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Abstract This paper proposes a scheme of trajectory tracking control for the hovercraft. Since the

model of the hovercraft is under-actuated, nonlinear, and strongly coupled, it is a great challenge for the

controller design. To solve this problem, the control scheme is divided into two parts. Firstly, we employ

differential flatness method to find a set of flat outputs and consider part of the nonlinear terms as

uncertainties. Consequently, we convert the under-actuated system into a full-actuated one. Secondly,

a reinforcement learning-based active disturbance rejection controller (RL-ADRC) is designed. In this

method, an extended state observer (ESO) is designed to estimate the uncertainties of the system, and

an actorcritic-based reinforcement learning (RL) algorithm is used to approximate the optimal control

strategy. Based on the output of the ESO, the RL-ADRC compensates for the total uncertainties

in real-time, and simultaneously, generates the optimal control strategy by RL algorithm. Simulation

results show that, compared with the traditional ADRC method, RL-ADRC does not need to manually

tune the controller parameters, and the control strategy is more robust.

Keywords Active disturbance rejection control, differential flatness, reinforcement learning, trajec-

tory tracking control, under-actuated system.

1 Introduction

A hovercraft as shown in Figure 1 (a), also known as an air-cushion vehicle, is an amphibious
craft capable of traveling over land, water, mud, ice, and other surfaces. Due to its excellent
amphibious performance, the hovercraft is widely used in military, rescue, shipping and other
fields[1].

The air cushion, as shown in Figure 1 (b), is the key device to reduce the resistance of the
hovercraft while sailing. The hovercraft uses blowers to produce a large volume of air below the
air cushion, so that the air pressure below the hull is higher than the atmospheric pressure. The
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pressure difference produces lift, as a result, the hovercraft can float above the running surface.
Because of the particular working principle, different from traditional ships, hovercraft uses two
high-power air propellers as power devices[1]. Therefore, the model of the hovercraft is under-
actuated, nonlinear, and strongly coupled[2–6]. Moreover, the external disturbance caused by
water waves and wind is also a challenge for hovercraft trajectory tracking control problem. Due
to the complex structure and particular working principle of the hovercraft, manual control is
extremely difficult and even impossible[7, 8]. In the last few years, various control methods have
been proposed for hovercraft trajectory tracking control, such as coupled multiple sliding-mode
control[2], Lyapunovs direct method[3, 4] and backstepping control method[5, 6]. Although these
methods are designed to achieve the under-actuated hovercraft tracking tasks, they highly rely
on an accurate hovercraft model which is difficult to be established and few of them considers
modeling errors and external disturbances. In addition, the optimization of the control strategy
is not considered in [2–6]. Therefore, for the hovercraft trajectory tracking control problem,
under-actuated system control, disturbance rejection property and the optimization of control
strategy are three challenges needed to be handled.

(a) 3D model of hovercraft (b) Schematic diagram of the air cushion

Figure 1 3D model of hovercraft and schematic diagram of the air cushion. (In

subfigure (b), 1©: propeller; 2©: air; 3©: blower; 4©: soft apron; Figure

source: https://en.wikipedia.org/wiki/Hovercraft)

In recent years, a mass of achievements were obtained in full-actuated system control
field[9–14]. As a result, for under-actuated system control problem, some methods are proposed
to transform an under-actuated system into a full-actuated one, such as differential flatness the-
ory. Differential flatness is to find a set of flat outputs with the same dimension as the inputs,
then perform dynamic feedback on the original system. Martin and Rouchon[15] demonstrate
that any controllable under-actuated system with m inputs and m+ 2 states is flat and can be
put into a multi-input chained form by dynamic feedback and coordinate change. This method
has been successfully used to solve the tracking control problem for under-actuated systems
such as quadrotor[16], aerial manipulator[17] and four-wheel steering vehicle[18].

To improve the disturbance rejection property of the control strategy, active disturbance
rejection controller (ADRC) is proposed by Han in 1990s[19], because it does not rely on the ac-
curate model and behaves excellent disturbance rejection property[20–23]. Coincidentally, based
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on flat outputs, a flat under-actuated system can be put into a chained form which is the nom-
inal model of ADRC. Therefore, ADRC combined with differential flatness theory is a classical
method to solve the under-accurate system control problem. In [24], a method based on ADRC
and differential flatness theory is proposed to deal with lateral path tracking control of under-
actuated land vehicle. A differential flatness-based ADRC scheme for fractional-order systems
is proposed in [25]. ADRC was originally given in a nonlinear gain structure to better accommo-
date the dynamic uncertainties and disturbances[19]. However, it occurs a technical bottleneck
because of its complex analysis in the design of feedback control strategy. Therefore, in the case
of reducing the optimization and adaptability, bandwidth-parameterization method is proposed
for a practical convenience[26]. In [27], a linear ADRC and nonlinear ADRC switching control
scheme is proposed and its stability is analyzed. A genetic algorithm based parameters tuning
method for ADRC is proposed in [28]. But these methods cannot guarantee the optimality and
adaptability of the control strategy.

To obtain an optimal control strategy, reinforcement learning (RL) has gained much at-
tention from researchers. Reinforcement learning, inspired by human learning behavior, aims
to learn an optimal policy to obtain a larger reward or smaller cost by interacting with the
environment. Because of its good optimization performance, RL is widely used in optimal
control[29–31]. However, for an environment with uncertainties and random disturbances, this
method requires longer learning time and it is difficult to guarantee the optimality of the learned
control strategy. Therefore, it is a natural idea to combine RL with ADRC, and it is also a
complementary combination. In this integration, ADRC is used to estimate and reject distur-
bances to provide a new environment where RL can learn optimal feedback control policy in a
relatively short period time. This is also the motivation of this paper.

Based on the above analysis, we propose a hovercraft trajectory tacking control scheme using
differential flatness and reinforcement learning-based active disturbance rejection controller
(RL-ADRC). The main contributions of this paper are summarized as follows: 1) We employ
differential flatness method to find a set of flat outputs of the hovercraft model. Consequently,
the under-actuated model is converted into a full-actuated one. 2) A reinforcement learning-
based active disturbance rejection controller is designed. Compared with the traditional ADRC
method, an optimal, robust and adaptive feedback control strategy is obtained.

The remainder of this paper is structured as follows. In Section 2, an under-actuated
hovercraft model is established. In Section 3, flat outputs are found by differential flatness and
the model is converted into a full-actuated one. In Section 4, we design the RL-ADRC scheme
to solve the hovercraft trajectory tracking control problem. Simulation results are shown in
Section 5. Finally, we conclude the paper in Section 6.
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2 Under-Actuated Hovercraft Dynamics

With reference to several papers [32–34], in this paper, we establish the following hovercraft
model.

⎧
⎨

⎩

τ = Mξ̇ + C(ξ)ξ +Dξ,

η̇ = J(η)ξ,
(1)

M , D, C(ξ) and J(η) are defined as following:

M =

⎡

⎢
⎢
⎣

m1 0 0

0 m1 0

0 0 m2

⎤

⎥
⎥
⎦ , C(ξ) =

⎡

⎢
⎢
⎣

0 0 −m1v

0 0 m1u

m1v −m1u 0

⎤

⎥
⎥
⎦ , (2)

D =

⎡

⎢
⎢
⎣

d1 0 0

0 d2 0

0 0 d3

⎤

⎥
⎥
⎦ , J(η) =

⎡

⎢
⎢
⎣

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

⎤

⎥
⎥
⎦ , (3)

where M is the inertia matrix, D is the hydrodynamic damping coefficient matrix, ξ = [u, v, r]T

represents the surge, sway velocity and yaw angular velocity of the hovercraft in the vehicle-
fixed reference frame. η = [x, y, ψ]T represents the coordinates of the hovercraft’s mass center
and yaw angles of the hovercraft in the earth-fixed reference frame respectively. τ = [τ1, τ2, τ3]T

represents the surge, sway and yaw moment provided by the air propeller.

Figure 2 A brief picture of under-actuated hovercraft dynamic[33]

Remark 2.1 At the stern of the hovercraft, there are two same air propellers and two
same air rudders, which provide the surge and yaw moment respectively as shown in Figure 2.
Considering the structure of air propellers, to simplify the model, we ignore the sway moment,
that is τ2 = 0. According to [32–34], compared to d2, the hydrodynamic damping coefficients
d1, d3 are very small, to simplify the model, we ignore d1 and d3, that is d1 = d3 = 0. The
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above simplifications may not be strictly true in actual situations, which will cause modeling
errors. But it is still acceptable because ADRC can estimate modeling errors and compensate
them[19].

Finally, we get a simplified hovercraft model.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = u cos(ψ) − v sin(ψ),

ẏ = u sin(ψ) + v cos(ψ),

ψ̇ = r,

u̇ = vr + τu,

v̇ = −ur − βv,

ṙ = τr,

(4)

where τu = τ1
m1
, τr = τ3

m3
and β = d2

m2
, τu and τr represent surge and yaw control inputs

respectively. x, y, ψ represent x coordinate, y coordinate, yaw angle of the hovercraft in the
earth coordinate system respectively and they are also the controlled variables. Therefore, the
hovercraft model (4) is a two-input and three-output under-actuated system.

Remark 2.2 Considering the actual physical meaning of variables, in this paper u, v,
r are bounded; ψ represents yaw angle of the hovercraft and satisfies −π

2 < ψ < π
2 ; τu and

τr represent surge and yaw control inputs associated with the moment of the air propeller, so
τu, τr are bounded and their derivatives τ̇u, τ̇r are also bounded.

To simplify the design of the controller, in Section 3, we will employ differential flatness
method to find a set of flat outputs and convert the under-actuated system into a full-actuated
one.

3 Differential Flatness System and Flat Outputs

3.1 Differential Flatness Theory

Flatness is a property of nonlinear systems, and a system with flatness property is called a
flat system. For a flat system, a set of flat outputs can be found, if the system state and control
input can be represented by a combination of flat outputs and their finite-order derivatives.
The specific definition of the flat system is introduced below.

Consider a nonlinear system
⎧
⎨

⎩

χ̇ = f(χ, u), χ ∈ Rn, u ∈ Rm,

y = g(χ), y ∈ Rn,
(5)

where χ is the state variable, u is the input variable, y is the output variable and note that
n > m.

For the system (5), if there exist smooth functions ζ(·), σ(·), κ(·) and output vector F

F = ζ
(
χ, u, u̇, · · · , u(k)

)
, k ∈ N, (6)
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so that the system state χ and control input u can be expressed as

ξ = σ
(
F, Ḟ , · · · , F (kx)

)
, kx ∈ N,

u = κ
(
F, Ḟ , · · · , F (ku)

)
, ku ∈ N,

(7)

then the system (5) can be regarded as a differential flatness system and F is called a set of
flat outputs. Considering F as the new output of the system, if the dimension of F is equal to
the dimension of control inputs u, then system (5) can be regarded as a full-actuated system.
However, the most important and difficult issue is to find proper flat outputs that satisfy (6)
and (7), since no systematic method exists.

3.2 Flat Outputs and Proof

In this paper, we choose states x and y in (4) as flat outputs, then all states and inputs of
the system (4) can be expressed by finite-order derivatives of flat outputs. The proof is shown
as follows.

The second derivatives of x and y in (4) are calculated as

ẍ =u̇ cos(ψ) − u · sin(ψ) · ψ̇ − v̇ sin(ψ) − v · cos(ψ)ψ̇,

ÿ =u̇ sin(ψ) + u · cos(ψ) · ψ̇ + v̇ cos(ψ) − v · sin(ψ)ψ̇.
(8)

According to (8) and (4), it is determined that

ẍ+ βẋ = cos(ψ)(u̇ − vψ̇ + βu) + sin(ψ)(−uψ̇ − v̇ − βv),

ÿ + βẏ = cos(ψ)(v̇ + uψ̇ + βv) + sin(ψ)(−vψ̇ + u̇+ βu).
(9)

Substitute (4) into (9), we can simplify (9) as

uψ̇ + v̇ + βv = u · r − ur − βv + βv = 0,

u̇− vψ̇ + βu = vr + τu − vr + βu = τu + βu.
(10)

According to (9), it is determined that

ÿ + βẏ

ẍ+ βẋ
=

sin(ψ) (τu + βu)
cos(ψ) (τu + βu)

= tan(ψ) ⇒ ψ = arctan
(
ÿ + βẏ

ẍ+ βẋ

)

, (11)

(ẍ+ βẋ)2 + (ÿ + βẏ)2 = (τu + βu)2 ⇒ τu + βu =
√

(ẍ+ βẋ)2 + (ÿ + βẏ)2. (12)

Considering of r = ψ̇, therefore

r =
[

arctan
(
ÿ + βẏ

ẍ+ βẋ

)]′
=

1

1 +
(

ÿ+βẏ
ẍ+βẋ

)2 ·
(
ÿ + βẏ

ẍ+ βẋ

)′

=
y(3)(ẍ + βẋ) − x(3)(ÿ + βẏ) − β2(ẍẏ − ÿẋ)

(ẍ+ βẋ)2 + (ÿ + βẏ)2
. (13)

According to (12) and (4), then

ẋ(ẍ+ βẋ) = (u cos(ψ) − v sin(ψ)) cos(ψ) (τu + βu) ,

ẏ(ÿ + βẏ) = (u sin(ψ) + v cos(ψ)) sin(ψ) (τu + βu) ,
(14)
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as a result
ẋ(ẍ+ βẋ) + ẏ(ÿ + βẏ) = u (τu + βu) . (15)

Divide (15) by (12), u is expressed as

u =
ẋ(ẍ+ βẋ) + ẏ(ÿ + βẏ)

√
(ẍ+ βẋ)2 + (ÿ + βẏ)2

. (16)

Combining (4) and (8), it is determined that

ẏẍ− ẋÿ = [u sin(ψ) + v cos(ψ)][u̇ cos(ψ) − u sin(ψ)ψ̇ − v̇ sin(ψ) − v cos(ψ)ψ̇]

−[u cos(ψ) − v sin(ψ)][u̇ sin(ψ) + u cos(ψ)ψ̇ + v̇ cos(ψ) − v sin(ψ)ψ̇]. (17)

Simplify Equation (17), it is obtained that

ẏẍ− ẋÿ = −u2ψ̇ − v̇u+ u̇v − v2ψ̇

= −u2r + (ur + βv)u + (vr + τu)v − v2r

= v(βu+ τu). (18)

Divide (18) by (12), v is expressed as

v =
ẏẍ− ẋÿ

√
(ẍ + βẋ)2 + (ÿ + βẏ)2

. (19)

Similarly, according to (13), (16) and (19), τu is expressed as

τu = u̇− v · r =
d

dt

{
ẋ(ẍ+ βẋ) + ẏ(ÿ + βẏ)

√
(ẍ+ βẋ)2 + (ÿ + βẏ)2

}

=
ẍ(ẍ+ βẋ) + ÿ(ÿ + βẏ)

√
(ẍ+ βẋ)2 + (ÿ + βẏ)2

. (20)

Finally, because of τr = ṙ, according to (13), τr is expressed as

τr = ṙ =
y(4)(ẍ + βx) − x(4)(ÿ + βẏ) + β

(
y(3)ẍ− x(3)ẏ

) − β2
(
x(3)ẏ − y(3)ẋ

)

[(ẍ + βẋ)2 + (ÿ + βẏ)2]

−2

[
y(3)(ẍ+ βẋ) − x3(ÿ + βẏ) − β2(ẍẏ − ÿẋ)

]

[(ẍ+ βẋ)2 + (ÿ + βẏ)2]2

·
{

(ẍ+ βẋ)
(
x(3) + βẍ

)
+ (ÿ + βẏ)

(
y(3) + βÿ

)}
. (21)

Therefore, this system (4) is a flat system and the proof is completed.

3.3 Full-Actuated Hovercraft Model

In this section, we establish the full-actuated model of the hovercraft. τu, τr are inputs and
x, y are outputs .

Considering the first two equations in the model (4)
⎧
⎨

⎩

ẋ = u cos(ψ) − v sin(ψ),

ẏ = u sin(ψ) + v cos(ψ).
(22)
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Since Equation (22) does not contain τu and τr, we take the derivative of x and y continuously,
until τu and τr appear simultaneously.

After continuous derivation, the fourth derivatives of x and y meet the condition and results
are as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(4) =cos(ψ)τ̈u + [−τu sin(ψ) − βu sin(ψ) + βv cos(ψ)] τr + ϕx,

y(4) =sin(ψ)τ̈u + [τu cos(ψ) + βu cos(ψ) + βv sin(ψ)] τr + ϕy ,

ϕx ={−2τ̇u sin(ψ) · r − τur
2 cos(ψ) − βτur sin(ψ) − 2βvr2 sin(ψ) − 2βur2 cos(ψ)

+ β2ur sin(ψ) − 2β2vr cos(ψ) + β3v sin(ψ)},
ϕy ={2τ̇u cos(ψ) · r − τur

2 sin(ψ) + βτur cos(ψ) + 2βvr2 cos(ψ) − 2βur2 sin(ψ)

− β2ur cos(ψ) − 2β2vr sin(ψ) − β3v cos(ψ)},

(23)

where ϕx and ϕy contain complex nonlinear terms, which can be considered as disturbances to
be estimated. Note that, according to Remark 2.2, ϕx and ϕy are both bounded. Then the
full-actuated hovercraft model can be expressed in a compact form as

⎡

⎣
x(4)

y(4)

⎤

⎦ =

⎡

⎣
− (βu+ τu) sinψ + βv cosψ cosψ

(βu+ τu) cosψ + βv sinψ sinψ

⎤

⎦

⎡

⎣
τr

τ̈u

⎤

⎦ +

⎡

⎣
ϕx

ϕy

⎤

⎦

=

⎡

⎣
U1

U2

⎤

⎦ +

⎡

⎣
ϕx

ϕy

⎤

⎦ , (24)

where U1, U2 are defined as virtual control inputs and can be written as follows:
⎧
⎨

⎩

U1 = (− (βu+ τu) sinψ + βv cosψ)τr + cosψτ̈u,

U2 = ((βu+ τu) cosψ + βv sinψ)τr + sinψτ̈u.
(25)

Assume that:
x1 = x, x2 = ẋ, x3 = ẍ, x4 = x(3), x5 = ϕx,

y1 = y, y2 = ẏ, y3 = ÿ, y4 = y(3), y5 = ϕy ,
(26)

therefore, the model (24) can be rewritten as a chained form.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = U1 + x5,

ẋ5 = εx,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = y4,

ẏ4 = U2 + y5,

ẏ5 = εy,

(27)

where εx and εy are derivatives of ϕx and ϕx respectively. Note that, according to Remark2.2,
εx and εy are both bounded in practice.

In summary, in this section, flat outputs x, y are found and proved by differential flatness
theory, then a full-actuated hovercraft model (27) is built. In Section 4, a trajectory tracking
control scheme will be designed based on ADRC and RL.
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4 Optimal Trajectory Tracking Control Based on ADRC and RL

4.1 Problem Formulation

Assuming the sampling time is h, the model (27) can be discretized in form of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = x1(k) + hx2(k),

x2(k + 1) = x2(k) + hx3(k),

x3(k + 1) = x3(k) + hx4(k),

x4(k + 1) = x4(k) + h(U1(k) + x5(k)),

x5(k + 1) = x5(k) + εx(k),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(k + 1) = y1(k) + hy2(k),

y2(k + 1) = y2(k) + hy3(k),

y3(k + 1) = y3(k) + hy4(k),

y4(k + 1) = y4(k) + h(U1(k) + y5(k)),

y5(k + 1) = y5(k) + εy(k),

(28)

where k means the k-th sampling period. Define a reference trajectory sequence r∗(k) =
[x∗(k), y∗(k)]T (k = 1, 2, · · · , N). For the optimal trajectory tracking problem, the tracking
error is defined as ⎧

⎨

⎩

ex(k) = x(k) − x∗(k),

ey(k) = y(k) − y∗(k).
(29)

The goal is to design an optimal trajectory tracking controller for the hovercraft model (28)
to ensure the tracking error converge to zero in an optimal manner, that is,

⎧
⎨

⎩

lim
k→N

ex(k) = 0,

lim
k→N

ey(k) = 0.
(30)

Considering the complex nonlinear disturbances in (28), an active disturbance rejection con-
troller is designed to estimate disturbances and compensate them in real-time. Generally, ADRC
consists of three parts, namely tracking differentiator (TD), extended state observer (ESO), and
feedback control strategy with disturbances compensation. For the general feedback control
strategy[23–25] in ADRC, control parameters are adjusted manually which is complicated and
the optimality cannot be guaranteed. Especially for the model (28), as a fourth-order system,
there are more control parameters that need to be adjusted, which is difficult to guarantee opti-
mality and adaptability. Therefore, a reinforcement learning algorithm is used to approximate
the optimal strategy.

4.2 Active Disturbance Rejection Controller Design

Considering the four-order hovercraft model (28), to simplify the design process, linear
ADRC is selected. Firstly, a tracking differentiator is designed as follows to arrange the tran-
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sition process.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗1(k + 1) = x∗1(k) + hx∗2(k),

x∗2(k + 1) = x∗2(k) + hx∗3(k),

x∗3(k + 1) = x∗3(k) + hx∗4(k),

x∗4(k + 1) = x∗4(k) + fx(k),

fx(k + 1) = −r1(r1(r1(r1(x∗1(k) − x∗(k + 1))

+4x∗2(k)) + 6x∗3(k)) + 4x∗4(k)),
(31)⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y∗1(k + 1) = y∗1(k) + hy∗2(k),

y∗2(k + 1) = y∗2(k) + hy∗3(k),

y∗3(k + 1) = y∗3(k) + hy∗4(k),

y∗4(k + 1) = y∗4(k) + fy(k),

fy(k + 1) = −r2(r2(r2(r2(y∗1(k) − y∗(k + 1))

+4y∗2(k)) + 6y∗3(k)) + 4y∗4(k)),

where x∗1(k), x
∗
2(k), x

∗
3(k), x

∗
4(k), fx(k) are approximations of x∗, ẋ∗, ẍ∗, · · · and y∗1(k), y∗2(k), y∗3(k),

y∗4(k), fy(k) are approximations of y∗, ẏ∗, ÿ∗, · · · respectively, r1 and r2 are TD parameters.
Then, an extended state observer is designed to track system states and estimate distur-

bances ϕx and ϕy.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(k) = z11(k) − x1(k),

z11(k) = z11(k) + h(z12(k) − b11e1(k)),

z12(k) = z12(k) + h(z13(k) − b12e1(k)),

z13(k) = z13(k) + h(z14(k) − b13e1(k)),

z14(k) = z14(k) + h(z15(k) − b14e1(k) + U1(k)),

z15(k) = z15(k) + h(−b15e1(k)),
(32)⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2(k) = z21(k) − y1(k),

z21(k) = z21(k) + h(z22(k) − b21e2(k)),

z22(k) = z22(k) + h(z23(k) − b22e2(k)),

z23(k) = z23(k) + h(z24(k) − b23e2(k)),

z24(k) = z24(k) + h(z25(k) − b24e2(k) + U2(k)),

z25(k) = z25(k) + h(−b25e2(k)),

where z12, z13, z14, z15 are approximations of x2, x3, x4, x5 in (28) and z22, z23, z24, z25 are ap-
proximations of y2, y3, y4, y5 in (28) respectively. And b11, b12, · · · , b25 are ESO parameters
which are determined by bandwidth-parameterization method[26].
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Thirdly, based on output results of TD and ESO, calculate tracking errors and design the
feedback control law as below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e11(k) = x∗1(k) − z11(k),

e12(k) = x∗2(k) − z12(k),

e13(k) = x∗3(k) − z13(k),

e14(k) = x∗4(k) − z14(k),

U10(k) = φx(e11(k), e12(k), e13(k), e14(k)),
(33)⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e21(k) = y∗1(k) − z21(k),

e22(k) = y∗2(k) − z22(k),

e23(k) = y∗3(k) − z23(k),

e24(k) = y∗4(k) − z24(k),

U20(k) = φy(e21(k), e22(k), e23(k), e24(k)),

where φx and φy are nonlinear or linear functions of feedback control strategy. Note that in
traditional linear ADRC, φx and φy are linear functions of the form as follows:

⎧
⎨

⎩

φx = k11e11(k) + k12e12(k) + k13e13(k) + k14e14(k),

φy = k21e21(k) + k22e22(k) + k23e23(k) + k24e24(k),
(34)

where k11, k12, · · · , k24 are control parameters. However, it is extremely difficult to choose a
set of robust, optimal and adaptive parameters. Therefore, optimal nonlinear functions φx and
φy will be determined by RL method in Subsection 4.3. Then, compensating the disturbance,
virtual control inputs U1(k) and U2(k) are defined as follows:

⎧
⎨

⎩

U1(k) = U10(k) − z15(k),

U2(k) = U20(k) − z25(k).
(35)

Finally, real control inputs of the hovercraft τu, τr are solved as follows
⎡

⎣
τr(k)

τ̈u(k)

⎤

⎦ =

⎡

⎣
− (βu(k) + τu(k)) sin(ψ(k)) + βv(k) cos(ψ(k)) cos(ψ(k))

(βu(k) + τu(k)) cos(ψ(k)) + βv(k) sin(ψ(k)) sin(ψ(k))

⎤

⎦

−1

·
⎡

⎣
U1(k)

U2(k)

⎤

⎦ . (36)

4.3 Optimal Control Based on RL

Define the cost function of tracking problem as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jx(ex(k), U10(k)) =
N∑

i=k

[eTx (i)Qex(i) + UT
10(i)RU10(i)],

Jy(ey(k), U20(k)) =
N∑

i=k

[eTy (i)Qey(i) + UT
20(i)RU20(i)],

(37)
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where ex(k) = [e11(k), e12(k), e13(k), e14(k)]T, ey(k) = [e21(k), e22(k), e23(k), e24(k)]T, Q and R
are positive definite weights matrices. The goal of the optimal control is to find optimal control
sequences U∗

10 and U∗
20 to minimize the cost function (37).

According to the optimal control theory[35], define the value functions Vx(k) and Vy(k) as
follows: ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Vx(k) =
N∑

i=k

γi−k[eTx (i)Qex(i) + UT
10(i)RU10(i)],

Vy(k) =
N∑

i=k

γi−k[eTy (i)Qey(i) + UT
20(i)RU20(i)],

(38)

where 0 < γ ≤ 1 is discount factor, and we require the boundary condition Vx(0) = Vy(0) = 0.
From Bellmans optimality principle[36], the optimal control problem equivalent to find optimal
value functions V ∗

x (k) and V ∗
y (k) which satisfy the Bellman equation

⎧
⎪⎨

⎪⎩

V ∗
x (k) = [eTx (k)Qex(k) + UT

10(k)RU10(k)] + γV ∗
x (k + 1),

V ∗
y (k) = [eTy (k)Qey(k) + UT

20(k)RU20(k)] + γV ∗
y (k + 1).

(39)

The optimal control strategy can be determined as follows[35]:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U∗
10(k) =

1
2
R−1 ∂V

∗
x (k + 1)

∂ex(k + 1)
,

U∗
20(k) =

1
2
R−1

∂V ∗
y (k + 1)

∂ey(k + 1)
.

(40)

Generally, it is difficult to calculate the solution of Equation (39) directly, therefore, an
actor-critic neural networks (NNs) structure is established to approximate U∗

10, U
∗
20, V

∗
x and V ∗

y .
Define the critic neural network (NN) as follows

V̂x(k) = ŴT
cxφcx(ex(k)), V̂y(k) = ŴT

cyφcy(ey(k)), (41)

where φcx and φcy are activation functions, Ŵcx and Ŵcy are weight matrices. V̂x and V̂y are
outputs of the critic NN which is supposed to approximate to optimal value functions V ∗

x and
V ∗

y by constant iteration. Similarly, the actor neural network (NN) is established, outputs are
given as Û10 and Û20 which is supposed to approximate to U∗

10 and U∗
20

Û10(k) = ŴT
U10φU10(e(k)), Û20(k) = ŴT

U20φU20(e(k)), (42)

where φU10 and φU20 are activation functions, ŴU10 and ŴU20 are weights matrices.
We train the critic NN and actor NN to approximate the optimal value function and the

optimal control strategy respectively. In other words, the critic NN should satisfy Equation (39)
and the actor NN should satisfy Equation (40). Therefore, critic fitting errors are defined as

⎧
⎪⎨

⎪⎩

ecx(i)(k) = [eTx (k)Qex(k) + ÛT
10(k)RÛ10(k)] + γV̂x(k + 1) − V̂x(k),

ecy(i)(k) = [eTy (k)Qey(k) + ÛT
20(k)RÛ20(k)] + γV̂y(k + 1) − V̂y(k),

(43)
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where i represents the training iteration time, k represents the discrete-time under current
training iteration time. And square critic fitting errors are defined as

Ecx(i)(k) =
1
2
e2cx(i)(k), Ecy(i)(k) =

1
2
e2cy(i)(k). (44)

In order to minimize square critic fitting errors Ecx(i)(k) and Ecy(i)(k), weights matrices in
the critic NN are updated by gradient descent. The weights learning rules for critic NN are
selected as follows:

Ŵcx(i+1)(k) = Ŵcx(i)(k) − rcx

∂Ecx(i)(k)

∂Ŵcx(i)(k)
,

Ŵcy(i+1)(k) = Ŵcy(i)(k) − rcy

∂Ecy(i)(k)

∂Ŵcy(i)(k)
,

(45)

where rcy > 0 and rcx > 0 are learning rates.
Similarly, action fitting errors and their square are defined as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eU10(i)(k) =
1
2
R−1 ∂V̂x(k + 1)

∂ex(k + 1)
− Û10(k),

EU10(i)(k) =
1
2
e2U10(i)

(k),

eU20(i)(k) =
1
2
R−1 ∂V̂y(k + 1)

∂ey(k + 1)
− Û20(k),

EU20(i)(k) =
1
2
e2U20(i)

(k).

(46)

The weights learning rules for actor NN are selected as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ŴU10(i+1)(k) = ŴU10(i)(k) − rU10

∂EU10(i)(k)

∂ŴU10(i)(k)
,

ŴU20(i+1)(k) = ŴU20(i)(k) − rU20

∂EU20(i)(k)

∂ŴU20(i)(k)
,

(47)

where rU10 > 0 and rU20 > 0 are learning rates. Note that the stability and convergence proof
of the actor-critic NNs during the training process are provided in [37, 38].

Assumed that N indicates the maximum iteration time and ρ indicates the admissible
approximation error. We stop the iteration of critic NN when Ecx(i)(k) < ρ,Ecy(i)(k) < ρ or
i > N . Under this condition, Û10, Û20 approximate to optimal controller U∗

10 and U∗
20.

5 Simulation and Result

In this section, simulation results are provided to verify the effectiveness of the control
scheme proposed in this paper. In the simulation, the sampling time h = 0.02 s, total simulation
time t = 10.5 s, TD parameters r1 = 18 and r2 = 23. Based on bandwidth-parameterization
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method, ESO parameters are selected as follows:
⎧
⎨

⎩

b11 = 5σ, b12 = 10σ2, b13 = 10σ3, b14 = 5σ4, b15 = σ5,

b21 = 5υ, b22 = 10υ2, b23 = 10υ3, b24 = 5υ4, b25 = υ5,
(48)

where σ = 45 = υ = 45. For the hovercraft model (4), we assume τu = 0.8 and τr = 0.2, then
reference trajectory and yaw angle are generated as shown in Figure 3.

x t

y

Figure 3 Reference trajectory and yaw angle

We choose fully connected NN as actor NN and critic NN with the structures of 4-16-1 (4
input nodes, 16 hidden nodes and 1 output node) and 4-16-4 (4 input nodes, 16 hidden nodes
and 4 output nodes). The discount factor γ = 0.95, learning rates rcy = rcx = rU10 = rU20 = 0.1,
maximum iteration times N = 30, admissible approximation error ρ = 10−5, weights matrices
Q and R are chosen as

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

40 0 0 0

0 30 0 0

0 0 30 0

0 0 0 20

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, R = 1. (49)

With initial tracking errors ex = ey = 0, actor NN is trained to approximate to optimal control
strategies U∗

10 and U∗
20. With the same initial states, after a long period of manually tuning,

a set of control parameters of linear ADRC feedback control strategy (34) is determined as
follows: ⎧

⎨

⎩

k11 = −9, k12 = −2.16, k13 = −13.6, k14 = −10.8,

k21 = −10.2, k22 = −4.3, k23 = −15, k24 = −14.7.
(50)

With the initial tracking errors ex = ey = 0, the tracking performance of ADRC and RL-
ADRC is shown in Figure 4. We assume that there is an external disturbance at t = 1.6 s which
causes the tracking errors ex = 1.2 and ey = 0.5 at t = 1.6 s. As shown in Figures 5 and 6,
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RL-ADRC is more adaptive and robust than ADRC when there exists an external disturbance
at t = 1.6 s. Figures 8 and 9 show that, compared with ADRC, the robustness of RL-ADRC is
more obvious with tracking errors increasing.

t t

y

Figure 4 The tracking performance of ADRC and RL-ADRC with

initial tracking errors ex = 0 and ey = 0

t t

x
x

x

y
y

y

yx

Figure 5 The tracking performance of ADRC and RL-ADRC with

tracking errors ex = 1.2 and ey = 0.5 at t = 1.6 s
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t

Figure 6 The yaw angle of ADRC and RL-ADRC with tracking

errors ex = 1.2 and ey = 0.5 at t = 1.6 s

t t

t t

Figure 7 The control input τu and τr of ADRC and RL-ADRC with

tracking errors ex = 1.2 and ey = 0.5 at t = 1.6 s
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t t

x
x

x

y
y

y

yx

Figure 8 The tracking performance of ADRC and RL-ADRC with

tracking errors ex = 2 and ey = 1.5 at t = 1.6 s

t

Figure 9 The yaw angle of ADRC and RL-ADRC with tracking

errors ex = 2 and ey = 1.5 at t = 1.6 s

Figures 7 and 10 show that control inputs of RL-ADRC are closer to the assumed inputs
τu = 0.8 and τr = 0.2 which generate the reference trajectory and yaw angle. On the contrary,
control inputs of ADRC are oscillating and sensitive to the tracking error.
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t t

t t

Figure 10 The control input τu and τr of ADRC and RL-ADRC with

tracking errors ex = 2 and ey = 1.5 at t = 1.6 s

6 Conclusion

In this paper, a hovercraft trajectory tracking control scheme is proposed. Firstly, the under-
actuated model is converted to a full-actuated one by differential flatness method. Then an
RL-ADRC controller is designed to generate the optimal control strategy and compensate for
the total uncertainties simultaneously. Simulation studies have demonstrated that, compared
with traditional linear ADRC, RL-ADRC is more robust and adaptive.
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