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Abstract This paper proposes a model to further explore the effects of the quality information

and variation of the underlying effects on the summary effect measure in meta-analysis. A shape

parameter is used in this model to quantify the asymmetry of the effect sizes of studies that are

included. Estimation of the proposed model parameters is carried out by the Bayesian MCMC method.

Performances of the resultant estimates are examined in the simulations and empirical case with data

obtained from a total of 22 meta-analyses taken from three different designs. A conclusion would be

drawn that it is advisable to take the proposed model, when quality information becomes available,

in particular with a situation where the underlying effects approximately follow a normal distribution.

If, however, the quality information is absent, the skew-normal distribution for random effect model

should be adopted.

Keywords Bayesian estimation, heterogeneity, overall effect size, quality score, skew-normal distri-

bution.

1 Introduction

Meta-analysis has become a powerful and widely used tool to integrate findings from different
studies and inform decision-making in evidence-based medicine[1]. Statistical methods are used
to combine the results of several studies that concentrate on similar research goals. It makes
sense to compute a summary effect from studies if they have the same metric, for example,
several randomized controlled trials are compulsorily on a continuous or a dichotomized scale.
For continuous outcomes, the common effect size is the standardized mean difference in which
the sample size, mean, and standard deviation are required of. To get the sample mean and
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variance, for example, Hozo, et al. employed inequalities to establish some estimators[2], Wan,
et al. introduced a quartile method to improve the sample standard deviation estimation,
compared to Hozo, et al.’s method[3], and Luo, et al. incorporated the sample size in a smoothly
changing weight in the estimators to reach the optimal estimation[4]. For dichotomized data,
“OR”, “RR”, and “RD” are widely used as the effect sizes, of which, the issues are extensively
discussed and reviewed.

The summary effect plays a significant role in many systematic reviews. Two types of models
are most frequently employed at the early stage to deal with the summary effect. A combi-
nation of study effect sizes is conducted with the approach termed as “Fixed Effect Model”,
assuming that the differences observed between these studies are due to chance alone, or with
the generally advocated approach known as “Random Effect Model”, which hypothesizes that
the observed variance includes chance and between-study heterogeneity that cannot readily be
explained[5]. When the random effect (RE) is applied in some badly designed studies, it would
result in biased estimates, even though there is an adjustor in the heterogeneity[6], an apparent
reason for which is that the RE model fails to take the study quality into consideration. In terms
of trail quality, Verhagen, et al., for example, provided some evidence that one study quality
will affect the magnitude of the combined estimates as well[7]. At the same time, some contri-
butions incorporated the quality score as a covariation of the study weight into a calculation
of a summary effect[8–10]. The study weights based on sampling theory (e.g., inverse-variance
weights) can be multiplied by quality scores[11], increasing the weight of high-quality studies
and decreasing the weight of poorer ones. To further handle this problem, a quality-adjusted
model called the quality effects (QE) model was first proposed by Doi and Thalibb[12], and
was then adequately developed by some researchers[13, 14]. In the QE model, quality scores are
viewed as a component of study weights of the weighted mean. Some rigorous justifications
for the weighting by quality scores are given in medical research[14]. Moreover, Doi, et al. also
discussed a variant of the QE model that is called the inverse variance heterogeneity (IVhet)
model, not requiring quality assessment because all studies by default are assigned the same
quality[15].

While the QE model and RE model can to some extent alleviate the problem of hetero-
geneity, they are hampered by two shortcomings. One is that despite this QE model avoids
the artificial inflation in the variance, quality weights lead to bias[16, 17]. They only capture
the (methodological) heterogeneity in quality, one important explainable differences, without
paying attention to other inter-study difference, such as different definitions of treatment effects
and unexplained differences between studies. A second shortcoming of the models is that it
may be occasionally appropriate to make an assumption that the underlying effect for the RE
model is taken to be a normal distribution, as, however, in practice, is not always the case[18].
It is usually considered that the heterogeneity, in the RE model which involves a normal as-
sumption, refers to the variability in the intervention effects evaluated in different studies, and
is described as statistical heterogeneity which solely accounts for the unexplainable differences.
Since any kind of variability among studies in a systematic review may be termed heterogeneity,
comprised of the clinical heterogeneity, methodological heterogeneity as well as statistical het-



INCORPORATING VARIATION AND QUALITY 2383

erogeneity, it is acceptable for some researchers to consider as much heterogeneity as possible
rather than to consider parts of the heterogeneity. Furthermore, if the assumption is inappro-
priate, some statistical heterogeneity may be introduced. In sum, it is, in practice, of interest
to develop more flexible approaches using a broader family of distributions.

On the basis of the problems aforementioned, we are trying to develop an alternative to
allowing for the variance by virtue of the variation in underlying effect size as well as variance
modeled by quality scores in meta-analysis. In this article, we make use of quality as a co-
variation in each study weight based on the random effects weight, which is the inverse of the
sampling variance plus the random effects variance component τ2. However, the variance of the
true effect size for each study is probably not τ2, owning to the skewed study effect sizes, Thus,
the problem we face is urgent. In statistical literature, the distribution of the random effects
and model errors have been some heated arguments[19–21], and skewness has also long been used
as a descriptive quantity for the asymmetry of a distribution[22], such as the extensive appli-
cation in econometrics employed to characterize the leptokurtosis of the securities’ return[23],
but they are quite novel in the literature of meta-analysis. Navigated by analyses above, it
is therefore proposed that the distributions of the true effects across studies are presupposed
to follow skew-normal distributions with the same mean and variance but different skewness
parameters, through which the asymmetry of the collected study results is well-portrayed and
the magnitudes of the meta-analysis results are thus adjusted to be closer to the truth as well
under certain circumstances.

The following sections of this paper are arranged below. Section 2 covers “a skew-normal
random effects model”, “a combination of quality and variation of the true effect size for each
study into study weights”, as well as “the usage of WinBUGS implemented to obtain Bayesian
estimates”. Section 3 investigates the performance of the new method (QE-v model), com-
pared to the QE model and the RE model with a normality assumption or a skewed normality
assumption using Markov chain Monte Carlo (MCMC) simulations. A real example on the effi-
cacy of radioactive iodine for the ablation of thyroid remnants after surgery for thyroid cancer
is presented to be in comparison to the results obtained from the old and new methods applied
to a summary of clinical in Section 4. Section 5 provides a discussion of the limitations and
strengths of the proposed model.

2 Incorporating Variation and Quality of the Underlying Effects for

Random Effects

2.1 Skew-Normal Assumption for Random Effects

A normal assumption for random effect model is usually utilized, which, however, can not
adequately fit the observed data. Hence, we might seek a parsimonious model to account for
the specification. One choice of the model is to specify a skew-normal distribution, the skewness
parameter of which is used to describe the asymmetry of data. The details for the model are
as follows.

The basic idea is to parcel out some measure of the observed treatment effect in each study,
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say yi, into two additive components: The true effect size ζi, and sample error, εi. The variance
of εi is the sample variance, δ2i , and it is usually calculated from the data of the ith observed
sample. Because of the patient characteristics, experimental design, measurement of outcome
and execution of the study, we assume that the true effect size for the ith study follows a
skew-normal distribution, rather than the conventional normal distribution, i.e., ζi ∼ SN(μ,
τ2, γi), i = 1, 2, · · · , n, where τ2 is the between-study variance and γi is the shape parameter,
representing the magnitude of the asymmetry of the effect sizes of included studies. To explicitly
account for the variation in true treatment effects, the true effect is given by the grand mean,
μ, plus the deviation of the study’s true effect from the grand mean, ξi. The model is:

yi = ζi + εi

= μ+ ξi + εi, i = 1, 2, · · · , n,
where ξi ∼ SN(0, τ2,γi) and εi ∼ N(0, δ2i ). ξi and εi are assumed independent. Efficiently to
be computed, yi ∼ SN(μ, τ2 + δ2i , τγi√

τ2+δ2
i (1+γ2

i )
) (see Appendix B for computation), and it is

called “RE-s model”. Note that when γi is the same, the RE model has been discussed in [18].
when γ = 0, ξi is reduced to be N(0, τ2), which indicates it is the RE model with a normal
assumption.

2.2 Differences in Weighting Between Models

One problem with meta-analysis today is these differences between the studies involved.
There are multiple sources for these inevitable differences encompassing chance, study quality,
and study design, and so on, all of which may falsify the conclusion of the pooled estimate[24].
It is warned that estimates from meta-analysis that do not consider study quality will be
biased and could lead to an inflated Type I error, and, at the same time, some researchers
are aware of that conclusions drawn from meta-analyses using flawed studies will be invalid.
Therefore, results from better quality studies should in some sense be more valid or accurate.
Fortunately, based on the additional variance contribution from internal biases (φi) viewed as
a bias adjustment of the combined estimate[25, 26], the latest QE model tactfully settles out the
quality of trails[14]. The rescaled score is

Qi =
qi

qi max
=
φ2 + φ2

i min

φ2 + φ2
i

,

where φ is between study bias and intra-class correlation qi = φ2

φ2+φ2
i

can be considered the
“quality-weight” for each study, reflecting the proportion of total bias variability not related to
variability from internal study bias[16,27,28]. The final QE model weight (ω̂i

′′) for each study is
given by

ω̂i
′′ =

Qi

δ2i
+ κ̂i,

and weights that sum to 1 are given by

ωi
′′ =

Qi

δ2
i

+ κ̂i

∑n
i=1(

Qi

δ2
i

+ κ̂i)
.
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The quantity, κ̂i, is described in the document[14].
In the QE model and IVhet model[14, 15], one way to prevent the coverage probability of

the confidence interval below the nominal level is to use a scale parameter, ψi, appropriately
inflating the variance and defined by interpreting the multiplicative factor as an intra-class
correlation (ICC) as described by Kulinskaya and Olkin[29]. The scale parameter is defined as

ψi =
1

1 − ICCi
, (1)

where ICCi is τ2

τ2+δ2
i
, the estimator of the between-study heterogeneity variance (τ2) from which

is derived from the RE model under the normal setting by adopting the Bayesian estimation
described in Subsection 2.3. Based on (1), the variance of the weighted mean estimator, μ̂QE ,
is given by

var(μ̂QE) =
n

∑

i=1

ω′′
i var(yi)ψi =

n
∑

i=1

(ω′′
i )2(τ2 + δ2i ).

Nevertheless, some different arguments that quality weighting can virtually produce biased
estimates emerged[16, 17], and quality is just one of the explainable differences. To make reason-
able use of quality information and get a summary result estimation closer to the true value,
we thus propose a model called QE-v model amalgamating the heterogeneity in quality scores
and some unrelated-quality heterogeneity into study weights. Specifically, the proposed weight
considers statical heterogeneity by estimating the between-study variance when the true effects
differ between studies, as well as the methodological heterogeneity caused by explained differ-
ence (quality) between studies. The weights hinging on the variance of the observed effect and
quality scores are

ω̃′
i =

Qi

τ2(1 − 2γ2
i

π(1+γ2
i )

) + δ2i

, (2)

and weights that sum to 1 are given by

ωi
′ =

ω̃′
i

∑n
i=1 ω̃

′
i

,

where, like the QE model, parameter estimates are stemmed from the random effect model which
involves a skew-normal distribution by using the Bayesian estimation showed in Subsection 2.3.
If the between-study heterogeneity variance is too large, leading to equal weights for each study,
our proposed weight, Equation (2), would be capable of redistributing the weights by using the
inverse-variance weights of RE-s model to multiply the quality scores of the corresponding
studies. In other words, the proposed model can get rid of the deficiency from the random
effect that a statistical adjustment for heterogeneity will still produce invalid estimates when
used in a meta-analysis of poorly designed studies, and overcome the shortcoming of the QE
model that the variation between the results of studies not covered by the term “quality” is

not taken into account. Additionally, the intra-class correlation (ICCi) is
τ2(1− 2γ2

i
π(1+γ2

i
)
)

τ2(1− 2γ2
i

π(1+γ2
i
)
)+δ2

i

, as



2386 FU JINYU · LIN JINGUAN

accounts for the relative importance of between batch variation versus variation due to sampling
errors.

2.3 Bayesian Approach to Random Effects Meta-Analysis

When it refers to the parameter inference, the classical estimate — Maximum Likelihood
Estimation is always preferred. In fact, inference about the parameters of the skew-normal
distribution based on the maximum likelihood approach has some problems, such as

(a) The maximum likelihood (ML) estimator for the skewness parameter can be infinite;
(b) The Fisher information matrix is singular when γ = 0;
(c) Existence of local maximum.
To solve the singularity problem of the Fisher information matrix, Pewsey proposed a repa-

rameterization method[30]. As far as the first problem is concerned, the utilization of the
Bayesian analysis can be a good alternative to making inference under the skewness parameter[31].
Besides, in the context of meta-analysis, the prior distribution will describe uncertainty regard-
ing the particular effect measure, and the whole process can be easily implemented, due to
the flexibility of the WinBUGS software. For these reasons, the Bayesian method is naturally
harnessed.

The hierarchical model for the random effect meta-analysis is:

yi | ζi ∼ N(ζi, δ2i ),

ζi ∼ SN(μ, τ2, γi).

Because the density of a skew-normal distribution is not specified directly in WinBUGS
software, we consider the stochastic representation given by Property D in Appendix A. The
true effect hence has the hierarchical representation below:

ζi | Ui, γi, μ, τ ∼ N

(

μ+
τγi

√

1 + γ2
i

Ui,
τ2

√

1 + γ2
i

)

, Ui ∼ HN(0, 1),

where HN is half normal distribution which, in general, defined as follows: If X ∼ N(0,Δ2),
then U = |X | follows a half normal distribution with E[U ] = Δ

√
2√

π
.

When a Bayesian MCMC approach in WinBUGS is carried out, it naturally comes to the
choices of priors. Here, we pick out vague priors for μ and τ , that’s to say, Normal(0, 100) for
μ and Uniform(0, 100) for τ [32]. The Jeffreys prior t(0, π2/4; 1/2) is used for the γi and γ in the
skew-normal distributions[31].

3 Simulation Study

3.1 Data-Generating Mechanism

In this section, we employ simulated normal and non-normal random effects data to examine
the performance of the proposed overall effect size estimators by the Bayesian MCMC method.
The characteristics of estimators for the four models, i.e., RE model, RE-s model, QE model,
and QE-v model, are summarized in Table 1. The log odds ratio is used as the effect size. We
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first fix the true heterogeneity variance τ2, 1.69, and the true effect size as an OR from 0.3 to
2.7 with increment 0.3. The simulation data is generated as follows.

Table 1 Summary of the four methods of estimation

Weights that
Model Weights sum to 1 Pooled effects Variance of pooled effects

RE ω̂∗
i = 1

τ2+δ2 ω∗
i =

ω̂∗
i

∑n
i=1 ω̂∗

i
μ̂RE =

∑n
i=1 ω̂∗

i yi
∑n

i=1 ω̂∗
i

var(μ̂RE) = 1
∑n

i=1 ω̂∗
i

RE-s ω̂γ
i = 1

η2
i

ωγ
i =

ω̂
γ
i

∑n
i=1 ω̂

γ
i

μ̂RE−s =
∑n

i=1 ω̂
γ
i yi

∑n
i=1 ω̂

γ
i

var(μ̂RE−s) = 1
∑n

i=1 ω̂
γ
i

QE ω̂
′
i = Qi

δ2
i

+ κ̂i ω′′
i =

ω̂
′
i

∑n
i=1 ω̂

′
i

μ̂QE =
∑n

i=1 ω̂
′
iyi

∑n
i=1 ω̂

′
i

var(μ̂QE) =
∑n

i=1(ω
′′
i )2(τ 2 + δ2

i )

QE − va ω̃′
i = Qi

τ2+δ2
i

ω′
i =

ω̃′
i

∑

n
i=1 ω̃′

i
μ̂QE−v =

∑n
i=1 ω̃′

iyi
∑

n
i=1 ω̃′

i
var(μ̂QE−va) =

∑n
i=1(ω

′
i)

2(τ 2 + δ2
i )

QE − vb ω̃′
i = Qi

η2
i

ω′
i =

ω̃′
i

∑n
i=1 ω̃′

i
μ̂QE−v =

∑n
i=1 ω̃′

iyi
∑n

i=1 ω̃′
i

var(μ̂QE−vb) =
∑n

i=1(ω
′
i)

2(η2
i )

Note: η2
i = τ 2(1 − 2γ2

i

π(1+γ2
i )

) + δ2
i ; “a” means the between-study heterogeneity variance τ 2 is obtained

based on RE model; “b” means the between-study heterogeneity variance τ 2 is obtained based on RE-s

model.

Step 1 Generate the number of patients Ni in the ith study from Uniform(25, 238), and
the number of studies in each meta-analysis is 100.

Step 2 Total survivors n2i (piNi = n2i) and dead n1i (n1i = Ni−n2i) are then determined
by allocating a proportion pi from a uniform distribution with parameters (0.650, 0.800).

Step 3 The survivors n2i are distributed between treated, e2i, and untreated, c2i groups
by this allocation in a uniform distribution Uniform(0.464, 0.545) to the treated group and the
rest allocated to the untreated control groups. The numbers of treated and untreated survivors
are used as parameters in beta distribution to generate the proportion of survivors who are
treated, i.e., bi ∼ Beta(e2i, c2i), and then the proportion ai of the dead who are treated is:

ai =
bi exp(μ)

1 − bi + bi exp(μ)
.

In addition, the conditional sampling variance s2i for the ith study is:

s2i =
1

n1iai + 0.5
+

1
n1i(1 − ai) + 0.5

+
1

n2ibi + 0.5
+

1
n2i(1 − bi) + 0.5

.

Step 4 Both data sets consist of the 100 final observed effect sizes, yi, from the normal
distribution N(μ, s2i + τ2) and the skew-normal distribution SN( μ, s2i + τ2, τγi√

τ2+s2
i (1+γ2

i )
) with

γi ∼ N(1, 2), respectively, each of which is used to re-compute a new proportion of treated
non-survivors, a′i, namely,

a′i =
bi exp(yi)

1 − bi + bi exp(yi)
.

Step 5 These proportions are used to obtain the numbers of treated non-survivors (dead)
and treated survivors denoted e1i and e2i respectively. Thus, the final four-fold cell counts
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could be reconstructed to arrive at the variance of the study effect estimate:

δ2i =
1

e1i + 0.5
+

1
n1i − e1i + 0.5

+
1

e2i + 0.5
+

1
n2i − e2i + 0.5

.

To account for zero outcomes in one of the studies, a continuity correction is applied by adding
0.5 to all cell counts.

Finally, the study rank Qi is given by a beta distribution around qi, a uniform distribution
with parameters (0.35, 0.7), which simulates a quality scale:

Qi ∼ Beta(qi × 10, 10 × (max(qi) − qi) + 0.1).

The whole simulation procedure is repeated 1000 times.

3.2 Simulation Results

The above models that are applied to fit the artificial normal data sets show some differences
in the overall effects estimators (Table 2). The first observation from these simulations is that
two random effect model estimators (RE model and RE-s model) irrespective of the distribution,
have clearly lower MSEs than the QE model estimators, but rule out the two cases: OR = 0.9
and OR = 1.2, which is a little different from the conclusion that QE model estimator is
more efficient than the RE estimator[14] (in this document, τ2 is the methods of moment based
between-study variance estimate[5]). The second observation is to confirm that normal and
skew-normal distribution random effect model estimators have more or less similar MSEs, and
if we apply the heterogeneity variance estimators obtained from the corresponding random
effect models to the proposed QE-v model, the results are still similar. The third interesting
observation is that the QE model and QE-v model perform differently, with various magnitudes
of the effect sizes simulated. The following three sub-scenarios of OR are included:

(a) (OR = 0.3, 0.6) QE-v estimators have good finite sample performances, as we expect
since the MSE of QE-v estimator is lower than that of QE model.

(b) (OR = 0.9, 1.2) In this case, the QE-v estimators perform not as well as the QE model
estimator.

(c) (OR ≥ 1.5) The MSE is lower for the QE-v estimator under increasing of OR, reflecting
that the QE-v model estimator is more efficient than the QE estimator.

The simulated data generated from the skew-normal distributions is fitted in the same way.
Seen from Table 3, a phenomenon that the MSE of the RE-s model estimator is obviously lower
than the MSE of RE model indicates that the skew-normal distribution is more appropriate,
which further mirrors the fact that the skewness of study effects can affect the overall effect
to a certain degree if the distributions of study effect sizes are approximately skewed normal.
Besides, the MSEs of the QE-v model employing heterogeneity variance derived from RE-s
model are smaller than the MSEs of the QE-v model using heterogeneity variance derived from
the RE model except for OR = 0.3 and OR = 0.6. It is notable that the performance of
the proposed QE-v model, compared to the QE model, also relies on the value of OR: When
OR = 0.3, 0.6, the corresponding results are consistent with a; but when OR ≥ 0.9, the QE-v
model estimators have unsatisfactory performances, compared to the QE model.
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Table 2 Comparisons for QE-v model based on data simulated from normal

random effects. The MSEs reported are multiplied by 100

OR
RE model RE-s model QE model QE-v model

MSE MSE MSE MSE MSE

OR = 0.3 2.7035 2.6891 9.9982 2.8422 3.1626

OR = 0.6 1.8262 1.8126 3.0052 2.0044 2.0850

OR = 0.9 1.9258 1.9263 1.6430 2.0825 2.0721

OR = 1.2 1.7138 1.7380 1.6663 1.8354 1.8511

OR = 1.5 1.7545 1.7657 2.5707 1.8076 1.8348

OR = 1.8 1.9195 1.9327 3.6692 1.9672 2.0667

OR = 2.1 1.8980 1.9122 4.4935 2.0288 2.1371

OR = 2.4 2.3100 2.3246 6.3975 2.3686 2.5181

OR = 2.7 2.5592 2.5966 7.9779 2.6580 2.8473

Note: The weights used to compute the MSE of the last two columns are ω̃i
′ = Qi

τ2+δ2
i

and ω̃i
′ =

Qi

τ2(1− 2γ2
i

π(1+γ2
i
)
)+δ2

i

, respectively.

Table 3 Comparisons for QE-v model based on data simulated from skew-

normal random effects. The MSEs are multiplied by 100

OR
RE model RE-s model QE model QE-v model

MSE MSE MSE MSE MSE

OR = 0.3 20.7035 20.6566 28.9315 21.6329 23.3260

OR = 0.6 15.7390 15.7093 17.8432 16.6897 16.9366

OR = 0.9 12.7656 12.7577 11.6170 13.1136 12.6314

OR = 1.2 11.2434 11.1629 8.8952 11.7368 10.9900

OR = 1.5 9.5112 9.5007 6.3725 9.8859 8.8415

OR = 1.8 8.5393 8.4774 5.3463 9.2685 8.1381

OR = 2.1 7.7854 7.7504 4.4600 8.5156 7.2649

OR = 2.4 7.8018 7.7356 3.9886 8.4545 7.0431

OR = 2.7 7.3809 7.3174 3.5383 8.0674 6.6167

Note: The weights used to compute the MSE of the last two columns are ω̃i
′ = Qi

τ2+δ2
i

and ω̃i
′ =

Qi

τ2(1− 2γ2
i

π(1+γ2
i
)
)+δ2

i

, respectively.

4 Empirical Example

In this section, we take an example of 22 studies for the non-ablation of thyroid remnants[33]

to illustrate the performance of the recommended approach. The suggested Quality Scoring
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System and quality score of each study have been reported previously[15]. Before computing
the meta-analysis results, the following steps are required:

(a): Conversion of the univariate score to Qi by dividing each quality score by the maximum
score in the list of studies.

(b): Adoption of software WinBUGS implemented to attain the parameter estimates and
meta-analytic estimates.

A succinct description is provided in Figure 1 that the observed effect sizes approximately
follow a little left-skewed and left-tailed distribution, which, hence, guides us to choose a skew-
normal distribution to fit the real data. Alternatively, the results are listed in Table 5.

−3 −2 −1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

density.default(x = yi)

N = 22   Bandwidth = 0.2991

D
en

si
ty

Figure 1 Distribution of the effect size of each study

We first test the performance of models without incorporation of quality, i.e., RE model
and RE-s model. In general, the effect size heterogeneity is of great interest. The conventional
analysis assuming normality gives a heterogeneity estimate of 0.2308 (Table 5). Relaxing the
normality assumption and presuming that the underlying effects themselves sample from skew-
normal distributions with distinct shape parameters, a bit different effect size heterogeneity
variance (τ̂2=0.1398) is obtained, and the precision of the heterogeneity variance estimate is a
slightly smaller than that in the RE model, indicating that an appropriate distribution would
facilitate the increase the precision of heterogeneity. Seen from Table 5, under the non-normal
assumption, the pooled effect estimate for the RE-s model is larger than that for the RE model,
and the uncertainty in the location of the overall mean of systematically different effects in
the different studies declines (i.e., its confidence interval). Moreover, the DIC is reduced in
the skewed model highlighting the importance of the skewing and confirming the skew-normal
distribution is the preferred distribution in this example.
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Table 4 Characteristics of studies included in meta-analysis.

study Total T Failures T Total C Failures C Quality score Qi OR

Cohorts with mixed surgical status

Doi 2003 49 23 39 25 0.58 0.5043

Ramacciotti 1982 9 3 20 12 0.58 0.3662

Angelini 1997 426 226 180 101 0.25 0.8848

Liu 1987 40 14 20 11 0.58 0.4520

Liu 1998 21 6 25 11 0.50 0.5288

McCowen 1976 28 10 36 15 0.58 0.7873

Maxon 1992 37 6 26 6 0.58 0.6508

Hodgson 1998 7 2 20 4 0.54 1.6667

Lin 1998 89 15 194 35 0.42 0.9348

DeGroot 1982 30 0 18 3 0.58 0.0726

Logue 1994 21 4 22 3 0.58 1.4327

Zidan 2004 172 11 66 3 0.50 1.2919

Cohorts with near total surgery

Ramanna 1985 19 9 19 17 0.63 0.1293

Verkooijen 2004 159 61 33 20 0.58 0.4112

Doi 2000 22 4 48 18 0.67 0.4010

Rosario 2004 90 13 65 18 0.67 0.4473

RCTs with mixed surgical status

Creutzig 1987 10 4 10 5 0.67 0.6923

Gawkowska-Suwinska 2001 44 6 54 25 0.75 0.1953

Johansen 1991 27 13 36 15 0.67 0.1294

Bal 1996 38 10 27 10 0.83 0.6140

Sirisalipoch 2004 75 10 63 22 0.33 0.2957

Bal 2004 77 4 73 12 0.83 1.1235

Table 5 Parameter estimates using various methods mentioned above from a

meta-analysis of 22 trails of stimate of the association of radioactive

iodine dosage for the ablation of thyroid remnants

Model heterogeneity between studies OR Two-sided 95% width Variance DIC

Model RE τ̂ 2=0.2308 (0.1684) 0.5887 [0.4342, 0.7980] 0.3638 0.0241 47.44

Model QE 0.5803 [0.4248, 0.7928] 0.3680 0.0253 −
Model RE-s τ̂ 2=0.1398 (0.1294) 0.6009 [0.4622, 0.7846] 0.3224 0.0182 40.814

Model QE-v 0.5848 [0.4445, 0.7731] 0.3286 0.0199 −

Note: “-” denotes that DIC is absent in the corresponding model; Variance means the variance of OR.
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It is also appealing for investigators to know to what extent the quality influences the
overall treatments. When the meta-analysis linked with quality is implemented, there are less
extreme values for both QE model estimator and QE-v model estimator (OR = 0.5803; 95%CI
0.4248 − 0.7928 and OR = 0.5848; 95%CI 0.4445 − 0.7731). What’s more, because of the
utilization of the scale parameter, ψi, the variances of the overall effect estimates go up as
expected. If, however, the meta-analysis estimate is calculated using the previous QE model
which only considers the design-related heterogeneity (quality), there are a more conservative
confidence interval and larger variance of the overall effect estimate than that in our proposed
QE-v model, which consequently suggests that incorporation of the quality factor and some
detectable variations between study effects can produce a more precise estimate of the effect
size. The picture the QE-v estimate depicts (Figure 2) supports for the results that the weights
in Formula (2) make for the decline of study weights for the larger but poorer quality study
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(a) QE model
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(b) QE-v model

Figure 2 Forest plot of failure of Ablation of the thyroid remnant in a comparison of high-

dose radioiodine (treatment group) with low dose radioiodine (control group)

using QE model (a) and QE-v model (b). QE-v model does not simply favor

smaller studies or larger studies of low quality

(Angelini), and some small studies, with the except of DeGroot study as there was no failure
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in the high-dose group. Furthermore, it is easily noted that the QE-v estimator progressively
increases the weight in Bal study (2004) which is of high quality based on the additional inclusion
of design-unrelated study heterogeneity. In summary, our analysis suggests that high dose of
75 to 100 mCi (2775-3700 MBq) of patients has about forty percent, less failure of non-ablation
than low-dose patients.

5 Discussion

We have first explored another flexible distribution for random effect in hierarchical models
when the data is not approximately normally distributed. Here, a skew-normal distribution for
random effect is chosen even if the random effects are truly normal, and it does not misrepre-
sent the data because the normal distribution is a special case of the skew-normal distribution
(Table 2). However, if the normal assumption is still selected for the skewed data, the inap-
propriate statistical model could result in a biased result (Table 3). Apart from the factor
analyzed above, as shown in Figure 3, the predictive distribution for the treatment effect is
slightly skewed under the skew assumption, which, consequently, provides evidence that the
skew-normal distribution favors the empirical example data.

(a) Normal distribution (b) Skew-normal distribution

Figure 3 Predictive distributions for the treatment effect in a new trial in the effectiveness

of radioactive iodine dosage for the ablation of thyroid remnants: (a) normal

distribution; (b) skew-normal distribution

Note: To simply analyze the effects of the predictive distribution for the mean outcome, we take

γi = γ, i = 1, 2, · · · , 22, which illustrates the underlying effects are exchangeable.

The QE-v model estimate differs from the QE model estimate in the following perspectives.
In simulation studies, the performance of the QE-v model is determined by the magnitude of
effect sizes. When the outcomes of the studies approximately follow a normal distribution,
our proposed model works better than the QE model in most cases, except for OR = 0.9 and
OR = 1.2, while if the effects are skewed, the QE-v model should be adopted at OR = 0.3 and
OR = 0.6. In the practical example, it is obvious that the QE-v model yields a more precise
estimate of the effect size when more types of heterogeneities are taken into consideration.
Besides, the weight of the larger studies is redistributed to small studies only if their quality
is deemed lower, as well as the QE-v estimator also down-weights some smaller studies whose
sample sizes are less than 45 (Figure 2).

In a set of heterogeneous studies, a QE-v model makes an adjustment to the study weight
according to the study quality and underlying effect variation, whilst a QE model only exploits
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quality information to construct the varying weight and an RE model is intended primarily
for heterogeneity that can not be explained. A key difficulty in the assessment of quality is
the obstacle provided by the incomplete reporting liable to the subjectivity. Further, it is
well-known that a study may be performed to the highest possible standards yet still have an
important risk of bias that is suggested to be noticed, for instance, in many situations. Even so,
it is impractical or impossible to blind participants or study personnel of intervention group,
and it is inappropriately judgmental to describe all such studies as of low quality[34]. Beyond
these issues, there is difficulty in distinguishing whether heterogeneity results from clinical or
methodological diversity including study design (quality) and risk of bias, which probably leads
to a double-counting of “quality” term. In consequence, more attention should be paid when
research quality is applied.

In conclusion, though the limitations discussed above may be inevitable, it is still advisable
to take on our model if quality information of studies is available, especially in a situation
where the effect sizes follow an approximately normal distribution. However, if the quality
information available is limited, the random effect model with a skew-normal assumption would
be the preferred one.
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Appendix

Appendix A Skew-Normal Distribution

The concept and role of the skew-normal distribution may be unfamiliar for some readers,
therefore, some explanations, as well as details for the discussion mentioned above are added.
The concise mathematical definition of skew-normal distribution is firstly introduced.

A random variable Y has a skew-normal distribution if its probability density function (pdf)
is given by

g(y) =
2
α
f

(

y − μ

α

)

F

(

λ
y − μ

α

)

, −∞ < y < +∞,

where f and F are the pdf and cumulated distribution function (cdf) of a standard normal,
respectively, λ is the skewness parameter, μ is the location parameter and α is the scale
parameter[35]. For brevity, we shall also say that Y ∼ SN(μ, α2, λ).

If μ = 0 and α = 1, it is reduced to a standard skew-normal distribution, i.e., Y ∼ SN(λ)[36].
The following properties follow immediately from the standard skew-normal distribution[35–38].

Property A The SN(0) density is the N(0, 1) density.
Property B The density is strongly unimodal, i.e., log g(y) is a concave function of y.
Property C Let U and V be independent standard random variables, then

Y = a | U | +bV ∼ SN(λ),

where a = λ√
1+λ2 , b = 1√

1+λ2 .
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Property D The expectation and variance of Y are:

E(Y ) =

√

2
π
a,

Var(Y ) = 1 −
(

√

2
π
a

)2

.

The skewness index for the standard skew-normal distribution is given by:

λ∗ =

√

2
π

(

4
π
− 1

)(

λ√
1 + λ2

)3(

1 − 2
π

λ2

1 + λ2

)− 3
2

.

Thus, it can be seen that λ∗ < 0.9953.

Appendix B Computation of yi

Using Property C, we have

yi =
τγi

√

1 + γ2
i

ti + si, i = 1, 2, · · · , n,

where ti is a half standard normal distribution, and si ∼ N(μ, τ2

1+γ2
i

+ δ2i ), ti and si are inde-
pendently mutually.

Since the cumulative distribution function of yi is:

FYi(yi) =
∫ +∞

0

∫ yi−aiti

−∞
f(ti, si)dsidti,

where ai = τγi√
1+γ2

i

, then the probability density function:

fYi(yi) =
∫ +∞

0

f(ti, yi − aiti)dti.

By Convolution formula and simple algebra, we can show that

fYi(yi) =
1
πσi

∫ +∞

0

e
− 1

2 [t2i +
(yi−aiti−μ)2

σ2
i

]
dti

=
1
πσi

e
− 1

2
(yi−μ)2

a2
i
+σ2

i

∫ +∞

0

e

−
(ti−

(yi−μ)ai
a2

i
+σ2

i

)2

2
σ2

i
a2

i
+σ2

i dti

=
1

π
√

a2
i + σ2

i

e
− 1

2
(yi−μ)2

a2
i
+σ2

i

∫ +∞

− (yi−μ)ai

σi

√
a2

i
+σ2

i

e−
1
2 s2
ds

=
2

√

π(a2
i + σ2

i )
e
− 1

2
(yi−μ)2

a2
i
+σ2

i F

(

(yi − μ)ai

σi

√

a2
i + σ2

i

)

= 2f
(

yi − μ
√

τ2 + δ2i

)

F

(

τγi
√

τ2 + δ2i (1 + γ2
i )

yi − μ
√

τ2 + δ2i

)

, (3)

where σ2
i = τ2

1+γ2
i

+ δ2i .


