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Abstract In this study, an adaptive asymptotic tracking control problem is considered for stochastic

nonlinear systems with unknown backlash-like hysteresis. By utilizing backstepping technology and

bound estimation approach, an adaptive asymptotic tracking control scheme is designed, where fuzzy

systems are applied to approximate unknown function terms, the effect of hysteresis and stochastic

disturbances is compensated appropriately. The proposed scheme ensures that the tracking error can

asymptotically converge to zero in probability and all signals of the closed-loop system are bounded

almost surely. Finally, the effectiveness of the control scheme is verified by giving a simulation example.

Keywords Adaptive fuzzy control, asymptotic tracking, stochastic nonlinear systems, unknown

backlash-like hysteresis.

1 Introduction

Since nonlinear systems have a wide range of engineering application backgrounds, the re-
search on the control of nonlinear systems has never stopped. In recent years, the control
methods for nonlinear systems have become more and more extensive, such as backstepping
control[1–3], fuzzy control[4–6], and sliding control[7–9]. The adaptive backstepping control is
widely used in controller design, especially for strict-feedback nonlinear systems. Many signif-
icant results have been obtained[10–13]. Uncertain switched nonlinear systems with nonstrict-
feedback form in [12] are studied by employing the backstepping technique, and the proposed
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control method achieves asymptotic tracking performance. Nowadays, adaptive fuzzy or neural
approaches become the very effective tools to deal with the problems in nonlinear systems, where
they are used to approximate or estimate unknown function terms in many researches[14–17].
Chen, et al.[15] proposed a model-based adaptive event-triggered control scheme by using neu-
ral networks, which effectively avoids Zeno behavior. In [17], adaptive fuzzy controllers are
designed by employing backstepping technique, which guarantees the tracking performance
under the constraint of prescribed tracking performance functions.

With the development of research, the problems caused by stochastic disturbances have got
more and more attention because they often bring a lot of negative effect, such as affecting
systems performance and causing systems instability. Therefore, how to deal with the effect of
stochastic disturbances has always been the challenging work. The application of backstepping
technology in stochastic systems has got many successful results, such as [18–21]. To the specific,
Wu, et al.[18] first studied the stochastic nonlinear systems with Markov switching and design
an adaptive backstepping controller. Then, for semi-strict nonlinear systems, Wang, et al.[21]

proposed a disturbance observer based-backstepping sliding mode control strategy. In addition,
by combining backstepping strategy and adaptive fuzzy or neural network control scheme,
many excellent results have been achieved for stochastic nonlinear systems[22–26]. In [23], an
asymptotic tracking control scheme is presented for stochastic systems by proposing a novel
gain suppressing inequality approach and employing fuzzy logic systems. Sui, et al.[24] studied
the problem of finite-time control for nontriangular stochastic nonlinear systems. An adaptive
output-feedback neural network control strategy is proposed for a class of stochastic nonlinear
time-varying delay systems with unknown control directions in [25]. These studies have brought
more solutions to the problems existing in stochastic systems.

As a common phenomenon, hysteresis exists in many physical systems, for example, electric
hysteresis and elastic hysteresis. This phenomenon always brings lots of troubles in actual
systems, which can cause the control performance of the systems to decrease. Therefore, the
study of hysteresis has been a hot topic. For the past few decades, plenty of progress has been
made in the problem of hysteresis. Some researchers propose several mathematical models,
such as backlash-like model, Bouc-Wen model, and Prandtl-Ishlinskii model. With the help of
these models, a lot of outgoing results have been obtained[27–29]. Besides, backstepping method,
adaptive fuzzy or neural approaches and command filter technology have been widely used to
deal with this type of problem in [30–32]. In [30], the issue of multi-input and multi-output
(MIMO) nonlinear systems with actuator hysteresis and full-state constraints is solved by a
neural network control approach. The authors in [31] investigated the problem of compensating
for rate-dependent hysteresis nonlinearity in nonlinear uncertain systems. The study of MIMO
nonlinear systems with hysteresis in [32] is considered by means of fuzzy approach, in which all
the signals of the closed-loop system are semi-globally uniformly ultimately bounded.

It is noteworthy that the phenomenon of hysteresis exists not only in determinate nonlinear
systems but also in stochastic systems, which makes the research more challenging. Hence,
some scholars have designed some control schemes to solve the issue of hysteresis in stochastic
systems[33, 34], while the proposed control schemes can’t achieve asymptotic tracking. To our
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knowledge, there are few approaches to reach the goals. Based on the above observations,
this study considers an adaptive asymptotic tracking controller for strict-feedback stochastic
nonlinear systems with unknown backlash-like hysteresis. The following is a summary of the
main contributions of this study:

1) Unlike the determinate nonlinear systems in [30–32], this study considers the phenomenon
of backlash-like hysteresis in stochastic nonlinear systems. An adaptive asymptotic tracking
controller is designed for a class of systems in strict-feedback form. In design progress, we just
need to know the signs of control coefficients functions, which is inspired by a bound estimate
method in [35]. Different from [35], the number of adaptive laws is less and the calculation
burden is greatly reduced.

2) For the existing researches[33, 34] which consider the issue of hysteresis in stochastic sys-
tems, the tracking error can converge to a small neighborhood of the origin. In this study,
the tracking error can asymptotically converge to zero based on the proposed control strategy,
which achieves better tracking performance.

2 System Description and Preliminaries

Consider the strict-feedback stochastic nonlinear system with unknown backlash-like hys-
teresis as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xi = (gi(xi)xi+1 + fi(xi))t + hi(xi)ω, i = 1, 2, · · · , n − 1,

xn = (gn(x)u(ν) + fn(x))t + hn(x)ω,

y = x1,

(1)

where xi = [x1, x2, · · · , xi]T ∈ Ri, i = 1, 2, · · · , n, x = xn ∈ Rn are the system state vectors,
and y ∈ R is the system output. ω is an r-dimensional independent standard Wiener process
defined on a complete probability space {Ω ,F , {Ft}t≥0, P}, where Ω is a sample space, F is a
σ-field, {Ft}t≥0 is a filtration, and P is the probability measure. gi(xi), fi(xi) and hi(xi) are
unknown smooth locally Lipschitz nonlinear functions. u ∈ R as the output of the unknown
backlash-like hysteresis can be expressed by

u

t
= a

∣
∣
∣
ν

t

∣
∣
∣ (cν − u) + b

ν

t
, (2)

where ν is the input of the unknown backlash-like hysteresis, a, b and c are unknown constants,
c > 0 is the slope of the lines and satisfies c > b. For example, when the parameters are selected
as a = 1, b = 0.345 and c = 3.1635, ν(t) = k sin(2.3t) with k = 2.5 and k = 4.5, and the initial
conditions are u(0) = 0 and ν(0) = 0, the dynamic of the backlash-like hysteresis model (2) is
presented in Figure 1.
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Figure 1 Backlash-like hysteresis curves

Based on [36], (2) can be written as

u(t) = cν(t) + d(ν), (3)

d(ν) = [u0 − cν0]e−a(ν−ν0)sgnν̇ + e−aνsgnν̇

∫ ν

ν0

[b − c]eaζ(sgnν̇) dζ, (4)

where u0 = u(0), ν0 = ν(0) are the initial values of u and ν, respectively. After analysis, it is
not difficult to conclude that limν→∞ |d(ν)| = | c−b

a |, that is, there exists a uniform bound D

such that |d(ν)| ≤ D.
In this study, the control objective is to design an adaptive fuzzy controller for the system (1)

such that the system output y can asymptotically track the reference signal yd in probability
and all signals of the closed-loop system are bounded almost surely although there exists the
phenomenon of hysteresis. To reach the target, we give the following assumptions.

Assumption 1 The reference output yd and its time derivative up to the nth order y
(n)
d

are continuous and bounded.
Assumption 2 The signs of gi are known, gi(xi) are bounded and satisfy 0 < g

i
≤

|gi(xi)| ≤ gi, i = 1, 2, · · · , n, where g
i
and gi are unknown positive constants.

Remark 1 Different from the existing results[37–39] where the control coefficients of the
systems are required to be known constants or known nonlinear functions, we just need that
gi(xi) are bounded in this study. In addition, Assumption 2 indicates that gi(xi) are either
positive or negative. Without loss of generality, we assume that gi(xi) > 0. In control design,
the lower bound gi is added to the Lyapunov function to solve the problem caused by the
unknown virtual control coefficients.

Next, the following necessary definitions and lemmas are introduced.
Definition 1 (see [34]) Consider the following stochastic system

x = f(x, t)t + h(x, t)ω,

where x ∈ Rn is the system state, ω is an r-dimensional independent standard Winner progress,
f(x, t) and h(x, t) are locally Lipschitz functions. For any given function V (x, t) ∈ C2,1, define
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the differential operator L as

LV =
∂V

∂t
+

∂V

∂x
f +

1
2
Tr

{

hT ∂2V

∂x2
h

}

(5)

with Tr(A) being the trace of matrix A.
Lemma 1 (see [35]) For any variable x and positive integrable time-varying function σ(t),

the following inequality holds:

0 ≤ |x| − x2

√
x2 + σ2(t)

< σ(t),

where σ(t) satisfies limt→+∞
∫ t

t0
σ(s)s ≤ σ < ∞ with σ being a positive constant.

The following FLSs are utilized in the control design.
IF-THEN rules: Ri: If x1 is F i

1, x2 is F i
2, · · · and xn is F i

n, THEN y is Ai, i = 1, 2, · · · , n.
The FLS is expressed as

y(x) =

∑N
i=1 Φi

∏n
j=1 νF i

j
(xj)

∑N
i=1[

∏n
j=1 νF i

j
(xj)]

.

Choose ϕi(x) =
∏n

j=1 ν
F i

j
(xj)

∑ N
i=1[

∏n
j=1 ν

F i
j
(xj)]

, Φ(x) = [ϕ1(x), ϕ2(x), · · · , ϕN (x)]T is the basis function

vector and P = [p1, p2, · · · , pN ]T is the weight vector. Then, we have

y(x) = PTΦ(x).

Lemma 2 (see [40]) For a continuous function f(x) defined on a compact set U and any
ε > 0, there exists an FLS PTΦ(x) satisfying

sup
x∈U

|f(x) − PTΦ(x)| ≤ ε.

3 Adaptive Controller Design

The design process of controller will be presented by using the above knowledge and the
adaptive backstepping technology in this section. First, the following coordinate transforma-
tions are introduced

z1 = x1 − yd,

zi = xi − αi−1, i = 2, 3, · · · , n,
(6)

where αi−1 represent the virtual controllers. Then, the following constants are defined before
the design procedure,

θ = max

{
‖Pi‖
g

i

, i = 1, 2, · · · , n

}

,

ρ = max

{
εi

g
i

+
gn

g
n

D, i = 1, 2, · · · , n

}

,
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ζ = 1
c . θ̂, ρ̂ and ζ̂ are estimations of θ, ρ and ζ, respectively; θ̃ = θ− θ̂, ρ̃ = ρ− ρ̂ and ζ̃ = ζ − ζ̂

are the estimation errors.
Step 1 From (1) and (6), we have

z1 = (g1z2 + g1α1 + f1 − ẏd)t + h1ω. (7)

Define a Lyapunov function candidate as

V1 =
1

4g
1

z4
1 +

1
2r

θ̃2 +
1
2γ

ρ̃2. (8)

The following equality can be obtained from (5) and (7)

LV1 =
z3
1

g
1

(g1z2 + g1α1 + f1 − ẏd) +
3
2

z2
1

g
1

H1 − 1
r
θ̃
˙̂
θ − 1

γ
ρ̃ ˙̂ρ (9)

with H1 = hT
1 h1. According to Young’s inequality and Lemma 1, it follows that

g1

g
1

z3
1z2 ≤ 3

4
g1

g
1

z4
1 +

1
4

g1

g
1

z4
2 , (10)

3
2g

1

z2
1H1 ≤ 3

2g
1

z4
1H

T
1 H1

√
z4
1H

T
1 H1 + σ2

1

+
3

2g
1

σ1. (11)

Then, substituting (10) and (11) into (9) gives

LV1 ≤ g1

g
1

z3
1α1 +

1
g
1

z3
1f1 +

1
4

g1

g
1

z4
2 +

3
2g

1

σ1 − 1
r
θ̃
˙̂
θ − 1

γ
ρ̃ ˙̂ρ, (12)

where f1(X1) = f1(x1) − ẏd + 3
4g1z1 + 3

2
z1HT

1 H1√
z4
1HT

1 H1+σ2
1

, it is obvious that f1(X1) is a function

containing x1, yd, ẏd. Next, using Lemma 2, there exists an FLS PT
1 Φ1(X1) such that

f1 = PT
1 Φ1(X1) + δ1, ‖δ1‖ ≤ ε1,

where δ1 is an approximation error. Further, based on Lemma 1, the following inequality holds

1
g
1

z3
1f1 ≤ θ

z6
1ΦT

1 Φ1
√

z6
1Φ

T
1 Φ1 + σ2

1

+ θσ1 + ρ
z6
1√

z6
1 + σ2

1

+ ρσ1. (13)

Combining (12) and (13), one can obtain

LV1 ≤ −k1z
4
1 +

g1

4g
1

z4
2 +

g1

g
1

z3
1α1 + z3

1v1 + θσ1 + ρσ1 +
3σ1

2g
1

+
1
r
θ̃
(
τ1 − ˙̂

θ
)

+
1
γ

ρ̃
(
ι1 − ˙̂ρ

)
(14)

with v1 = k1z1 + θ̂
z3
1Φ

T
1 Φ1√

z6
1Φ

T
1 Φ1+σ2

1

+ ρ̂
z3
1√

z6
1+σ2

1

. τ1 and ι1 are denoted as

⎧
⎪⎪⎨

⎪⎪⎩

τ1 = r
z6
1Φ

T
1 Φ1

√
z6
1Φ

T
1 Φ1 + σ2

1

,

ι1 = γ
z6
1√

z6
1 + σ2

1

.
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Thus, the virtual control input α1 is designed as

α1 = − z3
1v2

1√
z6
1v2

1 + σ2
1

. (15)

Next, applying Lemma 1, (14) an be rewritten as

LV1 ≤ −k1z
4
1 +

1
4

g1

g
1

z4
2 + σ1

(

1 + θ + ρ +
3

2g
1

)

+
1
r
θ̃(τ1 − ˙̂

θ) +
1
γ

ρ̃(ι1 − ˙̂ρ). (16)

Step i (i = 2, 3, · · · , n − 1). It follows from (1) and (6) that

zi = (gizi+1 + giαi + fi − Ψi)t +
(

hi −
i−1∑

j=1

∂αi−1

∂xj
hj

)

ω, (17)

where

Ψi =
i−1∑

j=1

∂αi−1

∂xj
(gjxj+1 + fj) +

∂αi−1

∂θ̂

˙̂
θ +

∂αi−1

∂ρ̂
˙̂ρ +

i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d

+
i−1∑

j=1

∂αi−1

∂σj
σ̇j +

1
2

i−1∑

p,q=1

∂2αi−1

∂xp∂xq
hT

p (xp)hq(xq).

Construct a Lyapunov function candidate as

Vi = Vi−1 +
1

4g
i

z4
i . (18)

Then, by using the formulas (5) and (17), it can be obtained that

LVi ≤ −
i−1∑

j=1

kjz
4
j +

i−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τi−1 − ˙̂

θ) +
1
γ

ρ̃(ιi−1 − ˙̂ρ)

+
gi

g
i

z3
i zi+1 +

gi

g
i

z3
i αi +

1
g

i

z3
i

(

fi − Ψi +
1
4

g
i
gi−1

g
i−1

zi

)

+
3

2g
i

z2
i Hi (19)

with Hi = (hi −
∑i−1

j=1
∂αi−1
∂xj

hj)T(hi −
∑i−1

j=1
∂αi−1
∂xj

hj). Similarly, from Young’s inequality and
Lemma 1, we can obtain

gi

g
i

z3
i zi+1 ≤ 3

4
gi

g
i

z4
i +

1
4

gi

g
i

z4
i+1, (20)

3
2g

i

z2
i Hi ≤ 3

2g
i

z4
i HT

i Hi
√

z4
i HT

i Hi + σ2
i

+
3

2g
i

σi. (21)

Then, substituting (20) and (21) into (19) produces

LVi ≤ −
i−1∑

j=1

kjz
4
j +

i−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τi−1 − ˙̂

θ)

+
1
γ

ρ̃(ιi−1 − ˙̂ρ) +
gi

g
i

z3
i αi +

1
g

i

z3
i f i +

1
4

gi

g
i

z4
i+1 +

3
2g

i

σi, (22)
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where f i(Xi) = fi(xi) − Ψi + 3
4gizi + 1

4

g
i
gi−1

g
i−1

zi + 3
2

ziH
T
i Hi√

z4
i HT

i Hi+σ2
i

. In view of Lemma 2, there

exists an FLS PT
i Φi(Xi) such that

f i = PT
i Φi(Xi) + δi, ‖δi‖ ≤ εi,

where δi is an approximation error. According to Lemma 1, the following inequality gives

1
g

i

z3
i f i ≤ θ

z6
i Φ

T
i Φi

√
z6

i Φ
T
i Φi + σ2

i

+ θσi + ρ
z6

i√
z6

i + σ2
i

+ ρσi. (23)

Substituting (23) into (22), the following inequality yields

LVi ≤ −
i∑

j=1

kjz
4
j +

i−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τi − ˙̂

θ) +
1
γ

ρ̃(ιi − ˙̂ρ)

+
gi

g
i

z3
i αi + z3

i vi + θσi + ρσi +
1
4

gi

g
i

z4
i+1 +

3
2g

i

σi, (24)

where vi = kizi + θ̂
z3

i ΦT
i Φi√

z6
i ΦT

i Φi+σ2
i

+ ρ̂
z3

i√
z6

i +σ2
i

. τi and ιi are expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τi = τi−1 + r
z6

i Φ
T
i Φi

√
z6

i Φ
T
i Φi + σ2

i

,

ιi = ιi−1 + γ
z6

i√
z6

i + σ2
i

.

Therefore, the virtual control signal αi is constructed as

αi = − z3
i v2

i√
z6

i v2
i + σ2

i

. (25)

Applying Lemma 1, there holds

LVi ≤ −
i∑

j=1

kjz
4
j +

1
4

gi

g
i

z4
i+1 +

i∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τi − ˙̂

θ) +
1
γ

ρ̃(ιi − ˙̂ρ). (26)

Step n In view of (1), (3) and (4), the following can be obtained

xn = (gncν + gnd + fn)t + hnω. (27)

Based on (6), it can be calculated that

zn = (gncν + gnd + fn − Ψn)t +
(

hn −
n−1∑

j=1

∂αn−1

∂xj
hj

)

ω, (28)

where

Ψn =
n−1∑

j=1

∂αn−1

∂xj
(gjxj+1 + fj) +

∂αn−1

∂θ̂

˙̂
θ +

∂αn−1

∂ρ̂
˙̂ρ +

n−1∑

j=0

∂αn−1

∂y
(j)
d

y
(j+1)
d
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+
n−1∑

j=1

∂αn−1

∂σj
σ̇j +

1
2

n−1∑

p,q=1

∂2αn−1

∂xp∂xq
hT

p (xp)hq(xq).

Choose a Lyapunov function candidate as

Vn = Vn−1 +
1

4g
n

z4
n +

c

2η
ζ̃2. (29)

It follows from (5) and (28) that

LVn ≤ −
n−1∑

j=1

kjz
4
j +

n−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τn−1 − ˙̂

θ) +
1
γ

ρ̃(ιn−1 − ˙̂ρ)

+
gn

g
n

z3
ncν +

gn

g
n

z3
nd +

1
g

n

z3
n

(

fn − Ψn +
1
4

g
n
gn−1

g
n−1

zn

)

+
3

2g
n

z2
nHn − c

η
ζ̃
˙̂
ζ (30)

with Hn = (hn − ∑n−1
j=1

∂αn−1
∂xj

hj)T(hn − ∑n−1
j=1

∂αn−1
∂xj

hj). As the same of Step i, by using
Lemma 1, it can prove that

3
2g

n

z2
nHn ≤ 3

2g
n

z4
nHT

n Hn
√

z4
nHT

n Hn + σ2
n

+
3

2g
n

σn. (31)

By combining (31), we get

LVn ≤ −
n−1∑

j=1

kjz
4
j +

n−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τn−1 − ˙̂

θ)

+
1
γ

ρ̃(ιn−1 − ˙̂ρ) +
gn

g
n

z3
ncν +

gn

g
n

z3
nD +

1
g

n

z3
nfn +

3
2g

n

σn − c

η
ζ̃
˙̂
ζ, (32)

where fn(Xn) = fn(x)−Ψn + 1
4

g
n

gn−1

g
n−1

zn + 3
2

znHT
n Hn√

z4
i HT

n Hn+σ2
n

. Based on Lemma 2, there exists an

FLS PT
n Φn(Xn) such that

fn = PT
n Φn(Xn) + δn, ‖δn‖ ≤ εn,

where δn denotes an approximation error. Next, from Lemma 1, the following inequality holds

1
g

n

z3
nfn +

gn

g
n

z3
nD ≤ θ

z6
nΦT

n Φn
√

z6
nΦT

n Φn + σ2
n

+ θσn + ρ
z6

n√
z6

n + σ2
n

+ ρσn. (33)

Substituting (33) into (32) gives

LVn ≤ −
n∑

j=1

kjz
4
j +

n−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+
1
r
θ̃(τn − ˙̂

θ)

+
1
γ

ρ̃(ιn − ˙̂ρ) +
gn

g
n

z3
ncν + z3

nvn + σn

(

θ + ρ +
3

2g
n

)

− c

η
ζ̃
˙̂
ζ, (34)

where vn = knzn + θ̂
z3

nΦT
n Φn√

z6
nΦT

n Φn+σ2
n

+ ρ̂
z3

n√
z6

n+σ2
n

. τn and ιn are defined as

⎧
⎪⎪⎨

⎪⎪⎩

τn = τn−1 + r
z6

nΦT
n Φn

√
z6

nΦT
n Φn + σ2

n

,

ιn = ιn−1 + γ
z6

n√
z6

n + σ2
n

.
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From which, the final controller is designed as

ν = − z3
nv2

nζ̂2

√

z6
nv2

nζ̂2 + σ2
n

(35)

and adaptive laws are constructed as
⎧
⎪⎪⎨

⎪⎪⎩

˙̂
θ = τn − σnrθ̂,

˙̂ρ = ιn − σnγρ̂,
˙̂
ζ = ηz3

nvn − σnηζ̂.

(36)

Further, combining (34)–(36) and Lemma 1 gets

LVn ≤ −
n∑

j=1

kjz
4
j +

n−1∑

j=1

σj

(

1 + θ + ρ +
3

2g
j

)

+σn

(

c + θ + ρ +
3

2g
n

)

+ σn(θ̃θ̂ + ρ̃ρ̂ + cζ̃ζ̂). (37)

According to the complete square formula, the following inequalities hold
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ̃θ̂ = θ̃(θ − θ̃) = −θ̃2 + θ̃θ ≤ θ2

4
,

ρ̃ρ̂ = ρ̃(ρ − ρ̃) = −ρ̃2 + ρ̃ρ ≤ ρ2

4
,

ζ̃ζ̂ = ζ̃(ζ − ζ̃) = −ζ̃2 + ζ̃ζ ≤ ζ2

4
.

(38)

Finally, substituting (38) into (37) shows

LVn ≤ −
n∑

j=1

kjz
4
j +

n∑

j=1

σjλj . (39)

4 Stability Analysis

Theorem 1 For the stochastic nonlinear system (1) with unknown backlash-like hysteresis
(2), under Assumptions 1–2, there exist the controllers (15), (25), (35) and the adaptive updating
laws (36), such that the system output y can asymptotically track the reference signal yd in
probability and all signals of the closed-loop system are bounded almost surely.

Proof Based on Lemma 2 in [41], there exists a unique solution to the stochastic system
(1), it is defined as e(t) = (z1(t), z2(t), · · · , zn(t), θ̃(t), ρ̃(t), ζ̃(t)). It follows from (39) that
LVn ≤ −∑n

j=1 kjz
4
j +

∑n
j=1 σjλj , then by employing Lemma 4 in [41], we have

E(Vn(e(σr ∧ t)))

≤ Vn(e(t0)) − E

∫ σr∧t

t0

n∑

j=1

kjz
4
j (s)s + E

∫ σr∧t

t0

n∑

j=1

σj(s)λjs
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≤ Vn(e(t0)) +
n∑

j=1

σjλj ,

where σr := inf{t ≥ 0 : |x(t)| ≥ r}, and σr ∧ t is the minimum of σr and t. It can be noted
that inf |e|≥R Vn(e) → ∞ as R → ∞. In view of Lemma 2 in [41], we can get a conclusion that
e(t) is bounded almost surely on [0,∞), which implies that z1(t), z2(t), · · · , zn(t), θ̃(t), ρ̃(t) and
ζ̃(t) are bounded almost surely on [0,∞). Combining Assumption 1, the boundedness of yd

determines the boundedness of x1 on [0,∞). In addition, it can be obtained that θ̂, ρ̂ and ζ̂ are
bounded on [0,∞) due to the boundedness of θ̃(t), ρ̃(t) and ζ̃(t). Next, α1 is bounded almost
surely on [0,∞) because it contains x1, yd, ẏd, θ̂ and ρ̂. From Equation (6), it can be seen that
x2 is bounded almost surely on [0,∞). By using the same analysis, it can be concluded that
xi, αi and ν are bounded almost surely on [0,∞). Consequently, all the signals of the system
are bounded almost surely on [0,∞). From (40), it follows that

E

∫ σr∧t

t0

n∑

j=1

kjz
4
j (s)s ≤ Vn(e(t0)) +

n∑

j=1

σjλj .

Since limr→+∞limt→+∞(σr ∧ t) = ∞, using Fatou’s lemma gets

E

∫ ∞

t0

n∑

j=1

kjz
4
j (s)s ≤ Vn(e(t0)) +

n∑

j=1

σjλj < +∞.

Then, from Stochastic Barbǎlat’s Lemma on [41], it can prove that P
(
limt→∞ ‖zi(t)‖ = 0

)
= 1,

so the system output y can asymptotically track the reference signal yd in probability.

5 Simulation Example

In this section, to prove the effectiveness of the proposed strategy, we will give a simulation
example which is described in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

x1 = (10x2 cosx1 + 0.01 cos(2x1))t + 0.001e−x1ω,

x2 = (30u(ν) cosx2 + 2x1 sin(x2))t + 0.001e−0.2x2ω,

y = x1,

where u is the output of unknown hysteresis with a = 1, c = 3.1635, and b = 0.345. The target
signal yd is expressed as yd = 0.6 sin t. For fuzzy control, choose the following membership
functions as νF i

j
= e−

1
2 (xj+ξi)

2
with ξi = 10, 8, 6, 4, 2, 0,−2,−4,−6,−8,−10, i = 1, 2, · · · , 11.

In the simulation, choose the parameters as k1 = 800, k2 = 45, r = 30, γ = 35, η = 50,

σ1 = 0.0001e−0.3t, σ2 = 0.001e−0.25t, and the initial conditions are x(0) = [−0.01,−0.01]T,

θ̂(0) = 1, ρ̂(0) = 0.5, ζ̂(0) = 1. Figures 2–5 verify the conclusions of Theorem 1. The system
output y, the reference signal yd and the tracking error z1 are presented in Figure 2, in which
we can see that the tracking error can asymptotically converge to zero. Figure 3 indicates the
curves of the states x1 and x2. The control signals ν and u are displayed in Figure 4. And the
trajectories of adaptive parameters are plotted in Figure 5. From Figures 2–5, we obtain that
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all signals of the closed-loop system are bounded. Namely, the control objective of this study
can be achieved.
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6 Conclusions

This study has investigated the issue of adaptive asymptotic tracking control for a class
of uncertain stochastic nonlinear systems with unknown backlash-like hysteresis. An adaptive
asymptotic tracking control scheme is designed via backstepping method, and the problem
caused by unknown backlash-like hysteresis and stochastic disturbance can be solved. In addi-
tion, we have guaranteed the boundedness of all signals of the closed-loop system almost surely,
and the tracking error z1 can asymptotically converge to zero in probability. At last, a simu-
lation result is given to confirm the effectiveness of the proposed method. The results of this
study are based on that the signs of unknown virtual control coefficients are known. When the
virtual control coefficient is completely unknown, how to construct an appropriate mechanism
to achieve our control objective is still a challenging task. Thus, this issue is what we need to
pay attention to in our future study.
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