
J Syst Sci Complex (2023) 36: 1560–1582

Exponential Stability of Impulsive Neutral Stochastic

Functional Differential Equations with Markovian

Switching∗

XIAO Ke · LI Shuyong

DOI: 10.1007/s11424-023-1332-8

Received: 3 July 2021 / Revised: 20 April 2022

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2023

Abstract The aim of this paper is to the discussion of the exponential stability of a class of impulsive

neutral stochastic functional differential equations with Markovian switching. Under the influence

of impulsive disturbance, the solution for the system is discontinuous. By using the Razumikhin

technique and stochastic analysis approaches, as well as combining the idea of mathematical induction

and classification discussion, some sufficient conditions for the pth moment exponential stability and

almost exponential stability of the systems are obtained. The stability conclusion is full time-delay. The

results show that impulse, the point distance of impulse and Markovain switching affect the stability for

the system. Finally, two examples are provided to illustrate the effectiveness of the results proposed.

Keywords Delay, exponential stability, impulsive, Markovian switching, neutral, Razumikhin tech-

nique, stochastic functional differential equations.

1 Introduction

Neutral functional differential equations (NFDEs) are usually used to simulate the systems

that many dynamical systems not only depend on present and past states but also involve

derivatives with delays (we can see [1–4]).

Meanwhile, some actual phenomenon has already been successfully modeled by the stochas-

tic system such as chemical reactor control, population ecology, biological neural networks,

applied economics, machine learning, as well as many branches in the field of science and indus-

try, and the system also depends on the derivative of time-delay and the function itself. Such
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systems historically have been referred to as neutral stochastic functional differential equations

(NSFDEs), which are more difficult to motivate than stochastic functional differential equations

because they contain some special cases such as the latter. The investigation on stability is to

help us understand the long-term behavior of the system, which is naturally concerned by re-

searchers in various fields. In particular, owing to the emergence for the theory of aeroelasticity

and the chemical engineering systems, [5] investigated neutral stochastic functional differential

equations and discussed their stability. Furthermore, by using the Razumikhin technique, the

pth moment general decay stability and general asymptotic stability of the solution for NSFDEs

are discussed respectively in [6] and [7]. Further discussions on NSFDEs can be found in [8–14].

On the one hand, due to the unpredictable real environment, the structure and parame-

ters of the stochastic systems may often encounter random abrupt changes, causing the system

to switch between limited states. Continuous-time Markov chain is an efficient tool to model

these abrupt changes gratifyingly. One of the important issue in researching Markov switching

systems is the automatic control (such as [15, 16]). In addition, under the influence of the

jump disturbance, the exponential stability analysis of neutral stochastic functional differential

equations with Markovian switching (NSFDEs-MS) is more troublesome (we refer to [17–22]).

For example, in [18], Zhou and Hu considered the exponential stability for a class of NSFDEs-

MS by virtue of the Razumikhin technique and the stochastic analysis, which eliminated the

influence of the discontinuity of the sample path on the stability. Impulses, on the other hand,

may have significant effects on the systems’ dynamics, either as a harmful or beneficial role on

the stability, in which system’s state changes suddenly at certain instants. Actually, the stabil-

ity analysis and stabilization of the (stochastic) functional differential systems with impulsive

effects have been considered in [23–28]. For instance, some results on the exponential stability

of solutions to impulsive stochastic functional differential equations are giving in [26] and [28]

separately. Considering the derivatives with functionals, some stability and stabilization prob-

lems for impulsive neutral stochastic functional differential equations (INSFDEs) have been

discussed in [29–31]. It is worth mention that in [30], Benhardri, et al. discussed the existence

and uniqueness as well as asymptotic stability for a kind of INSFDEs based on a contraction

mapping principle and the analytic technique.

It should be noted that Markovian switching and stochastic perturbations often coexist on

practical systems, which can be modeled by impulsive neutral stochastic functional differen-

tial equations with Markovian switching (INSFDEs-MS) (see [32, 33]). However, the stability

analysis on the systems is more complex and still an open problem due to the discontinuity of

the sample orbit which consider Markovian switching and impulsive effect simultaneously. As

is known to all, little has been reported for stabilities of such systems. Recently, by using the

Razumikhin technique and stochastic analysis theories, [32] derived some criteria for determin-

ing the exponential stability of the trivial solution for a kind of INSFDEs-MS, and Lassaad and

Mohamed investigated the β-stability in qth moment for INSFDEs-MS in [33], which overcame

difficulties of the forgoing discussion.

Inspired by the works mentioned above and of [32, 34, 35] as well as [36], in this paper, we

will investigate exponential stability for a class of INSFDEs-MS by means of the Razumikhin
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technique and combining the stochastic analysis theories as well as the inequality techniques.

More precisely, we will improve the Razumikhin condition that the coefficients of the estimated

upper bound for the diffusion operator of Lyapunov functionals can be a positive definite or

negative definite function instead of negative value, and will establish some criteria to ensure

the exponential stability for the trivial solution of the systems. The main contributions of this

paper are summarized into two aspects:

1) Impulse stabilization has a wider application scope than before studies. Due to the

unstable state of the stochastic dynamic of the system without impulses (ELV ≤ b(t)EV ),

some sufficiently strong impulses input are required to ensure the stability of the system (q−1 <

ρ1 + ρ2 < 1), In [32], to promote the exponential stability of the solution for the system under

the relatively satisfactory dynamic situation (ELV ≤ −µEV , µ > 0), the system impulses input

are considered (|γk| < 1 and |γk|
p < eγτq).

2) The constraint of unstable impulses perturbation need not be so strict. When the system

without impulsive input is in a relatively stable state (ELV ≤ −b(t)EV ), it is not necessary to

strictly restrict the impulse disturbance, i.e., ρ1 +ρ2 > 1 and the condition (vi) in Theorem 3.6.

In [32], the impulses disturbance must meet the requirement of |γk| < 1 before the stability

conclusion can be established.

The contents of the paper are as follows. In Section 2, we will introduce some basic notations

and definitions as well as present the mathematical model of INSFDEs-MS. In Section 3, we will

give several new criteria on the pth moment and almost exponential stability of the systems.

In Section 4, two illustrative examples are analyzed to show the usefulness and feasibility of

results presented. Finally, a brief conclusion is given to end this work in Section 5.

2 Preliminaries

Notations Throughout this paper, unless otherwise specified, we shall use the follow

notations. Let |x| denote Euclidean norm of a vector x ∈ R
d and its transpose be denoted

by AT. (Ω , F , {Ft}t≥t0
,P) stands for a complete probability space with filtration {Ft}t≥t0

satisfying the usual conditions (i.e., it is increasing and right continuous while Ft0 contains all

P -null sets). w = w(t)(t ≥ 0), w(t) = (w1(t), w2(t), · · · , wm(t))T is a standard m-dimensional

Brownian motion defined on (Ω , F , {Ft}t≥t0
,P). Let R0 = [0, +∞), and N denotes the set

of positive integers. Let PC([a, b], Rd) = {ϕ : [a, b] → R
d| ϕ(t+) = ϕ(t) for all t ∈ [a, b),

ϕ(t−) exists and ϕ(t−) = ϕ(t) for all but at most a finite number of points t ∈ (a, b]} with

the norm ‖ϕ‖ = supa≤t≤b |ϕ(θ)|, where ϕ(t+) and ϕ(t−) denote the right-hand and left-hand

limits of function ϕ(t) at t respectively. In specially, we define PC,PC([−τ, 0], Rd) for all

τ ≥ 0. Lp
F0

(Ω , PC) denotes the family of all F0 measurable, PC-valued random variables

ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} with ‖ϕ‖p
0 = sup−τ≤θ≤0 E|ϕ(θ)|p < ∞, where E stands for the

corresponding expectation operator with respect to the given probability measure P . Moreover,

Md×m is the space of all real-valued d × m matrices with the norm ‖A‖1 , (
∑d

i=1

∑m
j=1

|AijAji|)
1/2, where A = (aij)d×m ∈ Md×m. Aij and Aji are the cofactor of the elements aij

and aji respectively.
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Let {r(t), t ≥ 0} be a right-continuous Markov chain on the probability space (Ω , F , {Ft}t≥t0
,

P) taking values in a finite state space S = {1, 2, · · · , N} with generator Q = {qij}N×N (also

called the state transition matrix of r(t)) given by

P{r(t + △t) = j|r(t) = i} =





qij△t + o(△t), if i 6= j,

1 + qii△t + o(△t), if i = j,

where △t > 0 and lim△t→0
o(△t)
△t = 0. Here, qij ≥ 0 is the transition rate from i to j if i 6= j

while qii = −Σj 6=iqij . We assume that the Markov chain r(·) is independent of the Brownian

motion w(·). It is well known (see [37]) that almost every sample path of r(t) is a constant

except for a finite number of simple jumps in any finite subinterval of [t0, +∞), and almost

every sample path of r(t) is right continuous. In other words, there is a sequence of stopping

times that 0 = τ0 < τ1 < · · · < τk < · · · → ∞ and r(t) is constant almost everywhere on every

interval [τk, τk+1), i.e.,

r(t) = r(τk), ∀t ∈ [τk, τk+1), k ∈ N.

The topic of our analysis is the following d-dimensional INSFDEs-MS:





d[x(t) − D(t, xt, r(t))]

= f(t, xt, r(t))dt + g(t, xt, r(t))dw(t), t ≥ t0, t 6= tk, k ∈ N,

△x(tk) = Ik

(
t−k , xt−

k
, r(t−k )

)
, k ∈ N,

xt0 , ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft0

(Ω , PC),

(1)

where x(t) ∈ R
d, xt , xt(θ) = {x(t + θ) : −τ ≤ θ ≤ 0} is regard as a PC-valued stochastic

process. Both D : [t0, +∞) × PC × S → R
d, f : [t0, +∞) × PC × S → R

d and g : [t0, +∞) ×

PC × S → Md×m are continuous functionals. Ik

(
t−k , xt−

k
, r(t−k )

)
: [t0, +∞) × PC × S → R

d

represents the impulsive perturbation of x at tk. The fixed moments of impulsive times tk

satisfy 0 ≤ t0 < t1 < · · · < tk < · · · and tk → ∞ (as k → ∞). △x(tk) = x(tk) − x(t−k ), where

x(t−k ) = limh→0− x(tk + h). Let x̃(t) , x(t) − D(t, xt, r(t)).

Without loss of generality, we assume that the functionals D, f , g and Ik (k ∈ N) satisfy

necessary assumptions (such as the conditions H1 and H2 in [32]) so that, for all t ≥ t0 and the

initial function ξ, System (1) has a unique global solution x(t; ξ) ∈ PC([t0−τ, +∞], Rd) (record

briefly x(t)). In addition, we assume that D(t, 0, r(t)) ≡ 0, f(t, 0, r(t)) ≡ 0, g(t, 0, r(t)) ≡ 0 for

all t ≥ t0, and Ik(t−k , 0, r(t−k )) ≡ 0 for all t ≥ t0, k ∈ N, then System (1) admits always a trivial

solution x(t) ≡ 0.

Let C1,2([t0 − τ, +∞) × R
d × S) be the family of all nonnegative functions V (t, x, i) from

[t0 − τ, +∞) × R
d × S to R0 which is continuously once differentiable in t and twice in x. For

each V ∈ C1,2([t0 − τ, +∞) × R
d × S), define an operator LV : [t0 − τ, +∞) × R

d × S −→ R
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associated with System (1) by

LV (t, ϕ, i) = Vt(t, ϕ̃(0), i) + Vx(t, ϕ̃(0), i)f(t, ϕ, i)

+
1

2
trace[gT

i (t)Vxx(t, ϕ̃(0), i)gi(t)] +

N∑

j=1

qijV (t, ϕ̃(0), j), (2)

where

gi(t) = g(t, ϕ, i), Vx(t, ϕ̃(0), i) =

(
∂V (t, x, i)

∂x1
, · · · ,

∂V (t, x, i)

∂xd

)∣∣∣∣
x=ϕ̃(0)

,

Vt(t, ϕ̃(0), i) =
∂V (t, x, i)

∂t

∣∣∣∣
x=ϕ̃(0)

, Vxx(t, ϕ̃(0), i) =

(
∂2V (t, x, i)

∂xj∂xk

)

d×d

∣∣∣∣
x=ϕ̃(0)

.

Definition 2.1 (see [38]) The function V : [t0 − τ, +∞)×R
d ×S −→ R0 belongs to class

v0 if:

(i) for k = 1, 2, · · · , the function V is twice differentiable in x on [tk−1, tk) × R
d × S and

once continuously differentiable in t. In addition, V (t, 0, i) ≡ 0 for all t ≥ 0;

(ii) V (t, x, r(t)) is locally Lipschitzian in x ∈ R
d;

(iii) for each k = 1, 2, · · · , there exist finite limits

lim
(t,y,r(t))→(t−

k
,x,r(tk))

V (t, y, r(t)) = V (t−k , x, r(tk)),

lim
(t,y,r(t))→(t+

k
,x,r(tk))

V (t, y, r(t)) = V (t+k , x, r(tk)),

such that V (t+k , x, r(tk)) = V (tk, x, r(tk)).

Definition 2.2 (see [32]) The trivial solution of System (1) is said to be pth (p > 0)

moment exponentially stable if there exist positive constants α and β such that, for every

ξ ∈ Lp
Ft0

(Ω ,PC ) following inequality holds

E|x(t; ξ)|p ≤ α‖ξ‖p
0e

−β(t−t0), ∀t ≥ t0,

or equivalently, lim supt→∞
ln E|x(t;ξ)|p

t ≤ −β.

Definition 2.3 (see [32]) The trivial solution of System (1) is said to be almost surely

exponentially stable if there exists a positive constant γ such that

lim sup
t→∞

ln |x(t; ξ)|

t
≤ −γ, a.s.

for any initial ξ ∈ Lp
Ft0

(Ω ,PC ).

3 Main Results

To study the problem that the trival solution of System (1) is exponentially stability, we

first list the following assumption:
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(A1) There exists a constant l0 ∈ (0, 1) such that

E|D(t, ϕ, r(t))|p ≤ lp0‖ϕ‖
p
0,

for all t ∈ [tk, tk+1), k ∈ N and ϕ ∈ Lp
Ft

(Ω ,PC ).

Remark 3.1 Firstly, x(t) − D(t, xt, r(t)) is regarded as a whole x̃(t), which the pur-

pose is to be proved by the Razumikhin theorem of stochastic functional differential equations.

Therefore, we only needs to estimate the value of x̃(t). Secondly, according to the character-

istics of piecewise continuity of the solution, combined with proof by contradiction as well as

mathematical induction method, and the result of following can be obtained.

Theorem 3.2 Let p > 1, δ = supk∈N{tk− tk−1} < ∞, and (A1) holds. Assume that there

exist functions V ∈ v0 and b(t) ∈ PC([t0 − τ, +∞), R0) as well as several positive constants

c1, c2, κ1, q, ρ1, ρ2, b̃ satisfying κ1 ∈ (l0, 1), q > c−1
1 c2(1 − κ1)

−p, and ek ≥ 0 (k ∈ N),∑∞
k=1 ek < ∞ and ρ1 + ρ2 < 1 such that

(i) for all (t, x, r(t)) ∈ [t0 − τ, +∞) × R
d × S,

c1|x|
p ≤ V (t, x, r(t)) ≤ c2|x|

p; (3)

(ii) for all t ∈ [tk, tk+1), k ∈ N, ϕ ∈ Lp
Ft0

(Ω ,PC ) and θ ∈ [−τ, 0],

ELV (t, ϕ, r(t)) ≤ b(t)EV (t, ϕ̃(0), r(t)),

whenever EV (t + θ, ϕ(θ), r(t + θ)) < qEV (t, ϕ̃(0), r(t));

(iii) for all k ∈ N, ϕ ∈ Lp
Ft0

(Ω ,PC ),

EV
(
tk, ϕ̃(0) + Ik(tk, ϕ̃(0), r(tk)), r(tk)

)

≤ ρ1(1 + ek)EV
(
t−k , ϕ̃(0), r(t−k )

)

+ ρ2(1 + ek) sup
θ∈[−τ,0]

EV
(
t−k + θ, ϕ̃(θ), r(t−k + θ)

)
; (4)

(iv) b̃δ ≥ supt∈[t0,∞)

∫ t+δ

t
b(s)ds, q > 1

ρ1+ρ2
> eb̃δ.

Therefore, the trivial solution of System (1) is pth moment exponentially stable for any bounded

time delay τ ∈ (0, +∞).

Proof Set M =
∏∞

k=1(1+ek). From ek ≥ 0 and
∑∞

k=1 ek < ∞, we deduce that 1 ≤ M < ∞.

For any initial data ξ ∈ Lp
Ft0

(Ω ,PC ), write V (t, x̃(t), r(t)) = V (t) for simplicity. From the

condition (iv), one can choose a small enough constant γ > 0 such that

q >
eγτ

ρ1 + ρ2eγτ
>

1

ρ1 + ρ2eγτ
> e(̃b+γ)δ, qe−γτ > 1. (5)

Let q̃ = qe−γτc1c
−1
2 (1 − κ1)

p > 1, and N > 0 is a large enough constant.

To prove the trivial solution of System (1) is pth moment exponentially stable, for any

bounded initial value ξ ∈ Lp
Ft0

(Ω ,PC ), it is sufficient to prove that

E|x(t)|p ≤ α‖ξ‖p
0e

−γ(t−t0), t ∈ [t0, +∞), (6)
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where α is a positive constant. Let βm =
∏m

k=1(1 + ek)Nc−1
1 ‖ξ‖p

0 for every m ∈ N and

β = MNc−1
1 ‖ξ‖p

0, and let’s first prove that

h(t) , eγ(t−t0)E|x(t)|p ≤ (1 − κ1)
−pβm, t ∈ [t0, tm). (7)

Note that if it holds

h̃(t) , eγ(t−t0)E|x̃(t)|p ≤ βm, ∀t ∈ [t0, tm), (8)

then by using the assumption (A1) it follows, for all t ∈ [t0, tm), that

H(t) , sup
t0−τ≤s≤t

h(s)

≤ ‖ξ‖p
0 ∨ sup

t0≤s≤t
h(s)

≤ ‖ξ‖p
0 ∨ sup

t0≤s≤t
eγ(s−t0)[(1 − κ1)

1−pE|x̃(s)|p + κ1−p
1 E|D(s, xs, r(s))|

p]

≤ ‖ξ‖p
0 ∨ sup

t0≤s≤t
[(1 − κ1)

1−ph̃(s) + κ1−p
1 lp0e

γ(s−t0)‖xs‖
p
0]

≤ βm(1 − κ1)
1−p + κ1H(t),

which implies

H(t) ≤ (1 − κ1)
−pβm. (9)

Thus, one can obtain (9) from h(t) ≤ H(t). Therefore, we only need to prove that (8) holds.

In the following, we shall prove that (8) holds. Let W (t) = eγ(t−t0)V (t) for all t ∈ [t0 −

τ, +∞). By the condition (i) and the definition of γ, one can show that

EW (t) = eγ(t−t0)EV (t, x̃(t), r(t))

≤ eγ(t−t0)c2E|x̃(t)|p

≤ eγ(t−t0)c2E|x(t) − D(t, xt, r(t))|
p

≤ 2p−1c2(1 + lp0)‖ξ‖
p
0

< N‖ξ‖p
0, t ∈ [t0 − τ, t0]. (10)

So it is only need to show

EW (t) ≤ βc1, t ∈ [t0, +∞). (11)

Firstly, it is

EW (t) < N‖ξ‖p
0, t ∈ [t0, t1). (12)

Suppose on the contrary that there exists a t̃ ∈ (t0, t1) such that EW (t̃) ≥ N‖ξ‖p
0. Set

t† = inf{t ∈ [t0, t1) : EW (t) ≥ N‖ξ‖p
0}. (13)

Notice that EW (t) is continuous on t ∈ [t0, t1), then t† ∈ (t0, t1) and

EW (t†) = N‖ξ‖p
0, EW (t) < N‖ξ‖p

0, t ∈ [t0 − τ, t†). (14)
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We further define

t‡ = sup

{
t ∈ [t0, t

†] : EW (t) ≤
1

q̃
N‖ξ‖p

0

}
. (15)

then t‡ ∈ (t0, t
†) and

EW (t‡) =
1

q̃
N‖ξ‖p

0, EW (t) >
1

q̃
N‖ξ‖p

0, t ∈ (t‡, t†]. (16)

By the virtue of (14) and (16), one can derive for all t ∈ [t‡, t†] that

EW (t + θ) ≤ N‖ξ‖p
0 ≤ q̃EW (t), ∀θ ∈ [−τ, 0]. (17)

Consequently,

EV (t + θ, x(t + θ), r(t + θ)) ≤ c2E|x(t + θ)|p

= c2e
−γ(t+θ−t0)h(t + θ)

< c2e
−γ(t+θ−t0)H(t)

< c2e
−γ(t+θ−t0)(1 − κ1)

−pc−1
1 N‖ξ‖p

0

< c2e
−γ(t+θ−t0)(1 − κ1)

−pc−1
1 q̃EW (t)

< c2e
γτ(1 − κ1)

−pc−1
1 q̃EV (t)

≤ qEV (t), ∀θ ∈ [−τ, 0]. (18)

From the definition of LV and the condition (ii), we conclude that

ELW (t) = eγ(t−t0)[γEV (t) + ELV (t)] ≤ (γ + b(t))EW (t), t ∈ [t‡, t†]. (19)

On the other hand, applying Itô’s formula to eγ(t−t0)V (t, x̃(t), r(t)) and by the well-known

Gronwall inequality as well as the condition (iv), we can easily claim that

EW (t†) ≤ EW (t‡)e
∫

t†

t‡
(γ+b(s))ds ≤ EW (t‡)e(γ+b̃)δ =

1

q̃
N‖ξ‖p

0e
(γ+b̃)δ < N‖ξ‖p

0, (20)

which contradicts the definition of t†. Therefore, the relation (12) holds.

Now, one can assume that for some n ∈ N, n ≥ 1,

EW (t) < Nn‖ξ‖
p
0, t ∈ [t0, tn), (21)

where N1 = N , Nn = N
∏

1≤i≤n−1(1 + ei) for n ≥ 2. we proceed to prove that

EW (t) < Nn+1‖ξ‖
p
0, t ∈ [tn, tn+1). (22)

Suppose the claim (22) is not true, there exists some t ∈ [tn, tn+1) such that EW (t) ≥ Nn+1‖ξ‖
p
0.

Together with the inequality (21) and the condition (iv), it yields

EW (tn) ≤ ρ1(1 + en)EW (t−n ) + ρ2(1 + en)eγτ sup
θ∈[−τ,0]

EW (t−n + θ)

≤ (ρ1 + ρ2e
γτ)Nn+1‖ξ‖

p
0

< Nn+1‖ξ‖
p
0. (23)
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Let

t′ = inf{t ∈ [tn, tn+1) : EW (t) ≥ Nn+1‖ξ‖
p
0}, (24)

it has that t′ ∈ (tn, tn+1) and

EW (t′) = Nn+1‖ξ‖
p
0, EW (t) < Nn+1‖ξ‖

p
0, t ∈ [tn, t′). (25)

Moreover, denote

t′′ = sup{t ∈ [tn, t′] : EW (t) ≤ (ρ1 + ρ2e
γτ )Nn+1‖ξ‖

p
0}. (26)

Hence, we can deduce that t′′ ∈ [tn, t′) and

EW (t′′) = (ρ1 + ρ2e
γτ )Nn+1‖ξ‖

p
0, EW (t) > (ρ1 + ρ2e

γτ )Nn+1‖ξ‖
p
0, t ∈ (t′′, t′]. (27)

Thus, it follows immediately, for every t ∈ [t′′, t′], that

EW (t + θ) ≤ Nn+1‖ξ‖
p
0 ≤

1

ρ1 + ρ2eγτ
EW (t) < q̃EW (t), ∀θ ∈ [−τ, 0]. (28)

Now, in view of the assumption (A1), Itô’s formula, and discussion similar to (17)–(19), we find

that

EW (t′) ≤ EW (t′′)e
∫

t′

t′′
(γ+b(s))ds

≤ EW (t′′)e(γ+b̃)δ

= e(γ+b̃)δ(ρ1 + ρ2e
γτ )Nn+1‖ξ‖

p
0

< Nn+1‖ξ‖
p
0,

which contradicts the definition of t′. So the relation (22) is valid.

By mathematical induction, (22) holds for any n ∈ N. Namely, the required (11) follows.

Finally, what remains is to apply the condition (i) to conclude that

E|x(t)|p ≤
MN(1 − κ1)

−p

c1
‖ξ‖p

0e
−γ(t−t0), ∀t ∈ [t0, +∞), (29)

which shows that the trivial solution of System (1) is pth moment exponentially stable. This

completes the proof.

Remark 3.3 Comparing to [32], in which uses impulses to stabilize unstable stochastic

system, but we consider the interference of neutral terms and Markov switching to make it

closer to the real situation. In [39], although Markov switching is considered, the influence

of functionals’ derivative on stability is ignored. What is more, we consider the case that the

derivative of EV is limited by a function too, which is less conservative.

Remark 3.4 Theorem 3.2 implies that neutral stochastic functional differential systems

can be stabilized by an appropriate perturbations of impulses, and the average growth rate of

LV operator corresponding to the constructed V function or functional is bounded function
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that varies with time. But discrete dynamic underlying the impulsive inputs may be unstable in

some cases. Therefore, it’s necessary to give a new criterion that neutral stochastic functional

differential systems with Markovian switching can still remain the exponential stability after

disturbed by an unstable perturbations of impulses.

Remark 3.5 Due to the difference in the value of ρ1 + ρ2, the value of b̃ related to the

function b(t) will change, which leads to the proof of (21) being trickier than Theorem 3.2.

Moreover, the results of the following theorem can be obtained by combining the idea of clas-

sification discussion.

Theorem 3.6 Let p > 1, δ = infk∈N{tk − tk−1} > 0, and (A1) holds. Suppose that there

exist functions V ∈ v0 and b(t) ∈ PC([t0 − τ, +∞), R0) as well as several positive constants

c1, c2, κ1, q, ρ1, ρ2, b̃ satisfying κ1 ∈ (l0, 1), q > c−1
1 c2(1 − κ1)

−p, and ek ≥ 0 (k ∈ N),∑∞
k=1 ek < ∞ and ρ1 + ρ2 ≥ 1 such that (3), (4) and the following two assumptions hold:

(v) for all t ∈ [tk, tk+1), k ∈ N, ϕ ∈ Lp
Ft0

(Ω ,PC ) and θ ∈ [−τ, 0],

ELV (t, ϕ, r(t)) ≤ −b(t)EV (t, ϕ̃(0), r(t)),

whenever EV (t + θ, ϕ(θ), r(t + θ)) < qEV (t, ϕ̃(0), r(t));

(vi) inft∈[t0,+∞) b(t) ≥ b̃, ρ1 + ρ2e
b̃τ < q < eb̃δ.

Then, the trivial solution of System (1) is pth moment exponentially stable for any bounded

time delay τ ∈ (0, +∞).

Proof Set M =
∏∞

k=1(1 + ek). Since ek ≥ 0 and
∑∞

k=1 ek < ∞ we claim that 1 ≤ M < ∞.

For any initial data ξ ∈ Lp
Ft0

(Ω ,PC ), write V (t, x̃(t), r(t)) = V (t) for simplicity. From the

condition (vi), one can choose a small enough constant γ > 0 such that

eγτ (ρ1 + ρ2e
b̃τ ) < q < e(̃b−γ)δ, γ < b̃. (30)

Let q̃ = qe−γτc1c
−1
2 (1 − κ1)

p > 1, and N > 0 is a large enough constant.

To prove the trivial solution of System (1) is pth moment exponentially stable, for any

bounded initial value ξ ∈ Lp
Ft0

(Ω ,PC ), it is enough to prove the following

E|x(t)|p ≤ α‖ξ‖p
0e

−γ(t−t0), t ∈ [t0, +∞), (31)

where α is a positive constant. Let βm =
∏m

k=1(1 + ek)Nc−1
1 ‖ξ‖p

0 for every m ∈ N and

β = MNc−1
1 ‖ξ‖p

0, and we first prove

h(t) , eγ(t−t0)E|x(t)|p ≤ (1 − κ1)
−pβm, t ∈ [t0, tm). (32)

Note that if it holds

h̃(t) , eγ(t−t0)E|x̃(t)|p ≤ βm, ∀t ∈ [t0, tm), (33)
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then by using the assumption (A1) it follows, for all t ∈ [t0, tm), that

H(t) , sup
t0−τ≤s≤t

h(s)

≤ ‖ξ‖p
0 ∨ sup

t0≤s≤t
h(s)

≤ ‖ξ‖p
0 ∨ sup

t0≤s≤t
eγ(s−t0)[(1 − κ1)

1−pE|x̃(s)|p + κ1−p
1 E|D(s, xs, r(s))|

p]

≤ ‖ξ‖p
0 ∨ sup

t0≤s≤t
[(1 − κ1)

1−ph̃(s) + κ1−p
1 lp0e

γ(s−t0)‖xs‖
p
0]

≤ βm(1 − κ1)
1−p + κ1H(t),

which implies

H(t) ≤ (1 − κ1)
−pβm. (34)

Thus, one can obtain (32) from h(t) ≤ H(t). Therefore, we only need to prove that (33) holds.

In the following, we are going to prove that (33) holds. Let W (t) = eγ(t−t0)V (t) for all

t ∈ [t0 − τ, +∞). By the condition (3) and the definition of γ, it holds that

EW (t) = eγ(t−t0)EV (t, x̃(t), r(t))

≤ eγ(t−t0)c2E|x̃(t)|p

≤ eγ(t−t0)c2E|x(t) − D(t, xt, r(t))|
p

≤ 2p−1c2(1 + lp0)‖ξ‖
p
0

< N‖ξ‖p
0, t ∈ [t0 − τ, t0]. (35)

So it is only need to show

EW (t) ≤ βc1, t ∈ [t0, +∞). (36)

Firstly, it is

EW (t) < N‖ξ‖p
0, t ∈ [t0, t1). (37)

We assume, on the contrary, there exists some t̃ ∈ (t0, t1), such that EW (t̃) ≥ N‖ξ‖p
0. Define

t† = inf{t ∈ [t0, t1) : EW (t) ≥ N‖ξ‖p
0}. (38)

Note that EW (t) is continuous on t ∈ [t0, t1), therefore, t† ∈ (t0, t1) and

EW (t†) = N‖ξ‖p
0, EW (t) < N‖ξ‖p

0, t ∈ [t0 − τ, t†). (39)

We further define

t‡ = sup

{
t ∈ [t0, t

†] : EW (t) ≤
1

q̃
N‖ξ‖p

0

}
, (40)

then t‡ ∈ (t0, t
†) and

EW (t‡) =
1

q̃
N‖ξ‖p

0, EW (t) >
1

q̃
N‖ξ‖p

0, t ∈ (t‡, t†]. (41)
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By the virtue of (39) and (41), one can derive for all t ∈ [t‡, t†] that

EW (t + θ) ≤ N‖ξ‖p
0 ≤ q̃EW (t), ∀θ ∈ [−τ, 0]. (42)

Consequently,

EV (t + θ, x(t + θ), r(t + θ)) ≤ c2E|x(t + θ)|p

= c2e
−γ(t+θ−t0)h(t + θ)

< c2e
−γ(t+θ−t0)H(t)

< c2e
−γ(t+θ−t0)(1 − κ1)

−pc−1
1 N‖ξ‖p

0

< c2e
−γ(t+θ−t0)(1 − κ1)

−pc−1
1 q̃EW (t)

< c2e
γτ(1 − κ1)

−pc−1
1 q̃EV (t)

≤ qEV (t), ∀θ ∈ [−τ, 0]. (43)

From the definition of LV and the condition (v), we conclude that

ELW (t) = eγ(t−t0)[γEV (t) + ELV (t)] ≤ (γ − b(t))EW (t), t ∈ [t‡, t†]. (44)

Meanwhile, applying Itô’s formula to eγ(t−t0)V (t, x̃(t), r(t)) and by the well-known Gronwall

inequality (see [11]) as well as the condition (vi), we can easily claim that

EW (t†) ≤ EW (t‡)e
∫

t†

t‡
(γ−b(s))ds

≤ EW (t‡)e(γ−b̃)(t†−t‡)

< EW (t‡)

=
1

q̃
N‖ξ‖p

0

< N‖ξ‖p
0, (45)

which contradicts the definition of t†. Therefore, the relation (37) holds.

Now, we assume that for some n ∈ N, n ≥ 1,

EW (t) < Nn‖ξ‖
p
0, t ∈ [t0, tn), (46)

where N1 = N , Nn = N
∏

1≤i≤n−1(1 + ei) for n ≥ 2. we proceed to show that

EW (t) < Nn+1‖ξ‖
p
0, t ∈ [tn, tn+1). (47)

To do this, we first prove

EW (t−n + θ) ≤
e(̃b−γ)τ

q̃
Nn‖ξ‖

p
0, θ ∈ [−τ, 0). (48)

Suppose not, then there exists θ1 ∈ [−τ, 0) such that EW (t−n + θ1) > e(b̃−γ)τ

q̃ Nn‖ξ‖
p
0. Without

lose generality, we assume tn + θ1 ∈ (tm−1, tm], m ∈ N, m ≤ n.
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Case 1 EW (t) > e(b̃−γ)τ

q̃ Nn‖ξ‖
p
0 over t ∈ [tm−1, tn + θ1).

By the assumption (46), for all t ∈ [tm−1, tn + θ1), we see that

EW (t + θ) < Nn‖ξ‖
p
0 < e(̃b−γ)τNn‖ξ‖

p
0 < q̃EW (t), θ ∈ [−τ, 0].

Hence, it follows from Itô’s formula, the conditions (v), (4) and discussion similar to (43)–(45),

it has

EW (t−n + θ1) ≤ EW (tm−1)e
(γ−b̃)(t−n +θ1−tm−1)

< Nn‖ξ‖
p
0e

(̃b−γ)τe(γ−b̃)(tn−tm−1)

≤
e(̃b−γ)τ

qn−m+1
Nn‖ξ‖

p
0

<
e(̃b−γ)τ

q̃
Nn‖ξ‖

p
0,

which contradicts the definition of θ1.

Case 2 There is some t ∈ [tm−1, tn + θ1) such that EW (t) > e(b̃−γ)τ

q̃ Nn‖ξ‖
p
0.

In this case, we denote

ť = sup

{
t ∈ [tm−1, tn + θ1] : EW (t) ≤

e(̃b−γ)τ

q̃
Nn‖ξ‖

p
0

}
.

Thus ť ∈ [tm−1, tn + θ1) and

EW (ť) =
e(̃b−γ)τ

q̃
Nn‖ξ‖

p
0, EW (t) >

e(̃b−γ)τ

q̃
Nn‖ξ‖

p
0, ∀t ∈ (ť, tn + θ1).

So for all t ∈ [ť, tn + θ1), it has

EW (t + θ) < Nn‖ξ‖
p
0 < e(̃b−γ)τNn‖ξ‖

p
0 ≤ q̃EW (t), ∀θ ∈ [−τ, 0].

In view of Itô’s formula, the well-known Gronwall inequality, the conditions (v), (4) and dis-

cussion similar to (43)–(45), we then derive that

EW (t−n + θ1) ≤ EW (ť)e(γ−b̃)(tn+θ1−ť) <
e(̃b−γ)τ

q̃
Nn‖ξ‖

p
0.

The inequality contradicts the definition of θ1. Therefore, (48) holds.

Similarly, one can prove

EW (t−n ) ≤
1

q̃
Nn‖ξ‖

p
0. (49)

By virtue of (48) and (49) and the inequality (4), we have

EW (tn) ≤ ρ1(1 + en)EW (t−n ) + ρ2(1 + en)eγτ sup
θ∈[−τ,0]

EW (t−n + θ)

≤
ρ1 + ρ2e

b̃τ

q̃
Nn+1‖ξ‖

p
0

< Nn+1‖ξ‖
p
0. (50)



EEPONENTIAL STABILTY OF STOCHASTIC SYSTEMS 1573

Now suppose (47) is not true, then, there exists t ∈ [tn, tn+1) such that EW (t) > Nn+1‖ξ‖
p
0.

Let t′ = inf{t ∈ [tn, tn+1) : EW (t) ≥ Nn+1‖ξ‖
p
0}. Then t′ ∈ (tn, tn+1) and

EW (t′) = Nn+1‖ξ‖
p
0, EW (t) < Nn+1‖ξ‖

p
0, t ∈ [tn, t′).

We further denote

t′′ = sup

{
t ∈ [tn, t′] : EW (t) ≤

1

q̃
Nn+1‖ξ‖

p
0

}
,

which implies t′′ ∈ [tn, t′) and

EW (t′′) =
1

q̃
Nn+1‖ξ‖

p
0, EW (t) >

1

q̃
Nn+1‖ξ‖

p
0, t ∈ (t′′, t′].

Hence, for every t ∈ [t′′, t′], it is easy to obtain that

EW (t + θ) ≤ Nn+1‖ξ‖
p
0 ≤ q̃EW (t), θ ∈ [−τ, 0].

Applying Itô’s formula to eγ(t−t0)V (t, x̃(t), r(t)) and by the well-known Gronwall inequality

(see [11]) as well as the condition (v), (4) and discussion similar to (43)–(45), we can easily

claim that

EW (t′) ≤ EW (t′′)e(γ−b̃)(t′−t′′) ≤ EW (t′′) < Nn+1‖ξ‖
p
0.

This inequality clearly contradicts the definition of t′, therefore, (47) holds.

By mathematical induction, (47) holds for any n ∈ N. Namely, (36) is valid. Finally, what

remains is to apply the assumption (A1) to conclude that

E|x(t)|p ≤
MN(1 − κ1)

−p

c1
‖ξ‖p

0e
−γ(t−t0), ∀t ∈ [t0, +∞), (51)

which shows that the trivial solution of System (1) is pth moment exponentially stable. The

proof is completed.

Remark 3.7 To conclude this section, under an irrestrictive condition, we shall present a

theorem about the almost surely exponentially stable of System (1). As a result, it is necessary

to use the method of moment estimation, and combine with some elementary inequalities such

as (x+y)p ≤ 2p−1(xp +yp) (see [10]), and the basic inequalities such as Hölder and Burkholder-

Davis-Gundy as well as the Borel-Cantelli lemma to obtain the conclusion of Corollary 3.8.

Firstly, the necessary assumption is given as follows:

(A2) Suppose the impulsive instances tk satisfy

∆sup = sup
k∈N

{tk − tk−1} < ∞, ∆inf = inf
k∈N

{tk − tk−1} > 0.

Corollary 3.8 Set p ≥ 1, and the assumption (A2) holds. Suppose there is a constant

L > 0 such that for all (t, ϕ, r(t)) ∈ [t0, +∞) × Lp
Ft

(Ω ,PC ) × S,

E(|f(t, ϕ, r(t))|p + |g(t, ϕ, r(t))|p) ≤ L sup
−τ≤θ≤0

E|ϕ|p. (52)
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Therefore, (29) and (51) imply that for all t ∈ [t0, +∞)

|x(t)| ≤ Ce−(γ/p)(t−t0)‖ξ‖0, a.s.,

where C is a positive constant. Namely, under the condition (52), pth moment exponential

stability implies almost surely exponential stability for System (1).

Proof Let δ with 0 < δ < ∆inf sufficiently small. For the fixed δ > 0, choose kδ =

[ tk−tk−1

δ ] ∈ N. Here [X ] is the maximum integer not more than X . Therefore, kδ ≤ [∆sup/δ] <

∞ and for any t ∈ [tk−1, tk), there exist some constant i with 1 ≤ i ≤ kδ + 1 such that

tk−1 + (i − 1)δ ≤ t < tk−1 + iδ. Thus, for every t ∈ [tk−1, tk), k ∈ N, one has

E
[

sup
tk−1≤t<tk

|x(t)|p
]
≤

kδ+1∑

i=1

E
[

sup
tk−1+(i−1)δ≤t<tk−1+iδ

|x(t)|p
]
. (53)

For each i satisfying 1 ≤ i ≤ kδ + 1, k ∈ N,

E
[

sup
tk−1+(i−1)δ≤t<tk−1+iδ

|x(t)|p
]

≤ 4pE
∣∣x(tk−1 + (i − 1)δ) − D

(
tk−1 + (i − 1)δ, xtk−1+(i−1)δ, r(tk−1 + (i − 1)δ)

)∣∣p

+ 4pE
[

sup
tk−1+(i−1)δ≤t<tk−1+iδ

∣∣D
(
t, xt, r(t)

)∣∣p
]

+ 4pE

[( ∫ tk−1+iδ

tk−1+(i−1)δ

|f(s, xs, r(s))|ds

)p]

+ 4pE

[
sup

tk−1+(i−1)δ≤t<tk−1+iδ

∣∣∣∣
∫ t

tk−1+(i−1)δ

g(s, xs, r(s))dw(s)

∣∣∣∣
p]

, I1 + I2 + I3 + I4, (54)

applying the assumption (A1), we find that

I1 ≤ 4p · 2p
[
E|x(tk−1 + (i − 1)δ)

∣∣p + lp0E
∣∣x(tk−1 + (i − 1)δ)

∣∣p]

= 4p · 2p(1 + lp0)E
∣∣x(tk−1 + (i − 1)δ)

∣∣p. (55)

Note that D
(
t, xt, r(t)

)
is continuous on [tk−1 + (i − 1)δ, tk−1 + iδ], thus, there exists some

t′ ∈ [tk−1 + (i − 1)δ, tk−1 + iδ] such that

E
[

sup
tk−1+(i−1)δ≤t<tk−1+iδ

∣∣D
(
t, xt, r(t)

)∣∣p
]
≤ E

[
sup

tk−1+(i−1)δ≤t≤tk−1+iδ

∣∣D
(
t, xt, r(t)

)∣∣p
]

= E|D(t′, xt′ , r(t
′))|p,

in view of the assumption (A1) and (51), we conclude that

I2 ≤ 4pE|D(t′, xt′ , r(t
′))|p

≤ 4p · lp0E
∣∣x(t′)

∣∣p

≤ 4p · lp0
MN(1 − κ1)

−p

c1
‖ξ‖p

0e
−γ(t′−t0)

≤ 4p · lp0
MN(1 − κ1)

−p

c1
‖ξ‖p

0e
−γ(tk−1−t0). (56)
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On the one hand, from the condition (51), (52) and the Hölder inequality (see [10]), one can

obtain that

I3 ≤ 4pδp−1L ·

∫ tk−1+iδ

tk−1+(i−1)δ

sup
−τ≤θ≤0

E|x(s + θ)|pds

≤ 4pδp−1L ·
MN(1 − κ1)

−p

c1
‖ξ‖p

0

∫ tk−1+iδ

tk−1+(i−1)δ

e−γ(s−τ−t0)ds

≤ 4pδpL ·
MN(1 − κ1)

−p

c1
‖ξ‖p

0e
γτ · e−γ(tk−1−t0). (57)

On the other hand, by the Burkholder-Davis-Gundy inequality (see [10]), (51) and the Hölder

inequality, one can get

I4 ≤ 4pCpE

[ ∫ tk−1+iδ

tk−1+(i−1)δ

∣∣g(s, xs, r(s))
∣∣2ds

]p/2

≤ 4pCpδ
(p/2)−1E

[∫ tk−1+iδ

tk−1+(i−1)δ

∣∣g(s, xs, r(s))
∣∣pds

]

≤ 4pCpδ
(p/2)−1L ·

∫ tk−1+iδ

tk−1+(i−1)δ

sup
−τ≤θ≤0

E|x(s + θ)|pds

≤ 4pCpδ
p/2L ·

MN(1 − κ1)
−p

c1
‖ξ‖p

0e
γτ · e−γ(tk−1−t0), (58)

where Cp is a positive constant dependent of p only. Substituting (51) and (55)–(58) into (54)

yields

E
[

sup
tk−1+(i−1)δ≤t<tk−1+iδ

|x(t)|p
]

≤ 4p
[
2p(1 + lp0) + lp0 + (δp + Cpδ

p/2)Leγτ
]MN(1 − κ1)

−p

c1
‖ξ‖p

0e
−γ(tk−1−t0). (59)

Thus, it follows from (53) and (59), we have

E
[

sup
tk−1≤t<tk

|x(t)|p
]
≤ C̃p‖ξ‖p

0e
−γ(tk−1−t0), (60)

where

C̃p = 4p
[
2p(1 + lp0) + lp0 + (δp + Cpδ

p/2)Leγτ
]MN(1 − κ1)

−p(kδ + 1)

c1
.

Using Chebyshev’s inequality (see [10]), one can see that for any ε ∈ (0, γ),

P
{

sup
tk−1≤t<tk

|x(t)|p > C̃p‖ξ‖p
0e

−(γ−ε)(tk−1−t0)
}
≤ e−ε(tk−1−t0).

Note that tk → ∞ as k → ∞, and in view of the well-known Borel-Cantelli lemma, it follows

that

sup
tk−1≤t<tk

|x(t)|p ≤ C̃p‖ξ‖p
0e

−(γ−ε)(tk−1−t0), a.s.,
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which implies

|x(t)| ≤ C̃‖ξ‖0e
−(γ−ε)(tk−1−t0)/p, a.s.,

for all t ∈ [tk−1, tk). Letting ε → 0, one can get that for any t ∈ [tk−1, tk), k ∈ N

|x(t)| ≤ C‖ξ‖0e
−(γ/p)(t−t0), a.s.,

where C = C̃e(γ/p)∆sup. Therefore, the trivial solution of System (1) is almost surely exponen-

tially stable.

4 Example

Example 4.1 Consider INSFDEs-MS as follows:





d[x(t) − D(t, xt, r(t))]

= f(t, xt, r(t))dt + g(t, xt, r(t))dw(t), t ≥ t0, t 6= tk, k ∈ N,

△x(tk) =
1

k2
x(t−k − τ), k ∈ N,

xt0 , ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ Lp
Ft0

(Ω ,PC ),

(61)

where x(t) = (x1(t), x2(t))
T, {r(t), t ≥ 0} is a right-continuous Markov chain taking values in

S = {1, 2} with generator Q =(−1.5 1.5
1 −1 ) and dependent of standard two-dimensional Brownian

motion {w(t), t ≥ 0} defined on (Ω, F , {Ft}t≥t0 , P ). f(t, xt, 1) = −(1−0.5 cos t)x(t)+0.5x(t−

τ), f(t, xt, 2) = −(0.5− 4
9 cos t)x(t)+0.3x(t−τ), g(t, xt, 1) = 0.5x(t−τ), g(t, xt, 2) = 0.7x(t−τ),

D(t, xt, 1) = 0.2x(t − τ), D(t, xt, 2) = 0.1x(t − τ), tk − tk−1 = 0.1π (k ∈ N).

Take Lyapunov function V (t, x(t), r(t)) = 0.1x(t)2, then we obtain that the assumption

(A1) holds with c1 = c2 = 0.1, p = 2. On the other hand, set l0 = 0.25, κ1 ∈ (0.25, 0.29),

ρ1 = 0.23, ρ2 = 0.3, ek = 1
k2 (k ∈ N). By calculation, we can find that q > 1.9837. Choose

q = 2. According to E|x(t)|2 ≤ (1 − κ1)
−2E|x̃(t)|2 < 2E|x̃(t)|2 and E|x(t− τ)|2 ≤ 2E|x̃(t)|2, we

have

ELV (t, xt, 1)

= 0.2E[x(t) − 0.2x(t − τ)][−(1 − 0.5 cos t)x(t) + 0.5x(t − τ)] + 0.025E|x(t− τ)|2

−0.02E|x(t− τ)|2 + 0.025E|x(t− τ)|2

≤ −(0.2 − 0.1 cos t)E|x(t)|2 + 0.05E|x(t)|2 + 0.05E|x(t− τ)|2

+(0.02 − 0.01 cos t)E|x(t − τ)|2 + (0.02 − 0.01 cos t)E|x(t)|2 + 0.005E|x(t− τ)|2

= (−0.13 + 0.09 cos t)E|x(t)|2 + (0.075 − 0.01 cos t)E|x(t − τ)|2

≤ (−0.11 + 0.16 cos t)E|x̃(t)|2

< (1.1 + 0.16 cos t)E|x̃(t)|2,
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ELV (t, xt, 2)

= 0.2E[x(t) − 0.1x(t − τ)]

[
−

(
0.5 −

4

9
cos t

)
x(t) + 0.3x(t − τ)

]
+ 0.049E|x(t− τ)|2

−0.006E|x(t− τ)|2 + 0.049E|x(t− τ)|2

≤ −

(
0.1 −

4

45
cos t

)
E|x(t)|2 + 0.03E|x(t)|2 + 0.03E|x(t − τ)|2

+

(
0.005−

1

225
cos t

)
E|x(t − τ)|2 +

(
0.005 −

1

225
cos t

)
E|x(t)|2 + 0.049E|x(t− τ)|2

=

(
− 0.065 +

19

225
cos t

)
E|x(t)|2 +

(
0.078−

1

225
cos t

)
E|x(t − τ)|2

≤ (−0.026 + 0.16 cos t)E|x̃(t)|2

< (1.1 + 0.16 cos t)E|x̃(t)|2.

Let b(t) = 1.1 + 0.16 cos t, b̃ = 2, therefore, ELV (t, xt, r(t)) ≤ b(t)EV (t, x̃(t), r(t)). Obviously

sup
t≥t0

∫ t+δ

t

(1.1 + 0.16 cos s)ds = 1.1δ + sup
t≥t0

∫ t+δ

t

0.16 cossds

= 0.11π − 0.16 sin1.9π

≈ 0.3950

< b̃δ

≈ 0.6283.

It is easy to check that the conditions (iii) and (iv) of Theorem 3.2 are also satisfied, which means

System (61) is mean square exponentially stable. In addition, Corollary 3.8 guarantees that the

trivial solution of System (61) is almost surely exponentially stable. The numerical simulations

for System (61) is shown in Figure 1 and Figure 2 with the initial value ξ = (cos t, sin t)T

(−τ ≤ t ≤ 0) and τ = 0.5.

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

2.5

time t

r
(t

)

Figure 1 State curve of the Markovian switching r(t) in Example 4.1
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Figure 2 The state response of System (61) in Example 4.1

Example 4.2 Consider INSFDEs-MS as follows:






d[x(t) − D(t, xt, r(t))]

= f(t, xt, r(t))dt + g(t, xt, r(t))dw(t), t ≥ t0, t 6= tk, k ∈ N,

x(tk) = 0.8x(t−k ) − 0.5x(t−k − 0.2), k ∈ N,

xt0 , ξ = {ξ(θ) : −0.2 ≤ θ ≤ 0} ∈ Lp
Ft0

(Ω ,PC ),

(62)

where x(t) = (x1(t), x2(t))
T, {r(t), t ≥ 0} is a right-continuous Markov chain taking values in

S = {1, 2} with generator Q =(−4 4
5 −5 ) and dependent of standard two-dimensional Brownian

motion {w(t), t ≥ 0} defined on (Ω , F , {Ft}t≥t0
,P). f(t, xt, 1) = 0.4x(t) + 0.2x(t − 0.2),

f(t, xt, 2) = 0.2x(t) + 0.3x(t − 0.2), g(t, xt, 1) = −0.5x(t − 0.2), g(t, xt, 2) = 0.4x(t − 0.2),

D(t, xt, 1) = −0.25x(t− 0.2), D(t, xt, 2) = −0.2x(t − 0.2), tk − tk−1 = 0.2 (k ∈ N).

Take Lyapunov function V (t, x(t), r(t)) = |x(t)|2. Set l0 = 0.25, κ1 ∈ (0.25, 0.29), ρ1 = 1.5,

ρ2 = 0.002, ek = 1
k2 (k ∈ N) and τ = 0.2. By the Young inequality, we can get

ELV (t, xt, 1)

=E
{
p|x(t) + 0.25x(t − 0.2)|p−1 · [0.4x(t) + 0.2x(t − 0.2)]

+
p(p − 1)

2
|x(t) + 0.25x(t − 0.2)|p−2 · |x(t − 0.2)|2

}

≤E
{
pxp−1[|x(t)p−1 + 0.25p−1|x(t − 0.2)|p−1][0.4x(t) + 0.2x(t − 0.2)]

+
p(p − 1)

2
2p−2[|x(t)p−2 + 0.25p−2|x(t − 0.2)|p−2] · 0.25|x(t− 0.2)|2

}

≤E
{
0.4p2p−1|x(t)|p + 0.2(p− 1)2p−1|x(t)|px(t − 0.2) + 0.2 · 2p−1|x(t − 0.2)|p

+ 0.4pxp−10.5p−1|x(t − 0.2)|p + 0.4 · 0.5p−1|x(t)|p + 0.2p · 0.5p−1|x(t − 0.2)|p

+ (p − 1)(p − 2)2p−5|x(t)|p + (p − 1)2p−5|x(t − 0.2)|p + p(p − 1)0.5p+1|x(t − 0.2)|p
}

= [0.4p2p−1 + 0.2(p− 1)2p−1 + 0.4 · 0.5p−1 + (p − 1)(p − 2)2p−5 + p(p − 1)0.5p+1]E|x(t)|p

+ [0.2 · 2p−1 + 0.4(p − 1)0.5p−1 + 0.2p0.5p−1 + (p − 1)2p−5 + p(p − 1)0.5p+1]E|x(t − 0.2)|p.
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Let p = 3 and q = 2, we can get ELV (t, xt, 1) ≤ 7.375E|x(t)|3 + 2.025E|x(t − 0.2)|3 ≤

11.425E|x(t)|3. Similarly, it has ELV (t, xt, 2) ≤ 8.992E|x(t)|3. Set b(t) ≡ b̃ = 12, ρ1 = 1.5

and ρ2 = 0.002, obviously, ρ1 + ρ2e
b̃τ = 1.5 + 0.002e12·0.2 ≈ 1.75 < q < eb̃δ. Thus, System (62)

is 3th moment exponentially stable by Theorem 3.6. Numerical simulation for System (62) are

shown in Figure 3 with the initial value ξ = (cos t,− cos t) (−0.2 ≤ t ≤ 0).

Remark 4.3 Obviously, the conclusion obtained in this paper is less conservative than

that obtained in [32] in the sense that the coefficients of the estimated upper bound for the

diffusion operator of Lyapunov functionals can be allowed sign-changing as the time-varying.

Remark 4.4 From Figure 3 and Figure 4 show that an unstable stochastic system can

be exponentially stabilized by an suitable sequence of impulses, and impulses may change the

asymptotic behavior of the given systems.
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Figure 3 The state response of System (62) in Example 4.2 under impulsive control
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Figure 4 The state response of System (62) in Example 4.2 without impulses

5 Conclusion

In this work, we investigated the exponential stability for INSFDEs-MS by applying the

Razumikhin technique and stochastic analysis approaches. Some criteria on the pth moment

and almost exponential stability are proposed, and the results show that impulses do contribute

to exponential stability of NSFDEs-MS. In fact, we extend some previous findings to the expo-

nential stability of impulsive stochastic functional equations with Markov switching involving
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derivatives with delays, and the obtained results are verified to be more general than the exist-

ing results. Furthermore, two examples are provided in the end to illustrate the applications of

the obtained results. In our future work, it is worth considering the following two aspects:

1) Due to the exponential stability is too restrictive to be easily obtained in practical situ-

ations, perhaps we can consider the general decay stability theorem or stability in distribution

criterions for the trivial solutions of System (1).

2) Furthermore, before considering the exponential stability of the system (1), the linear

growth condition (similar to H2 in reference [32]) needs to be satisfied to ensure the existence

and uniqueness of the solution. However, this condition is usually violated in practical systems,

so it is an interesting idea to consider reducing the constraint of this condition to obtain more

satisfactory results.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Hale J K and Meyer K R, A class of functional equations of neutral type, Memoirs of the American

Mathematical Society, 1967, 76: 1–65.

[2] Kolmanovskii V B and Nosov V R, Stability and Periodic Modes of Control Systems with After-

effect, Nauka, Moscow, 1981.

[3] Hale J K and Lunel S M V, Introduction to Functional Differential Equations, Springer-Verlag,

New York, 1993.

[4] Yang X T, On the periodic solution of neutral functional differential equations, Journal of Systems

Science & Complexity, 2006, 26(6): 684–692.

[5] Kolmanovskii V B and Nosov V R, Stability of Functional Differential Equations, Academic Press,

New York, 1986.
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