ui,2

+ · · ·+ (γ(p,0)
km,r1+d + γ

(p,0)
km,(r1+d−1)(r1+d)+1)ωi−p,d

)2

= 0. (53)

Notice that limk→∞ 1
k

∑k−1
i=0 eie

T
i = Ir1 . Thus continuing similar argument for (53), we get

lim
m→∞(ρ(0)

km,2 + ρ
(0)
km,r1+d+1) = 0. (54)

Similarly,
⎧

⎨

⎩

lim
m→∞ ρ

(j)
km,i1(r1+d)+i1+1 = 0, i1 = 0, 1, · · · , r1 − 1;

lim
m→∞ ρ

(j)
km,(r1+j1)(r1+d)+r1+j1+1 = 0, j1 = 0, 1, · · · , d− 1;

(55)

lim
m→∞

(

ρ
(j)
km,(s1−1)(r1+d)+i2

+ ρ
(j)
km,(i2−1)(r1+d)+s1

)

= 0,

s1 = 1, 2, · · · , r1; i2 = s1 + 1, s1 + 2, · · · , r1 + d; (56)

lim
m→∞

(

ρ
(j)
km,(r1+s2−1)(r1+d)+i2+r1

+ ρ
(j)
km,(r1+i2−1)(r1+d)+s2+r1

)

= 0,

s2 = 1, 2, · · · , d− 1; i2 = s2 + 1, s2 + 2, · · · , d; (57)

lim
m→∞α

km,
(r+r1)(r+r1+1)

2 +1
= 0, (58)

where j = 0, 1, · · · , 2p.
Since {α

km,
(r+r1)(r+r1+1)

2 +1
} is bounded and (58), there is a subsequence {α

kmτ
,
(r+r1)(r+r1+1)

2 +1
}

satisfying

lim
τ→∞

α
kmτ

,
(r+r1)(r+r1+1)

2 +1
= 0. (59)

Since {βkm} is bounded, there exists a convergent subsequence tending to a limit

β = [α1 α2 · · · α (r+r1)(r+r1+1)
2

0]T

with unit norm.
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Let

Hkm(z) = αkm,1

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
1 (z)[Bz C] + αkm,2

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
2 (z)[Bz C]

+ · · ·+ α
km,

(r+r1)(r+r1+1)
2

(

det(I −Az)
)2

γr1γ
T
r1

. (60)

For j = 0, 1, · · · , 2p; ρ
(j)
km,1, ρ

(j)
km,2, · · · , ρ

(j)
km,(r1+d)2 are bounded. This together with (46)

and (55)–(57) implies that there is a subsequence {Hkmτ
(z)} satisfying

lim
τ→∞

Hkmτ
(z) = H(z), (61)

where

H(z) = α1

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
1 (z)[Bz C] + α2

⎡

⎣

BTz

CT

⎤

⎦ a1(z)aT
2 (z)[Bz C]

+ · · ·+ α (r+r1)(r+r1+1)
2

(

det(I −Az)
)2

γr1γ
T
r1

(62)

and H(z) is an anti-symmetric matrix.
Since H(z) is the anti-symmetric matrix, we have

H(z) + H(z)T = 0. (63)

By (A5) and comparing coefficients of elements on both sides of (63), we obtain

α1 = α2 = · · · = α (r+r1)(r+r1+1)
2

= 0. (64)

Thus, it follows from (64) that β = 
0. However, this is a contradiction with ‖β‖ = 1. Thus (39)
is true. The proof is completed.

Appendix B: Proof of Theorem 3.3

Let ui = −Kxi + ei, where K is chosen such that A − BK is a stable matrix, and ei is
chosen to satisfy (C1)–(C3). Thus, by (A3) ({ωk}∞k=0 is not necessarily a.s. bounded) we have
{ui} ∈ Uad, i.e.,

k−1
∑

i=0

(‖ui‖2 + ‖xi‖2) = O(k) a.s.. (65)

By Theorem 2.8 of [36] and (A3) ({ωk}∞k=0 is not necessarily a.s. bounded), we obtain that for
any δ > 0,

1
k

k−1
∑

i=0

(Axi + Bui)TPCωi+1

=O

[

1
k

( k−1
∑

i=0

(‖xi‖2 + ‖ui‖2)
) 1

2
(

log
( k−1
∑

i=0

(‖xi‖2 + ‖ui‖2) + e
)) 1

2+δ]

=O

(

1√
k

(

log(k + e)
) 1

2+δ
)

→ 0 (k →∞) a.s.. (66)
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It follows from (4), (17), and (66) that limk→∞ 1
k

∑k−1
i=0 εi = 0 a.s.. By the proof of Lemma 3.2

and the definition of ϕi, we know that there exists a constant M0 > 0 such that supi |ϕi,h| ≤
M0 a.s. for h = 1, 2, · · · , (r+r1)(r+r1+1)

2 + 1.
By (21), (24), and Lemma 3.2, we get

lim
k→∞

(

̂θ(A, B, C, V, P, k) − θ(A, B, C, V, P )
)

= lim
k→∞

{[(

1
k

k−1
∑

i=0

ϕiϕ
T
i +

1
kβ0

I (r+r1)(r+r1+1)
2 +1

)−1

−
(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1]

×1
k

k−1
∑

i=0

ϕix
T
i+1Pxi+1

}

+ lim
k→∞

{(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1 1
k

k−1
∑

i=0

ϕiεi

}

, k ≥ k0. (67)

Let
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Ek =
(

1
k

k−1
∑

i=0

ϕiϕ
T
i +

1
kβ0

I (r+r1)(r+r1+1)
2 +1

)−1

, k ≥ k0,

Ek =
(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1

, k ≥ k0.

For k ≥ k0, notice that Ek − Ek = Ek(E
−1

k − E−1
k )Ek and limk→∞

(

E
−1

k − E−1
k

)

= 0. Thus,
it follows from supi |ϕi,h| ≤ M0 a.s. and Lemma 3.2 that limk→∞

(

Ek − Ek

)

= 0 for k ≥ k0.
This together with supi |ϕi,h| ≤M0 a.s. implies

lim
k→∞

{[(

1
k

k−1
∑

i=0

ϕiϕ
T
i +

1
kβ0

I (r+r1)(r+r1+1)
2 +1

)−1

−
(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1]

×1
k

k−1
∑

i=0

ϕix
T
i+1Pxi+1

}

= 
0, k ≥ k0. (68)

It follows from limk→∞ 1
k

∑k−1
i=0 εi = 0 a.s., supi |ϕi,h| ≤M0 a.s., and Lemma 3.2 that

lim
k→∞

{(

1
k

k−1
∑

i=0

ϕiϕ
T
i

)−1 1
k

k−1
∑

i=0

ϕiεi

}

= 
0, k ≥ k0. (69)

By (67), (68), and (69), we have limk→∞ ̂θ(A, B, C, V, P, k) − θ(A, B, C, V, P ) = 
0. The proof
is completed.

Appendix C: Proof of Theorem 4.1

Let A = (aij) ∈ R
r×r, P = (pij) ∈ R

r×r, and B = (bij1) ∈ R
r×r1 , where i, j = 1, 2, · · · , r

and j1 = 1, 2, · · · , r1. By (A4) there are constants i0, j0, s0 ∈ {1, 2, · · · , r} and l0 ∈ {1, 2, · · · , r1}
such that ai0j0 > 0 and bs0l0 > 0.

For (29), define G0 := {ω| limk→∞ Mk(ω) = M}, and P (G0) = 1. We denote Mk(ω) :=
[vecv(a1)k(ω) f(a1, a2)k(ω) · · · f(a1, br1)k(ω) vecv(a2)k(ω) · · · vecv(br1)k(ω) g(CV CT)k(ω)]T,
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where

vecv(ab)k(ω) = [(a2
1b

)k(ω) (a1ba2b)k(ω) · · · (a2
rb

)k(ω)]T ∈ R
r(r+1)

2 , b = 1, 2, · · · , r;

vecv(bǰ)k(ω) = [(b2
1ǰ)k(ω) (b1ǰb2ǰ)k(ω) · · · (b2

rǰ)k(ω)]T ∈ R
r(r+1)

2 , ǰ = 1, 2, · · · , r1;

f(ab, bǰ)k(ω) := [(2a1bb1ǰ)k(ω) (a1bb2ǰ + a2bb1ǰ)k(ω) · · · (2arbbrǰ)k(ω)]T ∈ R
r(r+1)

2

for b = 1, 2, · · · , r, ǰ = 1, 2, · · · , r1;

f(ab, âb)k(ω) := [(2a1ba1̂b)k(ω) (a1ba2̂b + a2ba1̂b)k(ω) · · · (2arbar̂b)k(ω)]T ∈ R
r(r+1)

2

for b �= ̂b, b, ̂b = 1, 2, · · · , r;

f(bǰ , b̂j)k(ω) := [(2b1ǰb1̂j)k(ω) (b1ǰb2̂j + b2ǰb1̂j)k(ω) · · · (2brǰbr̂j)k(ω)]T ∈ R
r(r+1)

2

for ǰ �= ̂j, ǰ, ̂j = 1, 2, · · · , r1; and g(CV CT)k(ω) := [(h11)k(ω) (h12)k(ω) · · · (h1r)k(ω)
(h22)k(ω) (h23)k(ω) · · · (hrr)k(ω)]T ∈ R

r(r+1)
2 , ω ∈ G0. It follows from (29) and definitions

of Mk(ω) and G0 that

lim
k→∞

vecv(aj0)k(ω) = vecv(aj0), lim
k→∞

vecv(bl0)k(ω) = vecv(bl0), (70)

for all ω ∈ G0.
Let ω ∈ G0 in the following.
By ai0j0 > 0, bs0l0 > 0, and (70), there are k1 < ∞ and k2 < ∞, such that (a2

i0j0
)k(ω) > 0

for all k > k1 and (b2
s0l0

)k(ω) > 0 for all k > k2, respectively.
For j = 1, 2, · · · , r, the way to construct (ajj0 )k(ω) and (bjl0)k(ω) is shown in Figure 2.

j

j

k s l

Figure 2 Design of (ajj0)k(ω) and (bjl0)k(ω)

Thus, we have

lim
k→∞

(ajj0 )k(ω) = ajj0 , lim
k→∞

(bjl0 )k(ω) = bjl0 , (71)

for j = 1, 2, · · · , r.
Similarly, we get

⎧

⎨

⎩

lim
k→∞

(aǐi)k(ω) = aǐi, i = 1, 2, · · · , r; ǐ = 1, 2, · · · , j0 − 1, j0 + 1, · · · , r;

lim
k→∞

(bij1 )k(ω) = bij1 , i = 1, 2, · · · , r; j1 = 1, 2, · · · , l0 − 1, l0 + 1, · · · , r1.
(72)
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Let Ak(ω) :=
(

(aij)k(ω)
)

∈ R
r×r, Bk(ω) :=

(

(bij1 )k(ω)
)

∈ R
r×r1 . It follows from (71), (72),

and definitions of Ak(ω) and Bk(ω) that limk→∞ Ak(ω) = A, limk→∞ Bk(ω) = B.
Now, (30) in Algorithm 1 is equivalent to

̂Pk+1(ω) = AT
k+1(ω) ̂Pk(ω)Ak+1(ω)−AT

k+1(ω) ̂Pk(ω)Bk+1(ω)
(

R + BT
k+1(ω) ̂Pk(ω)

×Bk+1(ω)
)−1

BT
k+1(ω) ̂Pk(ω)Ak+1(ω) + Q, (73)

where k + 1 > k1 = max{k1, k2}, ̂Pk1
(ω) > 0, and k1 <∞.

By (73) and mathematical induction, we know that ̂Pk(ω) > 0 for k ≥ k1.
Now, Algorithm 1 is summarized in (73), and ̂Pk1

(ω) > 0. Thus, by Theorem 3.4 of [36],
we get limk→∞ ̂Pk(ω) = P ∗ and limk→∞ ̂Kk(ω) = K∗, where ω ∈ G0. The proof is completed.

Appendix D: Proof of Theorem 4.2

By the proof idea of Theorem 8.3 in [36], we can proof Theorem 4.2.
For (31), we have ̂Kk ∈ Fk, which together with (32) implies û0

k ∈ Fk. We know that
limk→∞ ̂Kk(ω) = K∗ by Theorem 4.1, where ω ∈ G0 and P (G0) = 1.

Now, we show that {û0
k} ∈ Uad. Since limk→∞ ̂Kk(ω) = K∗ and A − BK∗ is the stable

matrix. By Theorem 8.3 of [36], we get

‖(A−B ̂Kk(ω))(A−B ̂Kk−1(ω)) · · · (A−B ̂K0(ω))‖ < c�k+1, � ∈ (0, 1), ∀k ≥ 0, (74)

where c is a positive constant and ω ∈ G0 and P (G0) = 1.
It follows from (1) and (32) that

x0
k = (A−B ̂Kk−1)(A− B ̂Kk−2) · · · (A−B ̂K0)x0

0 +
k−1
∑

i=1

[

(A−B ̂Kk−1)

×(A−B ̂Kk−2) · · · (A−B ̂Kk−i)Cωk−i

]

+ Cωk. (75)

It follows from (74), (75), and a.s. boundedness of {ωk}∞k=0 that there exists a constant M1 > 0
such that supk ‖x0

k‖ ≤M1 a.s.. This together with (32) implies {û0
k} ∈ Uad.

Now, we prove that û0
k is optimal. By Theorem 8.3 of [36], for any ŭ ∈ Uad, we have

J(ŭ) = tr(P ∗CV CT) + lim sup
k→∞

(

1
k

k−1
∑

i=0

[

ŭi + (R + BTP ∗B)−1BTP ∗Axi

]T

×(R + BTP ∗B)
[

ŭi + (R + BTP ∗B)−1BTP ∗Axi

]

)

. (76)

Thus to complete the proof it suffices to show that for the control law û0
k defined by (32)

lim sup
k→∞

1
k

k−1
∑

i=0

‖û0
i + (R + BTP ∗B)−1BTP ∗Ax0

i ‖2 = 0. (77)

It follows from limk→∞ ̂Kk = K∗ a.s. and supk ‖x0
k‖ ≤ M1 a.s. that (77) is true. Hence, û0

k is
the optimal controller. The proof is completed.


