
J Syst Sci Complex (2022) 35: 2062–2076

Trust-Region Based Stochastic Variational Inference for

Distributed and Asynchronous Networks∗

FU Weiming · QIN Jiahu · LING Qing · KANG Yu · YE Baijia

DOI: 10.1007/s11424-022-2085-5

Received: 7 February 2022 / Revised: 7 May 2022

c©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2022

Abstract Stochastic variational inference is an efficient Bayesian inference technology for massive

datasets, which approximates posteriors by using noisy gradient estimates. Traditional stochastic vari-

ational inference can only be performed in a centralized manner, which limits its applications in a wide

range of situations where data is possessed by multiple nodes. Therefore, this paper develops a novel

trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential

models over distributed and asynchronous networks, where the global parameters are diffused over the

network by using the Metropolis rule and the local parameters are updated by using the trust-region

method. Besides, a simple rule is introduced to balance the transmission frequencies between neighbor-

ing nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.

The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model
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to different datasets on a synthetic network, and experimental results demonstrate its effectiveness and

advantages over existing works.

Keywords Asynchronous networks, Bayesian inference, distributed algorithm, stochastic variational

inference, trust-region method.

1 Introduction

Bayesian inference provides an elegant way to dig hidden information in data. It has a
wide range of applications, for example, finding topics for text corpora[1], clustering unlabeled
data[2], and predicting unknown data[3]. Stochastic variational inference (SVI)[4] has made
Bayesian inference more efficient on massive dataset by using noisy estimates of the objective’s
natural gradient based on subsamples. It is highly scalable because the update of parameters
can be performed without passing through the whole dataset.

Traditionally, to perform SVI, one needs to centralize the data to a single machine. However,
in the big data era, data is often distributed over different locations. Sometimes it is infeasible
to send the complete data to a central machine due to reasons like heavy communication costs,
memory limitations of the central machine, and data privacy or security issues[5–7]. Therefore,
it is crucial to investigate the distributed implementation of SVI algorithms to suit the settings
where data is collected by multiple nodes.

There have already existed some works devoted to developing distributed SVI algorithms[8–13].
Specifically, the authors in [8] proposed a distributed stochastic variational Bayesian algorithm
(dSVB), where the global parameters are approximated by applying the stochastic gradient
method followed by a diffusion step[14]. In [9], the alternating direction method of multipliers
(ADMM)[15] is used to develop a distributed SVI algorithm, called ADMM-based networked
SVI, by introducing redundant variables to decouple the local duplicates of global variables.
While in [10], a new distributed SVI algorithm is proposed by applying the symmetric and dou-
bly stochastic matrix to fuse the local parameters obtained from the natural gradient method.
Note that the above distributed SVI algorithms[8–10] are designed for synchronous networks. To
execute them in asynchronous networks, clock synchronization procedures are essential, which
would, however, bring additional communication and computation costs[16]. The waiting time
of each node is also inescapable in this case. In view of this, the asynchronous SVI (ASYSVI)
algorithm with the master-slave architecture is proposed in [11] by adopting the asynchronous
parallel stochastic gradient method[17]. The ASYSVI algorithm may suffer from a single point
of failure since it is only the master that is in charge of maintaining the global parameters and
pushing them to the slavers. In [12], a token-passing-based asynchronous SVI algorithm is de-
veloped without the aid of the central node, where a token containing the global parameters is
passed through neighboring nodes. Considering that only the node possessing the token updates
according to the SVI procedures, this algorithm has the drawbacks of low computing efficiency
and huge wastes of resources. As a comparison, in the extreme stochastic variational inference
(ESVI) proposed in [13], global parameters, though partial coordinates, are updated by each
node and mixed through a message passing scheme. However, the same drawbacks remain
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especially when the number of mixture components is small. Therefore, it is still meaningful
to develop effective techniques to desynchronize the SVI algorithms. In addition, the above-
mentioned distributed SVI algorithms[8–13] are all developed based on the standard SVI[4],
which is sensitive to the choice of hyperparameters and is prone to local optima[18, 19]. Thus,
appropriate measures can be taken to enhance the performance of distributed SVI algorithms.

With the above considerations, a novel asynchronous distributed trust-region based SVI
algorithm (TR-dSVI) for a general class of conjugate-exponential models is developed in this
paper. The Metropolis rule[20] is used to diffuse the global parameters over the network and
the trust-region method[21] is applied to update local parameters. Besides, we introduce a
simple rule to balance the transmission frequencies between neighboring nodes such that the
proposed distributed algorithm can be performed in an asynchronous manner. The superiorities
of the TR-dSVI compared with existing ones[8–13] are summarized as follows. First, the TR-
dSVI offers a more effective way to asynchronously and simultaneously perform parameter
updates by applying the asynchronous diffusion method. In comparison with the asynchronous
algorithms proposed in [12, 13], the whole global parameters in TR-dSVI are shared and updated
without involving waiting times. Second, the trust-region updates, a more robust optimization
algorithm, are applied to obtain the refined local parameters, which can shift the load from
network communications to local computations. In this way, the performance of TR-dSVI can
be improved in terms of saving resources and jumping out of local optima without sacrificing the
speed and convenience of SVI. Third, simulation results of the proposed algorithm on different
datasets with the Bernoulli model and the Gaussian model show that the proposed algorithm
can get better performance than the centralized trust-region based SVI (TR-cSVI)[22], the
dSVB[8], and the case without the trust-region updates (NG-dSVI).

The rest of this paper is arranged as follows. Section 2 introduces the SVI and its trust-
region extension. Section 3 presents the TR-dSVI algorithm. Numerical experiments are given
in Section 4 and conclusions are drawn in Section 5.

2 Preliminaries

In this section, we introduce the stochastic variational inference (SVI) and its trust-region
extension briefly.

2.1 Basic Model

Consider N conditionally independent pairs of local hidden variables yn and their corre-
sponding observations xn, n = 1, · · · , N , whose distribution is determined by global hidden
variables β with fixed model parameters α. Their graphical model is shown in Figure 1.

We will restrict our attention to the conjugate-exponential models, which include many
useful statistical models in the machine learning and statistics literature such as multivariate
Bernoulli models, Bayesian mixture models, latent Dirichlet models, and hierarchical linear
regression[23, 24]. More specifically, suppose that the prior distribution of β and the pairs of yn
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and xn belong to the following exponential families,

p(β) ∝ exp(αTu(β) − A(α)), p(x, y|β) ∝
∏

n

exp(u(β)Tf(xn, yn)), (1)

where α is called the natural parameters, u(·) is a sufficient statistic function, A(·) is the log
normalizer, f(·, ·) is a vector-valued function, x = {x1, · · · , xN}, and y = {y1, · · · , yN}. In
addition, the above two exponential-family distributions are assumed to satisfy the conjugacy
condition, that is, the conditional distributions and their conjugate priors are in the same
exponential family. More detailed properties of this model can be found in [4, 23, 24].

Figure 1 Graphical model considered in this paper

2.2 Stochastic Variational Inference

The variational inference aims to approximate the posterior distribution of the hidden vari-
ables given the observations p(y, β|x) by a factorial distribution q(y, β), which is computed by
minimizing the Kullback-Leibler (KL) divergence between q(y, β) and p(y, β|x). Considering
that the complexity of q(y, β) determines the complexity of this optimization, it is usually
simplified by imposing the mean-field approximation assumption[23, 24], namely, q(y, β) is fully
factorized over hidden variables as follows

q(y, β) = q(β; λ)
∏

n

q(yn; φn) (2)

with
q(β; λ) ∝ exp

(
λTu(β) − A(λ)

)
, (3)

where φn denotes the local variational parameters of yn and λ denotes the global variational
parameters. Then, it is equivalent to maximizing the evidence lower bound (ELBO) defined as
follows to achieve the variational inference,

L(λ, φ) = Eq

[
log

p(β)
q(β; λ)

]
+

N∑

n=1

Eq

[
log

p(xn, yn|β)
q(yn; φn)

]
, (4)

where φ = {φ1, · · · , φN}.
Variational inference algorithms maximize the ELBO by updating iteratively between φn

and λ. As a comparison, SVI applied the stochastic natural gradient algorithms to update
the global variational parameters λ. Specifically, for a uniformly random chosen data xn,
considering that

Ln(λ, φn) = NEq

[
log

p(xn, yn|β)
q(yn; φn)

]
+ Eq

[
log

p(β)
q(β; λ)

]
(5)
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gives an unbiased estimation of L(λ, φ), by applying the natural gradient of Ln(λ) � maxφn Ln

(λ, φn), SVI[4] updates λ as follows

λt+1 = (1 − ρt)λt + ρt

(
α + NEφ∗

n
[f(xn, yn)]

)
, (6)

where ρt denotes the learning rate and φ∗
n = argmaxφn Ln(λt, φn).

Note that the updating of the above procedure is based on a single data point, an extension
to batches of multiple data points is straightforward and can be found in [4].

2.3 Trust-Region Method

The trust-region method is applied in [22] to replace the global variational parameters
updates of the standard SVI for alleviating the issue of local optima, which replaces Equation (6)
with the following trust-region step,

λt+1 = argmax
λ

{Ln(λ) − ξtDKL(λ, λt)}, (7)

where DKL(λ, λt) = Eλ[log q(β;λ)
q(β;λt) ] denotes the KL divergence between q(β; λ) and q(β; λt).

Note that ξtDKL(λ, λt) is the regularization term that prevents the global variational parame-
ters from changing too much in one stochastic update step.

Note that, for fixed φ∗
n, the natural gradient of the right-hand side of Equation (7) is given

by[4, 22]

α + NEφ∗
n

[f(xn, yn)] − λ + ξt(λt − λ). (8)

Setting the natural gradient to zero yields

λ = (1 − ρt)λt + ρt

(
α + NEφ∗

n
[f(xn, yn)]

)
, (9)

where ρt = (1 + ξt)−1. Thus, Equation (7) can be solved approximately via alternating coordi-
nate ascent by updating iteratively between λ according to Equation (9) and φn according to
φ∗

n = argmaxφn Ln(λ, φn).

3 Distributed Trust-Region Based SVI

In this section, we extend the trust-region based SVI to the distributed and asynchronous
networks.

3.1 Problem Formulation

Consider a network consisting of J nodes, whose communication topology is presented by
an undirected graph G = (V , E) with the node set V = {1, · · · , J} and the edge set E ⊂ V × V .
Note that (i, j) ∈ E if nodes i and j can communicate with each other. We denote by Bi = {j ∈
V : (i, j) ∈ E} the neighbor set of node i. Suppose that G is connected, i.e., there exists a path
connecting any two distinct nodes. In addition, each node j stores a set of Nj observations
xj = {xj1, · · · , xjNj}, whose responding local hidden variables are yj = {yj1, · · · , yjNj}. Then
the full data set is x = {x1, · · · , xJ}, the full local hidden variable set is y = {y1, · · · , yJ},
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and the total number of observations is N =
∑

j Nj. We suppose that the model is the same
as that in Subsection 2.1 with global hidden variable β and fixed model parameters α.

We consider a similar mean-field approximation model in Subsection 2.1, then the ELBO
can be written as

L(λ, φ) = Eq

[
log

p(β)
q(β; λ)

]
+

J∑

j=1

Nj∑

i=1

Eq

[
log

p(xji, yji|β)
q(yji; φji)

]
, (10)

where φji is the local variational parameters of yji. In addition, we let j be a variable taken
from {1, · · · , J} uniformly at random and xjn be a uniformly random chosen data in node j,
then it is obvious that the following random function

Ljn(λ, φjn) � NEq

[
log

p(xjn, yjn|β)
q(yRjn; φjn)

]
+ Eq

[
log

p(β)
q(β; λ)

]
(11)

also gives an unbiased estimation of L(λ, φ). Thus, the distributed SVI can be implemented by
selecting a data uniformly at random in each node for updating.

3.2 Distributed Sampling and Diffusion

To perform the uniform sampling in distributed networks, the token-passing-based asyn-
chronous SVI algorithm[12] is proposed according to the Metropolis Rule[20]. Specifically, the
process can start with any node. The first node initializes the global variational parameters
and updates them based on its local data, then packs them into a package and transfers the
package to one of the neighbors following the transition probability matrix P = [pij ] defined by
using the Metropolis rule:

pij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
max(|Bi|, |Bj |) , j ∈ Bi,

0, j /∈ Bi and j �= i,

1 −
J∑

k=1,k �=i

pik, j = i.

(12)

When a node receives the package, it updates the global variational parameters in the package
based on local data, and then sends the package to a next node.

Remark 3.1 This approach actually defines a Markov chain Monte Carlo method[25] on
the network and the probability of receiving the package for each node converges to 1/J [26].
Thus, the uniform sampling of the nodes can be achieved. However, this approach is inefficient
since only one node is selected at a time.

Motivated by the above method, a diffusion scheme, where all the nodes are involved in
the parameter update, is applied to firstly obtain the distributed trust-region based SVI for
synchronous networks. Letting Ljn(λ) = maxφjn Ljn(λ, φjn), then one update of parameters
for each node j can be presented in the following four steps:

1) Receive global variational parameters λt
i from the neighbors i, ∀i ∈ Bj .

2) Select a data xjn uniformly at random from xj .
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3) Update the global variational parameters via

λt+1
j = arg max

λ

{
Ljn(λ) − ξt

∑

i∈{j}∩Bj

pijDKL(λ, λt
i)

}
. (13)

4) Send new global variational parameters to the neighbors.
Similar to the centralized case, one can solve Equation (13) in Step 3) through multiple natu-

ral gradient updates. For fixed φ∗
jn, the natural gradient of the right-hand side of Equation (13)

is given by
α + NEφ∗

jn
[f(xj , yj)] − λ + ξt

∑

i∈{j}∩Bj

pij(λt
i − λ). (14)

Setting (14) to zero, then one has

λ = (1 − ρt)Λt
j + ρt(α + NEφ∗

jn
[f(xj , yj)]), (15)

where Λt
j =

∑
i∈{j}∩Bj

pijλ
t
i and ρt = (1 + ξt)−1. Then, Equation (13) can be solved approx-

imately by updating iteratively between λj according to Equation (15) and φjn according to
φ∗

jn = argmaxφjn Ljn(λ, φjn).

Remark 3.2 In addition to addressing the issue of local optima[22], applying the trust-
region method in communication networks can also save resources. This is because the main
consumptions in executing distributed algorithms are the network communications, which are
shifted to the local computations through multiple natural gradient updates in the trust-region
method. Moreover, it is worth noting that additional overhead caused by multiple updates is
often smaller than one might expect[22], since Equation (13) can be solved quickly for many
models when λ is near convergence.

Remark 3.3 It can be seen that Λt
j fuses all the received variational parameters based on

the Metropolis rule. Note that this approach can be viewed as the Markov chain Monte Carlo
method with multiple chains, where each node sends the package, in the sense of expectation
according to the transition probability matrix P , to its neighbors. Furthermore, since the
network is connected and

∑
i pij =

∑
i pij = 1, one has limt→∞ P t = 1

J 11T[27]. Thus, by
applying the diffusion scheme, each node can fuse the variational parameters of all the nodes.

3.3 Asynchronous Mechanism

Note that the global variational parameters of neighbors may not be received at each update
for asynchronous networks. In this case, the network considered may be unconnected from
the communication perspective. Nevertheless, it can be ensured that the network is jointly
connected, that is, there exists some T such that the union of the interaction network across
every interval [t, t + T ] is connected.

According to characteristics of the asynchronous communication, we define a new diffusion
matrix Qt = [qt

ij ] by slightly modifying the Metropolis rule as follows

qt
ij =

⎧
⎪⎪⎨

⎪⎪⎩

rt
ijpij , j �= i,

1 −
J∑

k=1,k �=i

qt
ik, j = i,

(16)
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where rt
ij = 1 means that the global variational parameters of node i are received by node j

at iteration t and rt
ij = 0 otherwise. According to [27], given the jointly connected network,

limt→∞
∏t

k=t0
Qk = 1

J 11T if
∑

i qt
ij =

∑
i qt

ij = 1. However, it does not hold all the time since it
is possible that rt

ij �= rt
ji. Thus, we introduce a simple asynchronous mechanism to balance the

transmission frequencies between neighboring nodes such that this condition can be satisfied on
average. Specifically, for each node j, denoting the numbers of sending and receiving information
to/from its neighbor i respectively as nji and nij , then node j will send the new parameters to
neighbor i with probability 1 if nji ≤ nij , with probability 0.5nij

nji
otherwise. Then, the TR-dSVI

algorithm with the asynchronous mechanism can be summarized as shown in Algorithm 1.

Algorithm 1 Distributed trust-region based SVI: For node j

Input: Dataset xj , neighbor set Bj, model parameters α.
Output: Variational parameters λj and φj .
1: Compute pij = 1

max{|Bi|,|Bj|} , i ∈ Bj .
2: Initialize nij = rij = 0, i ∈ Bj .
3: Initialize λj .
4: Send λj to neighbor i and set nji = 1 for all i ∈ Bj.
5: repeat
6: for i ∈ Bj do
7: if Received λi from the neighbor i then
8: nij = nij + 1.
9: rij = 1.

10: end if
11: end for
12: Compute Λj = λj +

∑
i∈Bj

rijpij(λj − λi).
13: Reset rij = 0 for all i ∈ Bj .
14: Select xjn uniformly from xj and initialize φ∗

jn.
15: repeat
16: λ = (1 − ρt)Λj + ρt

(
α + NEφ∗

jn[f(xj ,yj)]

)
.

17: φ∗
jn = argmaxφjn Ljn(λ, φjn).

18: until Convergence
19: λj = λ.
20: for i ∈ Bj do
21: if nji ≤ nij then
22: Send λj to neighbor i and update nji = nji + 1.
23: else
24: Send λj to neighbor i and update nji = nji + 1 with probability 0.5nij

nji
.

25: end if
26: end for
27: until Convergence
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Remark 3.4 Note that it is also straightforward to extend Algorithm 1 to the case with
batches of multiple data points according to [4], which we omit due to space limitations.

4 Numerical Experiments

In this section, we apply the TR-dSVI to the Bernoulli model and the Gaussian model, and
demonstrate its utility on different datasets. The asynchronous network under consideration is
generated with 50 nodes located in a 5×5 sized square randomly by setting the communication
distance to 1.2. The constructed network is depicted in Figure 2, which is apparently connected.

Figure 2 Network topology

4.1 Bernoulli Model

A mixture of multivariate Bernoulli distributions with K components is considered. The
global parameters consist of component parameters βk ∈ [0, 1]D and mixture probabilities π,
which satisfy Beta and Dirichlet distributions, with parameters a, b, and α, as follows,

p(β) ∝
∏

k

∏

d

βa−1
kd (1 − βkd)b−1 and p(π) ∝

∏

k

πα−1
k ,

where β = {β1, · · · , βK}, βk = [βk1, · · · , βkD], and π = {π1, · · · , πK}. Under this model, the
probability density function of any data xjn can be written as

p(xjn|yjn, β, π) =
∏

k

p(xjn|βk)yjnk ∝
∏

k

∏

d

β
yjnkxjnd

kd (1 − βkd)yjnk(1−xjnd),

where
p(yjn|π) ∝

∏

k

π
yjnk

k .

Then the factorial distribution has the following form,

q(y, β, π) = q(β)q(π)
∏

j

∏

n

q(yjn; φjn),
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where

q(β) ∝
∏

k

∏

d

βakd−1
kd (1 − βkd)bkd−1, q(π) ∝

∏

k

πγk−1
k , and q(yjn|φjn) ∝

∏

k

φ
yjnk

jn

with global variational parameters {akd}, {bkd}, {γk} and local variational parameters {φjn}.
We apply the Bernoulli model to the Modified National Institute of Standards and Tech-

nology (MNIST) dataset, which is a dataset of handwritten digits containing 60000 training
instances. Each instance is an image of 28× 28 pixels with 256 gray levels per pixel. To fit the
Bernoulli model, each pixel is binarized. We consider 50 components and set a = b = α = 1.
The complete dataset is randomly divided into 50 parts and each part is stored in one node.
Each node initializes akd and bkd by sampling them from a Gamma distribution with shape
parameter 100 and scale parameter 0.01, and initializes γk to 1. We use multiprocess to run
the TR-dSVI with 100 epochs and 10 inner loop iterations, and also run the TR-cSVI[22], the
dSVB[8], and the case without the trust-region updates (NG-dSVI) for comparisons. We use a
batch size of 200 for three distributed algorithms and 10000 for the centralized algorithm, and
use ρt = (τ + t)−κ as the learning rate for all the four algorithms, where κ = 0.5 and τ = 100.

Figure 3 shows the cluster centers (defined by the expected values of the probabilities under
the posterior approximations) found by applying the four algorithms on the MNIST dataset. It
can be seen that the TR-dSVI, the dSVB, and the NG-dSVI can find more mixture components
than the TR-cSVI, which implies that these distributed SVIs have more potential to identify all
the latent patterns than the TR-cSVI. Furthermore, one can also obtain that the cluster centers
found by the dSVB are blurrier rather than that found by the TR-dSVI and the NG-dSVI. One
possible reason is that the diffusion scheme used in this paper can get better fusing performance
than that used in the dSVB.

(a) TR-dSVI (b) TR-cSVI

(c) dSVB (d) NG-dSVI

Figure 3 The cluster centers found by applying the TR-dSVI, the TR-cSVI, the

dSVB, and the NG-dSVI on the MNIST dataset

Figure 4 depicts the evolution of the ELBO obtained by the four algorithms and the evolution
of the standard deviation of the ELBO over all the nodes obtained by the three distributed
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algorithms in the MNIST dataset. One can observe from Figure 4(a) that although the TR-
dSVI converges slower than the TR-cSVI and the dSVB, it can converge to a better value.
Besides, through comparing the convergence speeds and the convergence values obtained by
the TR-dSVI and the NG-dSVI in Figure 4(a), we can conclude that using trust-region updates
can improve the clustering performance in terms of reducing communications and jumping out
of local optima. Furthermore, among the three distributed algorithms, the TR-dSVI can achieve
the best fusing performance over the network since it obtains the smallest standard deviation
of the ELBO over all the nodes according to Figure 4(b).

(a) Evolution of ELBO (b) Evolution of ELBO’s standard deviation

Figure 4 The evolution of the ELBO and its standard deviation over all the nodes

obtained by applying the TR-dSVI, the TR-cSVI, the dSVB, and the NG-

dSVI on the MNIST dataset

4.2 Gaussian Model

A mixture of multivariate Gaussian distributions with K components is considered. The
global parameters consist of component mean μ = [μ1, · · · , μk], component precision matrix
T = [T1, · · · , TK ], and mixture probabilities π = {π1, · · · , πK}, which satisfy Normal, Wishart,
and Dirichlet distributions, with parameters α, β0, μ0, m0, and W0, as follows,

p(μ|T ) ∝
K∏

k=1

N (μk; m0, (β0Tk)−1), p(T ) ∝
K∏

k=1

W(Tk; W0, ν0), and p(π) ∝
∏

k

πα−1
k .

Under this model, the probability density function of any data xjn can be written as

p(xjn|yjn, μ, T ) =
K∏

k=1

N (xjn; μk, T−1
K )yjnk ,

where
p(yjn|π) ∝

∏

k

π
yjnk

k .

Then the factorial distribution has the following form,

q(y, π, μ, T ) = q(π)
∏

k

q(μk, Tk)
∏

j

∏

n

q(yjn; φjn),
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where

q(π) ∝
∏

k

πγk−1
k , q(μk, Tk) ∝ N (μk; mk, (βkTk)−1)W(Tk; Wk, νk), and q(yjn|φjn) ∝

∏

k

φ
yjnk

jn

with global variational parameters {γk}, {mk}, {βk}, {Wk}, {νk} and local variational param-
eters {φjn}.

We first fit the Gaussian model to a synthetic dataset composed of 10000 2-dimensional
instances generated from 10 Gaussian components. The number of data points in each node is
not equal and follows a multinomial distribution. We set κ = 0.5, τ = 10, α = 0.2, β0 = 0.1,
ν0 = 2, m0 = [0, 0], and W0 = I2, and treat all the data in a single node as a subsample. A fixed
number of 10 iterations are used for trust-region updates. Figure 5 shows the clustering results
obtained in randomly chosen six nodes by applying the TR-dSVI on the Gaussian synthetic
dataset after 2000 iterations, which can demonstrate the good clustering performance of the
TR-dSVI. Figure 6 shows the evolution of the ELBO obtained by the four algorithms and
the evolution of the standard deviation of the ELBO over all the nodes obtained by the three
distributed algorithms in the Gaussian synthetic dataset. It can be seen that when being applied
to Gaussian models, the same conclusions can be drawn as that to the MNIST dataset, with
the exception that the fusing performance improvement is not significant in the TR-dSVI.

(a) Node 1 (b) Node 14 (c) Node 18

(d) Node 25 (e) Node 36 (f) Node 48

Figure 5 Clustering results obtained in six different nodes by applying the TR-dSVI

on the Gaussian synthetic dataset
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(a) Evolution of ELBO (b) Evolution of ELBO’s standard deviation

Figure 6 The evolution of the ELBO and its standard deviation over all the nodes

obtained by applying the TR-dSVI, the TR-cSVI, the dSVB, and the NG-

dSVI on the Gaussian synthetic dataset.

Second, we fit the Gaussian model to the CIFAR-10 dataset, which consists of 60000 32×32
color images in 10 classes. We extract the RGB hist feature from each image and further
apply the principal component analysis (PCA) to reduce the dimension to 32. We use κ = 0.5,
τ = 10, and a fixed number of 5 iterations for trust region updates. A batch size of 100 and
5000 are used respectively for the TR-dSVI and the TR-cSVI. Figure 7 presents the evolution
of the ELBO obtained by applying the TR-dSVI and the TR-cSVI on the CIFAR-10 dataset,
from which we can see that the TR-dSVI still has better performance than the TR-cSVI on the
CIFAR-10 dataset.

Figure 7 The evolution of the ELBO obtained by applying the TR-dSVI and the

TR-cSVI on the CIFAR-10 dataset

5 Conclusions

In this paper, we proposed a trust-region based SVI algorithm for distributed and asyn-
chronous networks and applied it to the Bernoulli model and the Gaussian model. Experiments
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show that it can obtain better performance than the centralized trust-region based SVI, the
dSVB, and the case without trust-region updates.
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