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Abstract This paper studies an asymptotic solvability problem for linear quadratic (LQ) mean field

games with controlled diffusions and indefinite weights for the state and control in the costs. The

authors employ a rescaling approach to derive a low dimensional Riccati ordinary differential equation

(ODE) system, which characterizes a necessary and sufficient condition for asymptotic solvability. The

rescaling technique is further used for performance estimates, establishing an O(1/N)-Nash equilibrium

for the obtained decentralized strategies.

Keywords Asymptotic solvability, decentralized strategies, ε-Nash equilibria, linear quadratic, mean

field games, Riccati equations.

1 Introduction

Since its inception[1, 2], mean field game theory has undergone a phenomenal growth and
found applications in diverse areas[3–16]. The theory is inspired by ideas in statistical physics
and overcomes the dimensionality difficulty in competitive decision problems involving a large
population of agents. The reader is referred to [17–20] for an overview of basic theory and
applications.

While mean field games have been developed with very different modelling frameworks,
linear quadratic (LQ) mean field games are of particular importance and have been extensively
studied due to their elegant closed-form solutions[13, 21–23]. Huang, et al.[23] adopt infinite
horizon discounted costs and use the infinite population limit model to design decentralized
strategies for the actual model with a large but finite population. Li and Zhang[24] study
decentralized strategies with ergodic costs. Wang and Zhang[25] introduce Markov jumps in
the system dynamics and costs. Bardi and Priuli[26] study LQ N -person games and their
mean field limit with ergodic costs. Huang, et al.[22] adopt backward stochastic differential
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equations for modelling state processes. Moon and Başar[27] consider risk sensitive costs and
address robustness. Huang and Huang[28] consider linear diffusion dynamics including model
uncertainty treated as an adversarial player. Tchuendom[29] shows nonuniqueness can arise, but
interestingly, uniqueness can be restored by the presence of common noise. LQ mean field games
have an extension by including a major player[30, 31]. This modelling framework is introduced
by Huang[30]. Bensoussan, et al.[32] consider Stackelberg equilibria under state and control
delays. Caines and Kizikale[33] consider partial information and filtering based strategies for an
LQ model with a major player.

In this paper we study a class of LQ mean field games with common noise and indefinite
weight matrices (simply called weights below) in the cost functional. We adopt the so-called
asymptotic solvability framework in [34]. Starting with feedback perfect state information, this
approach aims to determine feedback Nash strategies under such centralized information and
next study how the solutions behave when the number of players increases. It uses a rescaling
method to derive a set of Riccati ordinary differential equations (ODEs), which characterizes a
necessary and sufficient condition for asymptotic solvability[34]. This method can be extended
to LQ mean field games with a major player[35]. Recently, Huang and Yang[36] extend this
asymptotic solvability notion to mean field social optimization, where the agents cooperatively
optimize a social cost. That work further develops a method of asymptotic analysis to obtain
tight estimates of optimality loss when decentralized strategies are implemented. For our cur-
rent model, the test of asymptotic solvability reduces to checking two Riccati ODEs in a low
dimensional space, which, as a result of the controlled individual and common noises, have
higher nonlinearity than those Riccati equations in [34].

In the analysis of mean field games, a crucial step is to examine how the strategies obtained
in the mean field limit model perform when implemented in the actual model with a large
but finite population. This can be addressed by establishing the so-called ε-Nash equilibrium
property, where ε→ 0 as N → ∞. For LQ models[21–23, 25] as well as some nonlinear cases[37],
one can obtain an O(1/

√
N)-Nash equilibrium when all players are symmetric. This typically

results from cost estimates by the Cauchy-Schwarz inequality. To our best knowledge on the
existing literature, probably only Basna, et al.[38] have obtained an O(1/N)-Nash equilibrium
result in a finite state mean field game. We will establish an O(1/N)-Nash equilibrium for
the decentralized strategies obtained from the LQ mean field limit model; our approach is
different from that in [38] which relies on perturbation estimates of generators of continuous-
time controlled Markov chains. We will directly treat the best response control problem of the
unilateral agent in a high dimensional space and then employ the rescaling method to obtain
accurate information about its performance improvement. We will develop extensive asymptotic
error estimates by building upon techniques in the companion paper[36] on social optimization.
In a convergence problem of mean field games with common noise, Cardaliaguet, et al.[39] prove
that the value functions of N players converge in an average sense to the solution of the master
equation, and the averaged error disappears by rate 1/N as N → ∞. But their error bound is
different from the O(1/N)-Nash equilibrium notion.

It will be helpful to briefly explain the route that we will follow in the analysis. For the LQ
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Nash game with indefinite weights, we apply dynamic programming to derive a set of large-
scale Riccati equations, which is used to formulate the asymptotic solvability problem of the
N -player game. In order to get useful information from the large Riccati equations, we exploit
their symmetries to achieve dimension reduction and next use a rescaling technique to derive
two key Riccati equations, which completely characterize asymptotic solvability. By taking
the mean field limit of the solution of the N -player game, we construct a set of decentralized
strategies, which are then applied to the N -player model. We further obtain explicit formulas
for the per agent cost for three scenarios: i) The N players apply the Nash equilibrium strategies
(û1, û2, · · · , ûN); ii) TheN players apply decentralized strategies (ǔ1, ǔ2, · · · , ǔN ) obtained from
the mean field limit model; iii) The player in question takes its best response while the other
N − 1 players apply these decentralized strategies. When N → ∞, the three cases have the
same limit for the per agent cost. The comparison of the costs in scenarios ii) and iii) establishes
the O(1/N)-Nash equilibrium property. A comparison of the per agent costs for the mean field
game and the mean field social optimum enables us to quantify the efficiency loss of the mean
field game with respect to the social optimum; see the comparison in the companion paper [36].

1.1 Organization of the Paper

Section 2 introduces the N -player LQ Nash game with indefinite weight matrices in the cost
functionals. The set of feedback Nash equilibrium strategies is characterized using a system
of Riccati ODEs in Section 3. The asymptotic solvability problem is studied in Section 4
and a necessary and sufficient condition is derived. Section 5 constructs a set of decentralized
strategies for the N -player game, and Section 6 proves an O(1/N)-Nash equilibrium theorem.
A numerical example is presented in Section 7. Section 8 concludes the paper.

1.2 Notation

Let Sn be the set of n× n real symmetric matrices. We denote the quadratic form [x]2M =
xTMx forM ∈ Sn and x ∈ R

n. We use I to denote an identity matrix of compatible dimensions,
and sometimes write Ik to indicate the k × k identity matrix. We use 0 to denote either the
scalar zero or a zero vector/matrix of compatible dimensions.

We denote by |F | the Euclidean norm of a vector or matrix F , by 1k×l a k × l matrix with
all entries equal to 1, by ⊗ the Kronecker product, and by the column vectors {ek

1 , e
k
2 , · · · , ek

k}
the canonical basis of R

k. For a function f(t, x), we may write partial derivatives ∂f/∂t as ∂tf ;
∂f/∂x as ∂xf ; and ∂2f/∂x2 as ∂2

xf .

2 The LQ Nash Game

Consider a system of N players (or called agents) denoted by Ai, 1 ≤ i ≤ N . The state
process Xi(t) satisfies the following stochastic differential equation (SDE)

dXi(t) = (AXi(t) +Bui(t) +GX(N)(t))dt+ (B1ui(t) +D)dWi(t)

+ (B0u
(N)(t) +D0)dW0(t), (1)
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where we have the state Xi(t) ∈ R
n, the control ui(t) ∈ R

n1 , the mean field state X(N) :=
(1/N)

∑N
i=1Xi and the control mean field u(N) := (1/N)

∑N
i=1 ui. The initial states {Xi(0) :

1 ≤ i ≤ N} are independent with E|Xi(0)|2 <∞. The individual noise processes {Wi : 1 ≤ i ≤
N} are 1-dimensional independent standard Brownian motions, which are also independent of
{Xi(0) : 1 ≤ i ≤ N}. The common noise W0 is a 1-dimensional standard Brownian motion
independent of {Wi : 1 ≤ i ≤ N} and {Xi(0) : 1 ≤ i ≤ N}. In contrast to [34, 40], each
individual noise is affected by that player’s control, and the model contains a common noise
affected by the control mean field.

The individual cost functional (simply called cost) of Ai, 1 ≤ i ≤ N , is given by

Ji(u1, u2, · · · , uN)

=E

[

∫ T

0

(

[Xi(t) − ΓX(N)(t)]2Q + [ui(t)]2R
)

dt+ [Xi(T ) − ΓfX
(N)(T )]2Qf

]

, (2)

where we denote [x]2M = xTMx for M ∈ Sn and x ∈ R
n. The constant matrices A, B, B0 B1,

D, D0, G, Γ , Q, R, Γf , Qf above have compatible dimensions, and Q, Qf , R are symmetric,
possibly indefinite, matrices.

Define

X(t) =

⎡

⎢

⎢

⎢

⎣

X1(t)
...

XN (t)

⎤

⎥

⎥

⎥

⎦

∈ R
Nn, u−i = (u1, u2, · · · , ui−1, ui+1, · · · , uN ),

A = diag[A,A, · · · , A] + 1N×N ⊗ G

N
∈ R

Nn×Nn,

B0 = 1N×1 ⊗ B0

N
∈ R

Nn×n1 , D0 = 1N×1 ⊗D0 ∈ R
Nn×1,

̂Bk = eN
k ⊗B ∈ R

Nn×n1 , Bk = eN
k ⊗B1 ∈ R

Nn×n1 ,

Dk = eN
k ⊗D ∈ R

Nn×1, 1 ≤ k ≤ N.

Then X = (XT
1 , X

T
2 , · · · , XT

N)T has the following dynamics

dX(t) =
(

AX(t) +
N

∑

i=1

̂Biui(t)
)

dt+
N

∑

i=1

(Biui(t) + Di)dWi

+
(

B0

N
∑

i=1

ui(t) + D0

)

dW0. (3)

We denote

Ki = [0, · · · , 0, In, 0, · · · , 0] − (1/N)[Γ ,Γ , · · · ,Γ ] ∈ R
n×Nn,

Kif = [0, · · · , 0, In, 0, · · · , 0] − (1/N)[Γf ,Γf , · · · ,Γf ],

Qi = KT
i QKi, Qif = KT

ifQfKif .
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The individual cost (2) can be written as

Ji(ui, u−i) = E

[

∫ T

0

(

[X(t)]2Qi
+ [ui(t)]2R

)

dt+ [X(T )]2Qif

]

. (4)

We begin by solving the LQ Nash game under closed-loop perfect state (CLPS) information,
where the full state vector X(t) is observed by each player. The players seek a set of Nash
equilibrium strategies (û1, û2, · · · , ûN ).

For notational simplicity, Sections 3–6 will treat a simplified model (1)–(2) withD = D0 = 0.
The extension to the general case will be discussed in Section 6.

3 Riccati Equations and Feedback Nash Strategies

Based on (4), we may naturally define the cost J(t,x, u1, · · · , uN ) where the running cost
is integrated on [t, T ] instead of [0, T ] with initial state X(t) = x = (xT

1 , x
T
2 , · · · , xT

N )T. Let
Vi(t,x) denote the value function of player Ai. The Hamilton-Jacobi-Bellman (HJB) equations
of the N players associated with (3)–(4) (taking D0 = D = 0) are

− ∂Vi

∂t
=
∂TVi

∂x

(

Ax +
N

∑

k=1

̂Bkûk

)

+
1
2

( N
∑

k=1

ûk

)T

BT
0

∂2Vi

∂x2
B0

( N
∑

k=1

ûk

)

(5)

+
1
2

N
∑

k=1

(Bkûk)T
∂2Vi

∂x2
(Bkûk) + xTQix + ûT

i Rûi,

Vi(T,x) = xTQifx, 1 ≤ i ≤ N.

Each ûi is the minimizer in the HJB equation of Vi(t,x) as specified below. Taking (u1, u2, · · · , uN)
in place of (û1, û2, · · · , ûN ), we write the right hand side of (5) in the form:

H(x, ∂xVi, ∂
2
xVi, ui, u−i).

Then we require

ûi = argmin
ui

H(x, ∂xVi, ∂
2
xVi, ui, û−i), ∀i. (6)

We will calculate ûi under the following conditions: for all (t,x) ∈ [0, T ]× R
Nn,

R +
1
2
BT

i

∂2Vi(t,x)
∂x2

Bi > 0, (7)

I +
1
2

N
∑

k=1

(

R+
1
2
BT

k

∂2Vk(t,x)
∂x2

Bk

)−1

BT
0

∂2Vk(t,x)
∂x2

B0 is invertible, (8)

R +
1
2
BT

i

∂2Vi(t,x)
∂x2

Bi +
1
2
BT

0

∂2Vi(t,x)
∂x2

B0 > 0. (9)

By (6), we derive

0 = ̂BT
i

∂Vi

∂x
+ BT

0

∂2Vi

∂x2
B0

N
∑

i�=k=1

ûk + BT
0

∂2Vi

∂x2
B0ûi + BT

i

∂2Vi

∂x2
Biûi + 2Rûi, (10)
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which implies that

ûi = −1
2

(

R +
1
2
BT

i

∂2Vi

∂x2
Bi

)−1(

̂BT
i

∂Vi

∂x
+ BT

0

∂2Vi

∂x2
B0

N
∑

k=1

ûk

)

. (11)

Adding up the N equations in (11) leads to

N
∑

i=1

ûi = −1
2

N
∑

i=1

(

R+
1
2
BT

i

∂2Vi

∂x2
Bi

)−1(

̂BT
i

∂Vi

∂x
+ BT

0

∂2Vi

∂x2
B0

N
∑

k=1

ûk

)

,

which under the condition (8) yields

N
∑

k=1

ûk = − 1
2

[

I +
1
2

N
∑

k=1

(

R+
1
2
BT

k

∂2Vk

∂x2
Bk

)−1

BT
0

∂2Vk

∂x2
B0

]−1

·
N

∑

k=1

(

R +
1
2
BT

k

∂2Vk

∂x2
Bk

)−1

̂BT
k

∂Vk

∂x

=: M . (12)

Combining (11) and (12) gives that

ûi = −1
2

(

R+
1
2
BT

i

∂2Vi

∂x2
Bi

)−1(

̂BT
i

∂Vi

∂x
+ BT

0

∂2Vi

∂x2
B0M

)

. (13)

We substitute (13) into the right hand side of (5) to obtain

−∂Vi

∂t
=

1
4

[

BT
0

∂2Vi

∂x2
B0M − ̂BT

i

∂Vi

∂x

]T(

R+
1
2
BT

i

∂2Vi

∂x2
Bi

)−1[

BT
0

∂2Vi

∂x2
B0M + ̂BT

i

∂Vi

∂x

]

− 1
2
∂TVi

∂x

N
∑

i�=k=1

̂Bk

(

R +
1
2
BT

k

∂2Vk

∂x2
Bk

)−1[

BT
0

∂2Vk

∂x2
B0M + ̂BT

k

∂Vk

∂x

]

+
1
8

N
∑

i�=k=1

[

BT
0

∂2Vk

∂x2
B0M + ̂BT

k

∂Vk

∂x

]T(

R+
1
2
BT

k

∂2Vk

∂x2
Bk

)−1

· BT
k

∂2Vi

∂x2
Bk

(

R+
1
2
BT

k

∂2Vk

∂x2
Bk

)−1[

BT
0

∂2Vk

∂x2
B0M + ̂BT

k

∂Vk

∂x

]

+
1
2
MTBT

0

∂2Vi

∂x2
B0M + xTQix +

∂TVi

∂x
Ax, (14)

Vi(T,x) =xTQifx, 1 ≤ i ≤ N,

subject to the conditions (7), (8), and (9).
We are interested in a solution of the form

Vi(t,x) = xTPi(t)x, 1 ≤ i ≤ N, (15)
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where Pi(t) is a symmetric matrix function of t ∈ [0, T ] and is differentiable in t. Substitut-
ing (15) into (14), we obtain the ODE system for Pi, 1 ≤ i ≤ N :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−Ṗi = PiA + ATPi + Qi − Pi
̂Bi(R+ BT

i PiBi)−1
̂BT

i Pi

+MT
0 BT

0 PiB0(R + BT
i PiBi)−1BT

0 PiB0M0

−Pi

N
∑

i�=k=1

̂Bk(R + BT
k PkBk)−1(BT

0 PkB0M0 + ̂BT
k Pk)

−
N

∑

i�=k=1

(BT
0 PkB0M0 + ̂BT

k Pk)T(R+ BT
k PkBk)−1

̂BT
k Pi

+
N

∑

i�=k=1

(BT
0 PkB0M0 + ̂BT

k Pk)T(R+ BT
k PkBk)−1BT

k PiBk

·(R+ BT
k PkBk)−1(BT

0 PkB0M0 + ̂BT
k Pk) + MT

0 BT
0 PiB0M0,

Pi(T ) = Qif ,

(16)

subject to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(i) R+ BT
i Pi(t)Bi > 0, ∀t ∈ [0, T ],

(ii) R + BT
i Pi(t)Bi + BT

0 Pi(t)B0 > 0, ∀t ∈ [0, T ],

(iii) I +
∑N

k=1

(

R+ BT
k Pk(t)Bk

)−1
BT

0 Pk(t)B0 is invertible, ∀t ∈ [0, T ],

(17)

where

M0 := −
[

I +
N

∑

k=1

(

R+ BT
k PkBk

)−1
BT

0 PkB0

]−1 N
∑

k=1

(

R + BT
k PkBk

)−1
̂BT

k Pk.

In further analysis, if we just say (P1,P2, · · · ,PN ) is a solution of (16), that means (17)
is in effect unless otherwise indicated. Condition (17) (ii) is not used in the vector field of the
Riccati equation, but will play a role in the best response control problem later.

Remark 3.1 If the ODE system (16) admits a solution (P1,P2, · · · ,PN ) on [0, T ], then
it is the unique solution since the vector field of the ODE system has a local Lipschitz property
along the solution trajectory satisfying (17) (i) and (iii).

The following theorem gives a sufficient condition for the existence of feedback Nash strate-
gies in terms of the Riccati equations (16). These strategies are called centralized due to the
use of full state information by each player.

Theorem 3.2 If (16) has a solution (P1,P2, · · · ,PN ) on [0, T ], then the Nash game (3)–
(4) has a set of feedback Nash strategies (û1, û2, · · · , ûN ) given by

ûi(t) = −[R+ BT
i Pi(t)Bi]−1[BT

0 Pi(t)B0M0(t) + ̂BT
i Pi(t)]X(t), 1 ≤ i ≤ N. (18)

Proof See Appendix 1.
The best response control problem in the proof of Theorem 3.2 amounts to LQ optimal

control with indefinite weights in the cost. The HJB equation (5) is only used for constructing
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(16). The rigorous proof of û1 as a best response strategy on [t, T ] given (t,x, û−1) has been
solely based on the Riccati equation system (16) itself.

4 Asymptotic Solvability

We start with a representation of the matrix Pi if the ODE system (16) has a solution.
Write the Nn × Nn identity matrix INn as INn = diag[In, In, · · · , In]. Let Jij denote the
matrix obtained by exchanging the ith and jth rows of submatrices in INn.

Lemma 4.1 Suppose (16) has a solution (P1,P2, · · · ,PN ) on [0, T ]. Then Pi, 1 ≤ i ≤ N ,
have the representation

P1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Π N
1 Π N

2 Π N
2 · · · Π N

2

Π NT
2 Π N

3 Π N
4 · · · Π N

4

Π NT
2 Π N

4 Π N
3 · · · Π N

4

...
...

...
. . .

...

Π NT
2 Π N

4 Π N
4 · · · Π N

3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, Pi = JT
1iP1J1i, ∀2 ≤ i ≤ N, (19)

where Π N
1 (t), Π N

3 (t), Π N
4 (t) ∈ Sn, and Π N

2 (t) ∈ R
n×n.

Proof See Appendix 1.
Following the route in [34], we introduce the notion of asymptotic solvability of the Nash

game (1)–(2) (with D = D0 = 0).

Definition 4.2 The Nash game (1)–(2) is asymptotically solvable if there exist N0 > 0
and c0 > 0 such that the ODE system (16)–(17) has a solution (P1,P2, · · · ,PN ) on [0, T ] for
all N ≥ N0, and that

sup
N≥N0

sup
0≤t≤T

(|Π N
1 | +N |Π N

2 | +N2|Π N
3 | +N2|Π N

4 |) <∞, (20)

R+ BT
i PiBi ≥ c0I, ∀t ∈ [0, T ], ∀N ≥ N0, (21)

I +
N

∑

k=1

(

R+ BT
k PkBk

)−1
BT

0 PkB0 is invertible, ∀t ∈ [0, T ], ∀N ≥ N0. (22)

Remark 4.3 The conditions (20)–(21) imply that

R+ BT
i Pi(t)Bi + BT

0 Pi(t)B0 ≥ (c0/2)I, ∀t,

as long as a sufficiently large N0 is chosen.

Define the mapping R1 : Sn → Sn by

R1(Z) = R+BT
1 ZB1, for Z ∈ Sn.
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For Λk ∈ Sn, k = 1, 3, 4, and Λ2 ∈ R
n×n, we define the mappings:

Ψ1(Λ1) = Λ1BHB
TΛ1 − Λ1A−ATΛ1 −Q,

Ψ2(Λ1,Λ2) = −Λ1G− Λ2(A+G) −ATΛ2 + Λ1BHB
TΛ2 + Λ2BHB

TΛ1

+ Λ2BHB
TΛ2 +QΓ ,

Ψ3(Λ1,Λ2,Λ3,Λ4) = −Λ3A−ATΛ3 − (ΛT
2 + Λ4)G−GT(Λ2 + Λ4)

− (Λ1 + ΛT
2 )BHBT

0 (Λ1 + Λ2 + ΛT
2 + Λ4)B0HB

T(Λ1 + Λ2)

+ Λ3BHB
TΛ1 + Λ1BHB

TΛ3 + Λ4BHB
TΛ2

+ ΛT
2 BHB

T(Λ2 + Λ4) − Λ1BHB
T
1 Λ3B1HB

TΛ1 − ΓTQΓ ,

Ψ4(Λ1,Λ2,Λ4) = −Λ4A−ATΛ4 − (ΛT
2 + Λ4)G−GT(Λ2 + Λ4) − ΓTQΓ

− (Λ1 + ΛT
2 )BHBT

0 (Λ1 + Λ2 + ΛT
2 + Λ4)B0HB

T(Λ1 + Λ2)

+ Λ4BHB
T(Λ1 + Λ2) + (Λ1 + ΛT

2 )BHBTΛ4 + ΛT
2 BHB

TΛ2,

where we denote H = (R1(Λ1))−1 provided that the inverse matrix exists. It is clear that Ψk,
k = 1, 3, 4, are Sn-valued.

We introduce the following ODE system
⎧

⎨

⎩

Λ̇1 = Ψ1(Λ1),

Λ1(T ) = Qf , R1(Λ1(t)) > 0, ∀t ∈ [0, T ],
(23)

Λ̇2 = Ψ2(Λ1,Λ2), Λ2(T ) = −QfΓf , (24)

Λ̇3 = Ψ3(Λ1,Λ2,Λ3,Λ4), Λ3(T ) = ΓT
f QfΓf , (25)

Λ̇4 = Ψ4(Λ1,Λ2,Λ4), Λ4(T ) = ΓT
f QfΓf . (26)

Remark 4.4 Note that (23) is the Riccati equation associated with an optimal control
problem with controlled diffusion. If (23)–(24) admits a solution (Λ1,Λ2), substituting (Λ1,Λ2)
into (25)–(26) gives a first order linear ODE system of (Λ3,Λ4), which then admits a unique
solution on [0, T ].

Remark 4.5 If B1 = 0 and (23)–(24) has a solution on [0, T ], from (25)–(26) we obtain a
first order linear homogeneous ODE of Λ3−Λ4 with zero terminal condition Λ3(T )−Λ4(T ) = 0,
which implies that Λ3 −Λ4 = 0 on [0, T ]. Such a representation by three submatrices is similar
to [34, Theorem 3].

The following theorem characterizes asymptotic solvability of the Nash game (1)–(2) in
terms of the low-dimensional ODE system (23)–(24). The proof is postponed near the end of
this section.

Theorem 4.6 The Nash game (1)–(2) has asymptotic solvability if and only if (23)–(24)
has a solution (Λ1,Λ2) on [0, T ].

Following the rescaling method in [34–36], we define

ΛN
1 (t) = Π N

1 (t), ΛN
2 (t) = NΠ N

2 (t), ΛN
3 (t) = N2Π N

3 (t), ΛN
4 (t) = N2Π N

4 (t). (27)
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We introduce the following ODE system for (ΛN
1 ,Λ

N
2 , · · · ,ΛN

4 ):
⎧

⎨

⎩

Λ̇N
1 = Ψ1(ΛN

1 ) + gN
1 ,

ΛN
1 (T ) = (I − ΓT

f /N)Qf(I − Γf/N), R1(ΛN
1 (t)) > 0, ∀t ∈ [0, T ],

(28)

⎧

⎨

⎩

Λ̇N
2 = Ψ2(ΛN

1 ,Λ
N
2 ) + gN

2 ,

ΛN
2 (T ) = −(I − ΓT

f /N)QfΓf ,
(29)

⎧

⎨

⎩

Λ̇N
3 = Ψ3(ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) + gN

3 ,

ΛN
3 (T ) = ΓT

f QfΓf ,
(30)

⎧

⎨

⎩

Λ̇N
4 = Ψ4(ΛN

1 ,Λ
N
2 ,Λ

N
4 ) + gN

4 ,

ΛN
4 (T ) = ΓT

f QfΓf ,
(31)

where gN
k , 1 ≤ k ≤ 4, are perturbation terms. We have

gN
1 = − [ΛN

2 BK
NBTSN

12 + SNT
12 BKNTBTΛNT

2 ](N − 1)/N3

+ [ΛN
2 BH

NBTΛN
2 + ΛNT

2 BHNBTΛNT
2 ](N − 1)/N2

− [SNT
12 BKNT/N − ΛNT

2 BHN ]BT
1 ΛN

3 B1[KNBTSN
12/N −HNBTΛN

2 ](N − 1)/N4

− [ΛN
1 G+GTΛN

1 ]/N − [ΛN
2 G+GTΛNT

2 ](N − 1)/N2

− SNT
12 BFNBTSN

12/N
2 − (ΓTQΓ/N − ΓTQ−QΓ )/N

and

HN = (R+BT
1 ΛN

1 B1)−1,

SN = ΛN
1 + (ΛN

2 + ΛNT
2 )(N − 1)/N + [ΛN

3 + ΛN
4 (N − 2)](N − 1)/N2,

SN
12 = ΛN

1 + ΛN
2 (N − 1)/N,

SN
34 = ΛN

3 /N
2 + ΛN

4 (N − 2)/N2,

KN = HNBT
0 S

NB0(I +HNBT
0 S

NB0/N)−1HN ,

FN = HN(I +BT
0 S

NB0H
N/N)−1(BT

0 S
NB0 +BT

0 S
NB0H

NBT
0 S

NB0/N
2)

· (I +HNBT
0 S

NB0/N)−1HN .

The other terms gN
k , k = 2, 3, 4, are not displayed due to limited space and can be found

in [41]. They depend on SN
34 above. The mappings gN

k , 1 ≤ k ≤ 4, are defined for ΛN
k ∈ Sn,

k = 1, 3, 4, and ΛN
2 ∈ R

n×n. If (28)–(31) has a solution on [0, T ], then ΛN
k (t) is Sn-valued

for k = 1, 3, 4. The ODE system (28)–(31) is essentially derived from (16) by use of the new
variables (27). However, (28)–(31) can stand alone without being immediately related to (16).
If (ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) is a solution, the inverse (I +HNBT

0 S
NB0/N)−1 necessarily exists for all

t ∈ [0, T ]; such a solution is unique.
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For ΛN
k ∈ Sn, k = 1, 3, 4, and ΛN

2 ∈ R
n×n, define the mappings

ξ(ΛN
1 ,Λ

N
2 ,Λ

N
3 ,Λ

N
4 ) =R1(ΛN

1 ) +BT
0 [ΛN

1 + (ΛN
2 + ΛNT

2 )(N − 1)/N

+ ΛN
3 (N − 1)/N2 + ΛN

4 (N − 1)(N − 2)/N2]B0/N
2, (32)

ξ0(ΛN
1 ,Λ

N
2 ,Λ

N
3 ,Λ

N
4 ) =I +

(R1(ΛN
1 )

)−1
BT

0 [ΛN
1 + (ΛN

2 + ΛNT
2 )(N − 1)/N

+ ΛN
3 (N − 1)/N2 + ΛN

4 (N − 1)(N − 2)/N2]B0/N. (33)

It is easy to show that

I +HNBT
0 S

NB0/N = ξ0(ΛN
1 ,Λ

N
2 ,Λ

N
3 ,Λ

N
4 ). (34)

Lemma 4.7 (i) Suppose (16)–(17) has a solution (P1,P2, · · · ,PN ) on [0, T ], and let
(ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) be defined using (19) and (27). Then (ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) satisfies (28)–(31).

(ii) Conversely, if (28)–(31) admits a solution (ΛN
1 ,ΛN

2 ,ΛN
3 ,ΛN

4 ) on [0, T ], and such a
solution further satisfies

ξ(ΛN
1 (t),ΛN

2 (t),ΛN
3 (t),ΛN

4 (t)) > 0

for all t ∈ [0, T ], then (16)–(17) has a solution (P1,P2, · · · ,PN ) on [0, T ]. Moreover, Pi may
be determined in terms of the above (ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) using (19).

Proof (i) By (19) and (27), we have

R+ BT
i PiBi = R1(ΛN

1 ).

By the condition (17) (i), R + BT
i PiBi > 0. Therefore, R1(ΛN

1 (t)) > 0 on [0, T ]. It can be
shown that

I +
N

∑

k=1

(

R+ BT
k Pk(t)Bk

)−1
BT

0 Pk(t)B0 = ξ0(ΛN
1 (t),ΛN

2 (t),ΛN
3 (t),ΛN

4 (t)). (35)

We substitute (19) into (16) and change to the variables ΛN
k , 1 ≤ k ≤ 4, to verify the equali-

ties (28)–(31), for which the inverse (I +HNBT
0 S

NB0/N)−1 exists by condition (17) (iii), (34)
and (35).

(ii) If (28)–(31) admits a solution (ΛN
1 ,ΛN

2 ,ΛN
3 ,ΛN

4 ) on [0, T ], let Pi be defined by (19)
and (27). By R1(ΛN

1 ) > 0 in (28), we have R+ BT
i PiBi > 0. We can verify

R+ BT
i PiBi + BT

0 PiB0 = ξ(ΛN
1 ,Λ

N
2 ,Λ

N
3 ,Λ

N
4 ) (36)

so that R + BT
i PiBi + BT

0 PiB0 > 0 for all t ∈ [0, T ]. Note that (I + HNBT
0 S

NB0/N)−1 in
(28)–(31) exists for all t ∈ [0, T ]. Recalling (33)–(34) and (35), we see that

I +
N

∑

k=1

(

R+ BT
k Pk(t)Bk

)−1
BT

0 Pk(t)B0
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is invertible for all t ∈ [0, T ]. Now it is straightforward to verify that (P1,P2, · · · ,PN ) defined
above solves (16) subject to (17).

Proof of Theorem 4.6 (i) Necessity. Suppose the game (1)–(2) has asymptotic solvability,
where N0 and c0 > 0 have been selected in (20)–(22). By Lemma 4.7 (i), for all N ≥ N0,
(28)–(31) has a solution (ΛN

1 ,ΛN
2 ,ΛN

3 ,ΛN
4 ) on [0, T ], and by (20)–(21) and (27), we have

sup
N≥N0

sup
0≤t≤T

(|ΛN
1 | + |ΛN

2 | + |ΛN
3 | + |ΛN

4 |) <∞, (37)

R1(ΛN
1 (t)) ≥ c0I, ∀t ∈ [0, T ], ∀N ≥ N0. (38)

We write (28) in the integral form

ΛN
1 (t) = ΛN

1 (T ) −
∫ T

t

[Ψ1(ΛN
1 ) + gN

1 ]dτ,

and do the same for ΛN
2 , ΛN

3 and ΛN
4 . By (37)–(38) we obtain sup0≤t≤T,k≤4 |gN

k | = O(1/N).
Then the functions {(ΛN

1 (·),ΛN
2 (·)),ΛN

3 (·)),ΛN
4 (·))}N≥N0 are uniformly bounded and equicon-

tinuous on [0, T ]. By Arzelà-Ascoli theorem[42], there exists a subsequence {(ΛNj

1 (·),ΛNj

2 (·),
ΛNj

3 (·),ΛNj

4 (·))}j≥1 that converges to (Λ∗
1,Λ

∗
2,Λ

∗
3,Λ

∗
4) uniformly on [0, T ] as j → ∞. It is easy

to see that (Λ∗
1,Λ

∗
2,Λ

∗
3,Λ

∗
4) solves the system (23)–(26) and R1(Λ∗

1(t)) ≥ c0I for all t ∈ [0, T ].
(ii) Sufficiency. Suppose (23)–(24) has a solution so that we can obtain (Λ1,Λ2,Λ3,Λ4)

from (23)–(26). We proceed to check the solution of (28)–(31), which now stands alone without
using (16). Following the method in the sufficiency proof of Theorem 3.1 in [36], we specify a
thin “tube”, surrounding the solution trajectory (Λ1,Λ2,Λ3,Λ4), t ∈ [0, T ], of this form:

C =
{

(t, Z1, Z2, Z3, Z4) ∈ [0, T ]× Sn × R
n×n × Sn × Sn :

∑

k≤4

|Zk − Λk(t)| < δ0

}

, (39)

where δ0 > 0 is a sufficiently small but fixed constant, and next show that for all sufficiently
large N , the solution of (28)–(31) starting from the terminal condition will always remain in
this tube. This establishes the global existence of solutions on [0, T ], and the detailed steps are
exactly the same as in [36]. Specifically, it can be shown that there exist ̂N0 and c0 > 0 such
that we have the following: (a) (28)–(31) has a solution (ΛN

1 ,ΛN
2 ,ΛN

3 ,ΛN
4 ) remaining in the

tube (39) on [0, T ] for all N ≥ ̂N0; (b)

sup
N≥ ̂N0

sup
0≤t≤T

(|ΛN
1 | + |ΛN

2 | + |ΛN
3 | + |ΛN

4 |) <∞, (40)

R1(ΛN
1 (t)) ≥ c0I, ∀t ∈ [0, T ], ∀N ≥ ̂N0; (41)

(c) for ξ0(·) defined in (33), ξ0(ΛN
1 (t),ΛN

2 (t),ΛN
3 (t),ΛN

4 (t)) is invertible for all N ≥ ̂N0, so that
the term (I +HNBT

0 S
NB0/N)−1 in (28)–(31) is well defined.

If ̂N1 > ̂N0 is sufficiently large, by (41) we can ensure that

ξ(ΛN
1 (t),ΛN

2 (t),ΛN
3 (t),ΛN

4 (t)) > (c0/2)I, ∀t ∈ [0, T ], ∀N ≥ ̂N1, (42)
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where ξ(·) is defined in (32). By (42), we apply Lemma 4.7 (ii) to obtain (P1,P2, · · · ,PN ) for
(16) whenever N ≥ ̂N1. By (42) and (35), we see that (22) holds for all N ≥ ̂N1. Subsequently,
asymptotic solvability holds.

Corollary 4.8 If (23)–(24) has a solution (Λ1,Λ2) on [0, T ], then there exists ̂N0 > 0
such that for each N ≥ ̂N0, (28)–(31) has a solution (ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) on [0, T ] and moreover,

supt∈[0,T ],k≤4 |ΛN
k (t) − Λk(t)| = O(1/N).

Proof Since (23)–(26) has a solution on [0, T ], we take a sufficiently thin tube as in (39).
Then by the sufficiency proof of Theorem 4.6, there exists ̂N0 > 0 such that for each N ≥ ̂N0,
(28)–(31) has a solution (ΛN

1 ,Λ
N
2 ,Λ

N
3 ,Λ

N
4 ) on [0, T ], which is always within the tube. The desired

result then follows from Grönwall’s lemma. See similar estimates in [36, Corollary 3.1].

5 Decentralized Strategies

By Theorem 4.6, the Nash game (1)–(2) has asymptotic solvability if and only if (23)–(24)
admits a solution (Λ1,Λ2) on [0, T ]. We introduce the following assumptions:

Assumption 5.1 The ODE system (23)–(24) has a solution (Λ1,Λ2) on [0, T ].

For Xi(0), denote the covariance matrix Σ i
0 = E{[Xi(0) − EXi(0)][Xi(0) − EXi(0)]T}.

Assumption 5.2 The initial states {Xi(0), i ≥ 0} are independent. There exist μ0 ∈ R
n

and a constant CΣ , both independent of N , such that EXi(0) = μ0 and |Σ i
0| ≤ CΣ for all i.

Under Assumption 5.1, the sufficiency proof of Theorem 4.6 shows that there exists ̂N1

such that (28)–(31) has a solution (ΛN
1 ,Λ

N
2 ,Λ

N
3 ,Λ

N
4 ) for all N ≥ ̂N1. By Lemma 4.7 (ii), we

determine P in (16) by using (19) and (27), and obtain the Nash equilibrium strategies (18),
which are displayed below:

ûi(t) = −[R+BT
1 ΛN

1 (t)B1]−1[BT
0 Pi(t)B0M0(t) + ̂BT

i Pi(t)]X(t), 1 ≤ i ≤ N.

Throughout this section we assume N ≥ ̂N1. Before further analysis we introduce some nota-
tion:

Θ(t) = (R1(Λ1(t)))−1BTΛ1(t), Θ1(t) = (R1(Λ1(t)))−1BTΛ2(t),
̂Θ(t) = IN ⊗ Θ(t), ̂Θ1 = 1N×1 ⊗ Θ1,

ei = (eN
i ⊗ In)T = (0, · · · , 0, In, 0, · · · , 0) ∈ R

n×Nn,

̂B = ( ̂B1, ̂B2, · · · , ̂BN ) ∈ R
Nn×Nn1 , I = (In, In, · · · , In) ∈ R

n×Nn.

By using the closed-loop dynamics under (û1, û2, · · · , ûN), we consider the SDE of X(N) and
let N → ∞. This gives the mean field limit state X as follows:

dX = (A+G−B(Θ + Θ1))Xdt−B0(Θ + Θ1)XdW0, t ≥ 0, (43)

where X(0) = μ0. We denote the set of decentralized feedback strategies

ǔi(t) = −Θ(t)eiX(t) − Θ1(t)X(t), 1 ≤ i ≤ N. (44)
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The state dynamics under the decentralized strategies (44) follows

dX(t) =(AX − ̂B(̂ΘX + ̂Θ1X))dt −
N

∑

i=1

Bi(ΘXi + Θ1X)dWi

− B0

N
∑

i=1

(ΘXi + Θ1X)dW0, t ≥ 0,

where the initial state X(0) = (XT
1 (0), XT

2 (0), · · · , XT
N (0))T is the same as in (3).

Below we evaluate the cost with more general initial conditions. When all the N players
take the decentralized strategies (44), the cost of player Ai with initial condition (X(t), X(t)) =
(x, x) is denoted by V̌i(t,x, x), t ∈ [0, T ], x ∈ R

Nn, x ∈ R
n. The Feynman-Kac formula [43,

Sec. 1.3, 3.5] gives the following equation that V̌i satisfies:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−∂V̌i

∂t
=
∂TV̌i

∂x
(Ax − ̂B(̂Θx + ̂Θ1x)) +

∂TV̌i

∂x
(A+G−B(Θ + Θ1))x

+(1/2)(ΘIx + I ̂Θ1x)TBT
0

∂2V̌i

∂x2
B0(ΘIx + I ̂Θ1x)

+(1/2)((Θ + Θ1)x)TBT
0

∂2V̌i

∂x2 B0(Θ + Θ1)x

+(1/2)
N

∑

k=1

(Θekx + Θ1x)TBT
k

∂2V̌i

∂x2
Bk(Θekx + Θ1x)

+(ΘIx + I ̂Θ1x)TBT
0

∂2V̌i

∂x∂x
B0(Θ + Θ1)x

+(Θeix + Θ1x)TR(Θeix + Θ1x) + xTQix,

V̌i(T,x) = xTQifx.

(45)

Assume V̌i(t,x, x) takes the following form

V̌i(t,x, x) = xTP̌ i
1(t)x + 2xTP̌ i

12(t)x + xTP̌ i
2(t)x, 1 ≤ i ≤ N. (46)

Substituting (46) into (45) gives the following system of ODEs for P̌ i
1 , P̌ i

12 and P̌ i
2 :

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

− d

dt
P̌ i

1 = P̌ i
1(A − ̂B ̂Θ) + (A − ̂B ̂Θ)TP̌ i

1 + ITΘTBT
0 P̌ i

1B0ΘI

+
N

∑

k=1

eT
k ΘTBT

k P̌ i
1BkΘek + eT

i ΘTRΘei + Qi,

P̌ i
1(T ) = Qif ,

(47)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− d

dt
P̌ i

12 = −P̌ i
1

̂B ̂Θ1 + (A − ̂B ̂Θ)TP̌ i
12 + P̌ i

12(A+G−B(Θ + Θ1))

+ITΘTBT
0 P̌ i

1B0I ̂Θ1 +
N

∑

k=1

eT
k ΘTBT

k P̌ i
1BkΘ1

+ITΘTBT
0 P̌ i

12B0(Θ + Θ1) + eT
i ΘTRΘ1,

P̌ i
12(T ) = 0,

(48)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− d

dt
P̌ i

2 = −P̌ iT
12

̂B ̂Θ1 − ̂ΘT
1

̂BTP̌ i
12 + P̌ i

2(A+G−B(Θ + Θ1))

+(A+G−B(Θ + Θ1))TP̌ i
2 + (B0I ̂Θ1)TP̌ i

1B0I ̂Θ1

+
N

∑

k=1

(BkΘ1)TP̌ i
1BkΘ1 + (Θ + Θ1)TBT

0 P̌ i
2B0(Θ + Θ1)

+(B0I ̂Θ1)TP̌ i
12B0(Θ + Θ1) + (B0(Θ + Θ1))TP̌ iT

12 B0I ̂Θ1

+ΘT
1 RΘ1,

P̌ i
2(T ) = 0.

(49)

Remark 5.1 (47)–(49) is a first order linear ODE system and admits a unique solution.

We have the following submatrix partition of the matrices P̌ i
1 , P̌ i

12, 1 ≤ i ≤ N .

Lemma 5.2 For (47) and (48), the solution (P̌ i
1 , P̌

i
12), 1 ≤ i ≤ N , has the representation

P̌ 1
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Π̌ N
1 Π̌ N

2 Π̌ N
2 · · · Π̌ N

2

Π̌ NT
2 Π̌ N

3 Π̌ N
4 · · · Π̌ N

4

Π̌ NT
2 Π̌ N

4 Π̌ N
3 · · · Π̌ N

4

...
...

...
. . .

...

Π̌ NT
2 Π̌ N

4 Π̌ N
4 · · · Π̌ N

3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, P̌ i
1 = JT

1iP̌
1
1 J1i, ∀2 ≤ i ≤ N, (50)

P̌ 1
12 =

[

Π̌ NT
11 , Π̌ NT

12 , · · · , Π̌ NT
12

]T

, P̌ i
12 = JT

1iP̌
1
12, ∀2 ≤ i ≤ N, (51)

where Π̌ N
1 (t), Π̌ N

3 (t), Π̌ N
4 (t) ∈ Sn, and Π̌ N

2 (t), Π̌ N
11 (t), Π̌ N

12 (t) ∈ R
n×n.

Proof The proof is similar to that of Lemma 4.1 or [34, Theorem 3] and is omitted.
We define the new variables:

⎧

⎨

⎩

Λ̌N
1 = Π̌ N

1 , Λ̌N
2 = N Π̌ N

2 , Λ̌N
3 = N2Π̌ N

3 , Λ̌N
4 = N2Π̌ N

4 ,

Λ̌N
11 = Π̌ N

11 , Λ̌N
12 = N Π̌ N

12 , Λ̌N
22 = P̌ i

2 .
(52)

Substituting (50)–(51) into (45) and next converting into the new variables in (52), we derive
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− d

dt
Λ̌N

1 = Λ̌N
1 (A−BΘ) + (A−BΘ)TΛ̌N

1 + ΘT(R+BT
1 Λ̌N

1 B1)Θ

+Q+ ǧN
1 ,

Λ̌N
1 (T ) = (I − ΓT

f /N)Qf (I − Γf/N),

(53)

⎧

⎨

⎩

− d

dt
Λ̌N

2 = Λ̌N
1 G+ Λ̌N

2 (A+G−BΘ) + (A−BΘ)TΛ̌N
2 −QΓ + ǧN

2 ,

Λ̌N
2 (T ) = −(I − ΓT

f /N)QfΓf ,
(54)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− d

dt
Λ̌N

3 = ΘT[BT
1 Λ̌N

3 B1 +BT
0 (Λ̌N

1 + Λ̌N
2 + Λ̌NT

2 + Λ̌N
4 )B0]Θ

+(Λ̌NT
2 + Λ̌N

4 )G+GT(Λ̌N
2 + Λ̌N

4 ) + Λ̌N
3 (A−BΘ)

+(A−BΘ)TΛ̌N
3 + ΓTQΓ + ǧN

3 ,

Λ̌N
3 (T ) = ΓT

f QfΓf ,

(55)
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− d

dt
Λ̌N

4 = Λ̌NT
2 G+GTΛ̌N

2 + Λ̌N
4 (A+G−BΘ) + (A+G−BΘ)TΛ̌N

4

+ΘTBT
0 (Λ̌N

1 + Λ̌N
2 + Λ̌NT

2 + Λ̌N
4 )B0Θ + ΓTQΓ + ǧN

4 ,

Λ̌N
4 (T ) = ΓT

f QfΓf ,

(56)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

− d

dt
Λ̌N

11 = Λ̌N
11(A+G−B(Θ + Θ1)) + (A−BΘ)TΛ̌N

11

−(Λ̌N
1 + Λ̌N

2 )BΘ1 + ΘT(R+BT
1 Λ̌N

1 B1)Θ1 + ǧN
11,

Λ̌N
11(T ) = 0,

(57)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− d

dt
Λ̌N

12 = −(Λ̌NT
2 + Λ̌N

4 )BΘ1 + (A+G−BΘ)TΛ̌N
12 +GTΛ̌N

11

+Λ̌N
12(A+G−B(Θ + Θ1))

+ΘTBT
0 (Λ̌N

1 + Λ̌N
2 + Λ̌NT

2 + Λ̌N
4 )B0Θ1

+ΘTBT
0 (Λ̌N

11 + Λ̌N
12)B0(Θ + Θ1) + ǧN

12,

Λ̌N
12(T ) = 0,

(58)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− d

dt
Λ̌N

22 = −(Λ̌N
11 + Λ̌N

12 + Λ̌N
22)

TBΘ1 − ΘT
1 B

T(Λ̌N
11 + Λ̌N

12 + Λ̌N
22)

+Λ̌N
22(A+G−BΘ) + (A+G−BΘ)TΛ̌N

22

+ΘTBT
0 Λ̌N

22B0Θ + ΘTBT
0 (Λ̌N

11 + Λ̌N
12 + Λ̌N

22)
TB0Θ1

+ΘT
1 B

T
0 (Λ̌N

11 + Λ̌N
12 + Λ̌N

22)B0Θ + ΘT
1 (R+BT

1 Λ̌N
1 B1)Θ1

+ΘT
1 B

T
0 (Λ̌N

1 + Λ̌N
2 + Λ̌NT

2 + Λ̌N
4

+Λ̌N
11 + Λ̌N

12 + Λ̌NT
11 + Λ̌NT

12 + Λ̌N
22)B0Θ1 + ǧN

22,

Λ̌N
22(T ) = 0.

(59)

We have the perturbation terms ǧN
1 , ǧ

N
2 , · · · , ǧN

22, and

ǧN
1 :=(Λ̌N

1 G+GTΛ̌N
1 )/N + (Λ̌N

2 G+GTΛ̌N
2 )(N − 1)/N2

+ (ΓTQΓ/N − ΓTQ−QΓ )/N + ΘTBT
0 Š

NB0Θ/N2,

ŠN =Λ̌N
1 + (Λ̌N

2 + Λ̌NT
2 )(N − 1)/N + Λ̌N

3 (N − 1)/N2 + Λ̌N
4 (N − 1)(N − 2)/N2.

The remaining perturbation terms can be found in [41].

Remark 5.3 Under Assumption 5.1, the system (53)–(59) is a first order linear ODE
system and admits a unique solution (Λ̌N

1 , Λ̌
N
2 , · · · , Λ̌N

22) on [0, T ].

Remark 5.4 Let ψN stand for any of the functions Λ̌N
1 , Λ̌N

2 , Λ̌N
3 , Λ̌N

4 , Λ̌N
11, Λ̌N

12 and Λ̌N
22.

Due to the bounded coefficients in the ODE system (53)–(59), supN≥ ̂N1,0≤t≤T |ψN | ≤ C for
some fixed constant C.

Remark 5.5 Let hN stand for any of the functions ǧN
1 , ǧN

2 , ǧN
3 , ǧN

4 , ǧN
11, ǧ

N
12 and ǧN

22.
Then supt∈[0,T ] |hN(t)| = O(1/N).

Let (Λ̌N
1 , Λ̌

N
2 , · · · , Λ̌N

22) be obtained from (53)–(59). By substituting (50) into (46), which is
further expressed in terms of (Λ̌N

1 , Λ̌
N
2 , · · · , Λ̌N

22) via (52), we obtain an explicit representation
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of a player’s cost when all the players take the set of decentralized strategies (ǔ1, ǔ2, · · · , ǔN)
in (44). The cost of player Ai is

Ji(ǔi, ǔ−i) =E
[

V̌i(0, X(0), X(0))
]

=E
[

XT(0)P̌ i
1(0)X(0) + 2XT(0)P̌ i

12(0)X(0) +X
T
(0)P̌ i

2(0)X(0)
]

. (60)

Denote N−i = {1, 2, · · · , N} \ {i}. Under Assumption 5.2, the first term on the right hand side
of (60) is

E
[

XT(0)P̌ i
1(0)X(0)

]

=E

[

XT
i (0)Λ̌N

1 (0)Xi(0) + (2/N)
∑

j∈N−i

XT
i (0)Λ̌N

2 (0)Xj(0)

+
1
N2

∑

j∈N−i

XT
j (0)Λ̌N

3 (0)Xj(0) +
1
N2

∑

j,k∈N−i,j �=k

XT
j (0)Λ̌N

4 (0)Xk(0)
]

= Tr[Λ̌N
1 (0)Σ i

0] + (1/N2)
∑

j∈N−i

Tr[Λ̌N
3 (0)Σ j

0 ]

+ μT
0 [Λ̌N

1 (0) + Λ̌N
2 (0) + Λ̌NT

2 (0) + Λ̌N
4 (0)]μ0

+ μT
0 [−(Λ̌N

2 (0) + Λ̌NT
2 (0))/N + Λ̌N

3 (0)(N − 1)/N2

+ Λ̌N
4 (0)(2 − 3N)/N ]μ0. (61)

The second term on the right hand side of (60) can be written as

2E
[

XT(0)P̌ i
12(0)X(0)

]

=μT
0 [Λ̌N

11(0) + Λ̌NT
11 (0) + Λ̌N

12(0) + Λ̌NT
12 (0)]μ0 − μT

0 [Λ̌N
12(0) + Λ̌NT

12 (0)]μ0/N. (62)

The third term on the right hand side of (60) can be written as

E[X
T
(0)P̌ i

2(0)X(0)] = μT
0 Λ̌N

22(0)μ0. (63)

Denote

Y̌ N := Λ̌N
1 + Λ̌N

2 + Λ̌NT
2 + Λ̌N

4 + Λ̌N
11 + Λ̌NT

11 + Λ̌N
12 + Λ̌NT

12 + Λ̌N
22. (64)

Substituting (61), (62), and (63) into (60) gives

Ji(ǔi, ǔ−i) =μT
0 Y̌

N (0)μ0 + Tr[Λ̌N
1 (0)Σ i

0] + (1/N2)
∑

j∈N−i

Tr[Λ̌N
3 (0)Σ j

0 ]

+ μT
0 {−(Λ̌N

2 (0) + Λ̌NT
2 (0))/N + Λ̌N

3 (0)(N − 1)/N2

+ Λ̌N
4 (0)(2 − 3N)/N2 − (Λ̌N

12(0) + Λ̌NT
12 (0))/N}μ0.

6 Decentralized O(1/N)-Nash Equilibrium Strategies

In this section we show that the set of decentralized strategies in (44) has an O(1/N)-Nash
equilibrium property. More precisely, when the game (1)–(2) is asymptotically solvable and all



2020 HUANG MINYI · YANG XUWEI

other players take the decentralized strategies (44), the extra benefit that a player obtains by
unilaterally deviating from the strategy (44) is at most O(1/N).

Theorem 6.1 Under Assumptions 5.1 and 5.2, the set of decentralized strategies (ǔ1, ǔ2,

· · · , ǔN) given by (44) is an O(1/N)-Nash equilibrium of the Nash game (1)–(2), i.e.,

Ji(ǔi, ǔ−i) ≤ Ji(ui, ǔ−i) + O(1/N), ∀1 ≤ i ≤ N, (65)

where ui is any admissible control under CLPS information such that the closed-loop system
under (ui, û−i) has a well defined solution.

We will prove Theorem 6.1 after some technical preparations. Without loss of generality,
we prove (65) for player A1. Suppose that players Ai, 2 ≤ i ≤ N , use decentralized strategies
given by (44). Player A1 seeks its best response strategy ub

1 with respect to ǔ−1 so that
J1(ub

1, ǔ−1) = infu1 J1(u1, û−1), where J1 is defined by (2). This leads to the optimal control
problem with dynamics

dX(t) =
[

AX + ̂B1u1 − ̂B−1(̂ΘX + ̂Θ1X)
]

dt+ B1u1dW1

−
N

∑

i=2

Bi(ΘeiX + Θ1X)dWi + B0

(

u1 −
N

∑

i=2

(ΘeiX + Θ1X)
)

dW0,

where we denote ̂B−1 = (0, ̂B2, ̂B3, · · · , ̂BN ) and the mean field limit state X follows the
dynamics (43). The best response ub

1 is to be determined.
We employ a dynamic programming approach to solve player A1’s optimal control problem.

Let V b
1 (t,x, x) be the value function of A1 with initial state (X(t), X(t)) = (x, x), associ-

ated with the cost J1(u1, ǔ−1). Now V b
1 (t,x, x) is formally solved from the following dynamic

programming equation:

− ∂V b
1

∂t
= min

u1∈Rn1

[

∂TV b
1

∂x
(Ax + ̂B1u1 − ̂B−1(̂Θx + ̂Θ1x))

+
∂TV b

1

∂x
(A+G−B(Θ + Θ1))x

+
1
2

(

u1 −
N

∑

i=2

(Θeix + Θ1x)
)T

BT
0

∂2V b
1

∂x2
B0

(

u1 −
N

∑

i=2

(Θeix + Θ1x)
)

+
1
2
(B1u1)T

∂2V b
1

∂x2
B1u1 +

1
2

N
∑

i=2

(Bi(Θeix + Θ1x))T
∂2V b

1

∂x2
Bi(Θeix + Θ1x)

+
1
2
(B0(Θ + Θ1)x)T

∂2V b
1

∂x2 B0(Θ + Θ1)x + xTQ1x + uT
1 Ru1

−
(

u1 −
N

∑

i=2

(Θeix + Θ1x)
)T

BT
0

∂2V b
1

∂x∂x
B0(Θ + Θ1)x

]

, (66)

V b
1 (T,x, x) = xTQ1fx, t ∈ [0, T ], x ∈ R

Nn, x ∈ R
n.
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The first order condition with respect to u1 gives

ub
1 = − 1

2

(

R +
1
2
BT

1

∂2V b
1

∂x2
B1 +

1
2
BT

0

∂2V b
1

∂x2
B0

)−1

·
[

̂BT
1

∂V b
1

∂x
− BT

0

∂2V b
1

∂x2
B0

N
∑

i=2

(Θeix + Θ1x) − BT
0

∂2V b
1

∂x∂x
B0(Θ + Θ1)x

]

. (67)

We substitute (67) into (66) to obtain

−∂V
b
1

∂t
= −

[

̂BT
1

∂V b
1

∂x
− BT

0

∂2V b
1

∂x2
B0

N
∑

i=2

(Θeix + Θ1x) − BT
0

∂2V b
1

∂x∂x
B0(Θ + Θ1)x

]T

· 1
4

(

R+
1
2
BT

1

∂2V b
1

∂x2
B1 +

1
2
BT

0

∂2V b
1

∂x2
B0

)−1

·
[

̂BT
1

∂V b
1

∂x
− BT

0

∂2V b
1

∂x2
B0

N
∑

i=2

(Θeix + Θ1x) − BT
0

∂2V b
1

∂x∂x
B0(Θ + Θ1)x

]

+
∂TV b

1

∂x

(

Ax −
N

∑

i=2

̂Bi(Θeix + Θ1x)
)

+
∂TV b

1

∂x
(A+G−B(Θ + Θ1))x

+
1
2

( N
∑

i=2

(Θeix + Θ1x)
)T

BT
0

∂2V b
1

∂x2
B0

N
∑

i=2

(Θeix + Θ1x)

+
1
2

N
∑

i=2

(Θeix + Θ1x)TBT
i

∂2V b
1

∂x2
Bi(Θeix + Θ1x) + xTQ1x

+
1
2
(B0(Θ + Θ1)x)T

∂2V b
1

∂x2 B0(Θ + Θ1)x

+
(

B0

N
∑

i=2

(Θeix + Θ1x)
)T

∂2V b
1

∂x∂x
B0(Θ + Θ1)x, (68)

V b
1 (T,x, x) =xTQ1fx.

Assume V b
1 takes the form

V b
1 (t,x, x) = xTP b

1 (t)x + 2xTP b
12(t)x+ xTP b

2 (t)x. (69)

We denote I−1 = (0, In, In, · · · , In) ∈ R
n×Nn, and substitute (69) into (68) to obtain ODEs for

P b
1 , P b

12 and P b
2 :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−Ṗ b
1 = −( ̂BT

1 P b
1 − BT

0 P b
1 B0ΘI−1)T(R + BT

1 P b
1 B1 + BT

0 P b
1 B0)−1

·( ̂BT
1 P b

1 − BT
0 P b

1 B0ΘI−1) + P b
1 (A − ̂B−1

̂Θ)

+(A − ̂B−1
̂Θ)TP b

1 + (B0ΘI−1)TP b
1 B0ΘI−1

+
N

∑

k=2

(BkΘek)TP b
1 (BkΘek) + Q1,

P b
1 (T ) = Q1, R+ BT

1 P b
1 (t)B1 + BT

0 P b
1 (t)B0 > 0, ∀t ∈ [0, T ],

(70)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−Ṗ b
12 = (A − ̂B−1

̂Θ)TP b
12 + P b

12(A+G−B(Θ + Θ1))

+(B0ΘI−1)TP b
1 B0I−1

̂Θ1 − P b
1

̂B−1
̂Θ1

+
N

∑

k=2

(BkΘek)TP b
1 BkΘ1 + (B0ΘI−1)TP b

12B0(Θ + Θ1)

−( ̂BT
1 P b

1 − BT
0 P b

1 B0ΘI−1)T(R+ BT
1 P b

1 B1 + BT
0 P b

1 B0)−1

·[ ̂BT
1 P b

12 − BT
0 P b

1 B0I−1
̂Θ1 − BT

0 P b
12B0(Θ + Θ1)],

P b
12(T ) = 0,

(71)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−Ṗ b
2 = −[ ̂BT

1 P b
12 − BT

0 P b
1 B0I−1

̂Θ1 − BT
0 P b

12B0(Θ + Θ1)]T

·(R+ BT
1 P b

1 B1 + BT
0 P b

1 B0)−1

·[ ̂BT
1 P b

12 − BT
0 P b

1 B0I−1
̂Θ1 − BT

0 P b
12B0(Θ + Θ1)]

−P bT
12

̂B−1
̂Θ1 − ̂ΘT

1
̂BT
−1P

b
12 + (B0I−1

̂Θ1)TP b
1 B0I−1

̂Θ1

+P b
2 (A+G−B(Θ + Θ1)) + (A+G−B(Θ + Θ1))TP b

2

+
N

∑

k=2

(BkΘ1)TP b
1 (BkΘ1) + (Θ + Θ1)TBT

0 P b
2B0(Θ + Θ1)

+(B0I−1
̂Θ1)TP b

12B0(Θ + Θ1) + (Θ + Θ1)TBT
0 P bT

12 B0I−1
̂Θ1,

P b
2 (T ) = 0.

(72)

Proposition 6.2 Suppose that Assumption 5.1 holds and that (70) has a solution P b
1 on

[0, T ]. Then we may uniquely solve (71)–(72), and the best response strategy for A1 is

ub
1(t) = −

(

R+ BT
1 P b

1 B1 + BT
0 P b

1 B0

)−1[

̂BT
1 (P b

1X(t) + P b
12X(t))

− BT
0 P b

1 B0

N
∑

i=2

(ΘeiX(t) + Θ1X(t)) − BT
0 P b

12B0(Θ + Θ1)X(t)
]

. (73)

Proof If (70) admits a (unique) solution P b
1 on [0, T ], then we can substitute P b

1 into (71)
and solve a first order linear ODE for a unique P b

12. Given (P b
1 ,P

b
12), P b

2 is again solved from
a linear ODE. Note that the LQ optimal control problem of player A1 has its Riccati equation
given by (70)–(72). It then follows from [44, Theorem 6.6.1] that player A1’s optimal control
problem is solvable with the optimal control given by (73).

We will later show that for all sufficiently large N , (70) indeed has a solution on [0, T ] (see
Lemma 6.8). The next lemma is parallel to Lemma 4.1.

Lemma 6.3 Suppose (70) has a solution P b
1 on [0, T ]. Then for (70) and (71), P b

1 and
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P b
12 have the representations

P b
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Π bN
1 Π bN

2 Π bN
2 · · · Π bN

2

(Π bN
2 )T Π bN

3 Π bN
4 · · · Π bN

4

(Π bN
2 )T Π bN

4 Π bN
3 · · · Π bN

4

...
...

...
. . .

...

(Π bN
2 )T Π bN

4 Π bN
4 · · · Π bN

3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (74)

P b
12 =

[

(Π bN
11 )T, (Π bN

12 )T, · · · , (Π bN
12 )T

]T

, (75)

where Π bN
1 (t), Π bN

3 (t), Π bN
4 (t) ∈ Sn, and Π bN

2 (t), Π bN
11 (t), Π bN

12 (t) ∈ R
n×n.

Proof The proof is similar to that of Lemma 4.1, and is thus omitted here.
We define new variables:

⎧

⎨

⎩

ΛbN
1 = Π bN

1 , ΛbN
2 = NΠ bN

2 , ΛbN
3 = N2Π bN

3 , ΛbN
4 = N2Π bN

4 ,

ΛbN
11 = Π bN

11 , ΛbN
12 = NΠ bN

12 , ΛbN
22 = P b

2 ,
(76)

and suppose (70) has a solution P b
1 on [0, T ]. We substitute (74) and (75) into (70)–(72) and take

a change of variables by (76) to obtain (under the additional condition that R+BT
1 ΛbN

1 (t)B1 >

0) the following ODEs:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λ̇bN
1 = ΛbN

1 B(R1(ΛbN
1 ))−1BTΛbN

1 − ΛbN
1 A−ATΛbN

1 −Q+ gbN
1 ,

ΛbN
1 (T ) = (I − ΓT

f /N)Qf (I − Γf/N),

R+BT
1 ΛbN

1 (t)B1 > 0, ∀t ∈ [0, T ],

(77)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λ̇bN
2 = ΛbN

1 B(R1(ΛbN
1 ))−1BTΛbN

2 − (ΛbN
1 + ΛbN

2 )G

−ATΛbN
2 − ΛbN

2 (A−BΘ) +QΓ + gbN
2 ,

ΛbN
2 (T ) = −(I − ΓT

f /N)QfΓf ,

(78)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇bN
3 = (ΛbN

2 )TB(R1(ΛbN
1 ))−1BTΛbN

2 − (ΛbN
2 + ΛbN

4 )TG

−GT(ΛbN
2 + ΛbN

4 ) − ΛbN
3 (A−BΘ) − (A−BΘ)TΛbN

3

−ΘTBT
0 (ΛbN

1 + ΛbN
2 + (ΛbN

2 )T + ΛbN
4 )B0Θ

−ΘTBT
1 ΛbN

3 B1Θ − ΓTQΓ + gbN
3 ,

ΛbN
3 (T ) = ΓT

f QfΓf ,

(79)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇bN
4 = (ΛbN

2 )TB(R1(ΛbN
1 ))−1BTΛbN

2 − (ΛbN
2 )TG−GTΛbN

2

−ΛbN
4 (A+G−BΘ) − (A+G−BΘ)TΛbN

4

−ΘTBT
0 (ΛbN

1 + ΛbN
2 + (ΛbN

2 )T + ΛbN
4 )B0Θ

−ΓTQΓ + gbN
4 ,

ΛbN
4 (T ) = ΓT

f QfΓf ,

(80)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λ̇bN
11 = ΛbN

1 B(R1(ΛbN
1 ))−1BTΛbN

11 + ΛbN
2 BΘ1 −ATΛbN

11

−ΛbN
11 (A+G−B(Θ + Θ1)) + gbN

11 ,

ΛbN
11 (T ) = 0,

(81)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇bN
12 = (ΛbN

2 )TB(R1(ΛbN
1 ))−1BTΛbN

11 −GT(ΛbN
11 + ΛbN

12 )

−(AT − ΘTBT)ΛbN
12 − ΛbN

12 (A+G−B(Θ + Θ1))

−ΘTBT
0 (ΛbN

1 + ΛbN
2 + (ΛbN

2 )T + ΛbN
4 )B0Θ1

−ΘTBT
0 (ΛbN

11 + ΛbN
12 )B0(Θ + Θ1) + ΛbN

4 BΘ1 + gbN
12 ,

ΛbN
12 (T ) = 0,

(82)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇bN
22 = (ΛbN

11 )TB(R1(ΛbN
1 ))−1BTΛbN

11

−ΛbN
22 (A+G−B(Θ + Θ1)) + (ΛbN

12 )TBΘ1

−(A+G−B(Θ + Θ1))TΛbN
22 + ΘT

1 B
TΛbN

12

−ΘT
1 B

T
0 (ΛbN

1 + ΛbN
2 + (ΛbN

2 )T + ΛbN
4 )B0Θ1

−(Θ + Θ1)TBT
0 ΛbN

22 B0(Θ + Θ1)

−ΘT
1 B

T
0 (ΛbN

11 + ΛbN
12 )B0(Θ + Θ1)

−(Θ + Θ1)TBT
0 (ΛbN

11 + ΛbN
12 )TB0Θ1 + gbN

22 ,

ΛbN
22 (T ) = 0.

(83)

The perturbation terms gbN
k , 1 ≤ k ≤ 4, gbN

11 , gbN
12 and gbN

22 are functions of (N,ΛbN
1 ,ΛbN

2 , · · · ,ΛbN
22 ),

and we have

gbN
1 =ΛbN

1 B[(R1(ΛbN
1 ) +BT

0 S
bNB0/N

2)−1 − (R1(ΛN
1 ))−1]BTΛbN

1

− (ΛbN
1 G+GTΛbN

1 )/N − (ΛbN
2 G+GTΛbN

2 )(N − 1)/N2

− (ΓTQΓ/N − ΓTQ−QΓ )/N,

SbN =ΛbN
1 + (ΛbN

2 + (ΛbN
2 )T)(N − 1)/N + ΛbN

3 (N − 1)/N2

+ ΛbN
4 (N − 1)(N − 2)/N2.

The remaining perturbation terms can be found in [41].
Let (Λb

1,Λb
2, · · · ,Λb

22) be determined by the ODE system (104)–(110) in Appendix 2.
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Lemma 6.4 Under Assumption 5.1 we have

Λb
1(t) = Λ1(t), (84)

Λb
2(t) + Λb

11(t) = Λ2(t), (85)

ζb(t) = Λ2(t) + ΛT
2 (t) + Λ4(t) (86)

for all t ∈ [0, T ], where

ζb(t) := (Λb
2 + ΛbT

2 + Λb
4 + Λb

11 + ΛbT
11 + Λb

12 + ΛbT
12 + Λb

22)(t).

Proof (84) is already stated in the proof of Lemma 8.1. By considering the ODE of
Λb

2 + Λb
11 − Λ2 and next applying Gröwnwall’s lemma, we establish sup0≤t≤T |Λb

2(t) + Λb
11(t) −

Λ2(t)| = 0, which implies (85).
Define ζ(t) = Λ2(t) + ΛT

2 (t) + Λ4(t). By use of (24), (26), and (105)–(110) we write the
ODEs:

ζ̇(t) = Φ(Λ2,Λ4),

ζ̇b(t) = Φb(Λb
2,Λ

b
4,Λ

b
11,Λ

b
12,Λ

b
22),

where the two vector fields are not fully displayed but can be easily determined. Note that
Λ1(t) and (Λ1(t),Λ2(t)) appear in Φ and Φb, respectively, and are treated as known functions
of time. Letting H = (R1(Λ1))−1, we have

Φ − Φb =(ζb − ζ)(A +G) + (A+G)T(ζb − ζ)

+ (Θ + Θ1)TBT
0 (ζb − ζ)B0(Θ + Θ1)

− Λ1BHB
T(ζb − ζ) − (ζb − ζ)BHBTΛ1

− (ζb − ζ)BHBTΛ2 + ΔΦ , (87)

where we have used (84)–(85) to derive the last line to get

ΔΦ =ΛT
2 BHB

TΛT
2 + ΛT

2 BHB
TΛ4

− ΘT
1 B

T(ΛbT
2 + ΛbT

11 + ΛbT
12 + Λb

4 + ΛbT
22 + Λb

12).

By use of the definition of ζ and (85), we obtain ΔΦ = ΛT
2 BHB

T(ζ − ζb). By the ODE of
ζ − ζb and Grönwall’s lemma, we obtain supt∈[0,T ] |ζ(t) − ζb(t)| = 0.

Although the system (77)–(83) has been constructed based on (70)–(72), it can stand alone
for its existence analysis without using the latter.

Lemma 6.5 Under Assumption 5.1, there exists N1 > 0 such that for all N ≥ N1,
(77)–(83) admits a solution (ΛbN

1 ,ΛbN
2 , · · · ,ΛbN

22 ) on [0, T ] satisfying

(R1(ΛbN
1 ) +BT

0 S
bNB0/N

2)(t) > ε0I, ∀t ∈ [0, T ], (88)

for some small constant ε0 > 0. In addition, supt∈[0,T ] |ΛbN
ι −Λb

ι | = O(1/N) for ι = 1, 2, · · · , 22,
where Λb

1, Λb
2, · · · , Λb

22 are given in Appendix 2.
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Proof We view (77)–(83) as a slightly perturbed version of (104)–(110). By the same
thin tube method as in the sufficiency proof of Theorem 4.6, we establish the existence and
uniqueness of a solution of (77)–(83) for all sufficiently large N . We may ensure (88) due to
R1(Λb

1) > 0 for all t ∈ [0, T ] and a continuity argument. The error bound of O(1/N) is obtained
by applying Grönwall’s lemma as in Corollary 4.8.

Remark 6.6 Let ψN stand for any of the functions ΛbN
1 , ΛbN

2 , ΛbN
3 , ΛbN

4 , ΛbN
11 , ΛbN

12 and
ΛbN

22 . Then supN≥N1,0≤t≤T |ψN | ≤ C for some fixed constant C.

Remark 6.7 Let hN stand for any of the functions gbN
1 , gbN

2 , gbN
3 , gbN

4 , gbN
11 , gbN

12 and
gbN
22 . Then supt∈[0,T ] |hN (t)| = O(1/N).

Lemma 6.8 Under Assumption 5.1, the ODE system (70)–(72) has a solution on [0, T ]
for all N ≥ N1, where N1 is specified in Lemma 6.5.

Proof After obtaining (ΛbN
1 ,ΛbN

2 , · · · ,ΛbN
22 ) by Lemma 6.5, we define P b

1 using (74) and (76).
Then we can directly verify that P b

1 satisfies (70), where R + BT
1 P b

1 (t)B1 + BT
0 P b

1 (t)B0 > 0
holds for all t ∈ [0, T ] since this matrix is equal to the term R1(ΛbN

1 )+BT
0 S

bNB0/N
2 appearing

in (77). Note that (88) holds. Then we further uniquely solve (71)–(72).
Combining Lemma 6.8 with Proposition 6.2 and Lemma 6.3, we have the following facts.

Under Assumption 5.1, for all sufficiently large N , the best response control problem for player
A1 has a solution. Next, the value function of the best response control problem can be specified
using (77)–(83), which has a well defined solution.

Lemma 6.9 supt∈[0,T ] |ΛbN
1 (t) − Λ1(t)| = O(1/N).

Proof The lemma follows from Lemma 6.5 and (84).

Lemma 6.10 supt∈[0,T ] |Λ̌N
1 (t) − Λ1(t)| = O(1/N).

Proof Taking the difference of (53) and (23) gives
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d

dt
(Λ̌N

1 − Λ1) = −ΘTBT
1 (Λ̌N

1 − Λ1)B1Θ − (Λ̌N
1 − Λ1)(A−BΘ)

−(A−BΘ)T(Λ̌N
1 − Λ1) − ǧN

1 ,

Λ̌N
1 (T ) − Λ1(T ) = (I − ΓT

f /N)Qf(I − Γf/N) −Qf .

By Remark 5.5, supt∈[0,T ] |ǧN
1 (t)| = O(1/N). The desired result follows from Grönwall’s

lemma.

Lemma 6.11 supt∈[0,T ] |ΛbN
2 (t) + ΛbN

11 (t) − Λ2(t)| = O(1/N).

Proof The lemma follows from Lemma 6.5 and (85).

Lemma 6.12 Let Y̌ N be defined by (64), and denote

Y bN := ΛbN
1 + ΛbN

2 + (ΛbN
2 )T + ΛbN

4 + ΛbN
11 + (ΛbN

11 )T + ΛbN
12 + (ΛbN

12 )T + ΛbN
22 .

Then supt∈[0,T ] |Y̌ N (t) − Y bN (t)| = O(1/N).
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Proof Combining the ODEs (53)–(59) and (77)–(83), we obtain the following ODE of
Y̌ N − Y bN :

d

dt
(Y̌ N − Y bN )

=(Y bN − Y̌ N )(A+G−B(Θ + Θ1)) + (A+G−B(Θ + Θ1))T(Y bN − Y̌ N )

+ (Θ + Θ1)T[BT
1 (ΛbN

1 − Λ1)B1 +BT
0 (Y bN − Y̌ N )B0](Θ + Θ1)

− (ΛbN
1 + ΛbN

2 + ΛbN
11 − Λ1 − Λ2)TB(R1(Λ1))−1BT(ΛbN

1 + ΛbN
2 + ΛbN

11 − Λ1 − Λ2)

− (Λ1 + Λ2)TB(R1(Λ1))−1BT
1 (ΛbN

1 − Λ1)B1(R1(Λ1))−1BT(Λ1 + Λ2)

− (ΛbN
1 + ΛbN

2 + ΛbN
11 )TB(R1(Λ1))−1BT

1 (Λ1 − ΛbN
1 )B1

· (R1(ΛbN
1 ))−1BT(ΛbN

1 + ΛbN
2 + ΛbN

11 ) + ρN ,

Y̌ N (T ) − Y bN (T ) = 0,

where

ρN := − (ǧN
1 + ǧN

2 + ǧNT
2 + ǧN

4 + ǧN
11 + ǧNT

11 + ǧN
12 + ǧNT

12 + ǧN
22)

− [gbN
1 + gbN

2 + (gbN
2 )T + gbN

4 + gbN
11 + (gbN

11 )T + gbN
12 + (gbN

12 )T + gbN
22 ].

The coefficients of the term Y̌ N − Y bN are bounded. By Lemmas 6.9 and 6.11, we have
supt∈[0,T ] |ΛbN

1 (t) − Λ1(t)| = O(1/N) and supt∈[0,T ] |ΛbN
1 + ΛbN

2 + ΛbN
11 − Λ1 − Λ2| = O(1/N).

By Remarks 5.5 and 6.7, we have that supt∈[0,T ] |ρN | = O(1/N). The lemma is then proven by
applying Grönwall’s lemma to the integral form of the ODE of Y̌ N − Y bN .

Proof of Theorem 6.1 When all other playersAi, 2 ≤ i ≤ N , take the decentralized strategies
ǔ−1 = (ǔ2, ǔ3, · · · , ǔN), we compare the cost of player A1 under ub

1 with the cost under ǔ1.
The cost J1(ub

1, ǔ−1) of A1 is

J1(ub
1, ǔ−1) =E

[

V b
1 (0, X(0), X(0))

]

=E
[

XT(0)P b
1 (0)X(0) + 2XT(0)P b

12(0)X(0) +X
T
(0)P b

2 (0)X(0)
]

=μT
0 Y

bN (0)μ0 + Tr[ΛbN
1 (0)Σ1

0 ] + (1/N2)
N

∑

i=2

Tr[ΛbN
3 (0)Σ i

0]

+ μT
0 {−(ΛbN

2 (0) + (ΛbN
2 (0))T)/N + ΛbN

3 (0)(N − 1)/N2

+ ΛbN
4 (0)(2 − 3N)/N2 − (ΛbN

12 (0) + (ΛbN
12 (0))T)/N}μ0. (89)

The cost J1(ǔ1, ǔ−1) can be obtained from (60). Then we have

J1(ub
1, ǔ−1) − J1(ǔ1, ǔ−1) =μT

0 [Y bN (0) − Y̌ N (0)]μ0 + Tr[(ΛbN
1 (0) − Λ̌N

1 (0))Σ1
0 ]

+ (1/N2)
N

∑

i=2

Tr[(ΛbN
3 (0) − Λ̌N

3 (0))Σ i
0] +O(1/N), (90)

where we obtain the estimate O(1/N) using Remarks 5.4 and 6.6. By Lemma 6.12, we have

|μT
0 [Y bN (0) − Y̌ N (0)]μ0| = O(1/N). (91)
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From Lemmas 6.9 and 6.10, we have supt∈[0,T ] |ΛbN
1 (0) − Λ̌N

1 (0)| = O(1/N) and thus

|Tr[(ΛbN
1 (0) − Λ̌N

1 (0))Σ1
0 ]| = O(1/N). (92)

By Assumption 5.2 and Remarks 5.4 and 6.6, we have

(1/N2)
∣

∣

∣

∣

N
∑

i=2

Tr[(ΛbN
3 (0) − Λ̌N

3 (0))Σ i
0]

∣

∣

∣

∣

= O(1/N). (93)

It follows from (90) and (91), (92) and (93) that

0 ≤ J1(ǔ1, ǔ−1) − J1(ub
1, ǔ−1) = O(1/N). (94)

Note that the term O(1/N) in (94) does not depend on which player is selected to apply its
best response. This completes the proof.

Let ub
i denote the best response strategy of Ai when all other players apply their strategies

ǔ−i.

Theorem 6.13 Under Assumptions 5.1 and 5.2, we have

max
1≤i≤N

|Ji(ub
i , ǔ−i) − Ji(ûi, û−i)| = O(1/N), (95)

max
1≤i≤N

|Ji(ǔi, ǔ−i) − Ji(ûi, û−i)| = O(1/N). (96)

Proof By using the value function of the N -player Nash game, we have

Ji(ûi, û−i) =μT
0 [ΛN

1 (0) + ΛN
2 (0) + ΛNT

2 (0) + ΛN
4 (0)]μ0 + Tr[ΛN

1 (0)Σ i
0] (97)

+ (1/N2)
N

∑

i�=j=1

Tr[ΛN
3 (0)Σ j

0 ] + μT
0 {−(ΛN

2 (0) + ΛNT
2 (0))/N

+ ΛN
3 (0)(N − 1)/N2 + ΛN

4 (0)(2 − 3N)/N2}μ0

=μT
0 [ΛN

1 (0) + ΛN
2 (0) + ΛNT

2 (0) + ΛN
4 (0)]μ0

+ Tr[ΛN
1 (0)Σ i

0] +O(1/N)

=μT
0 [Λ1(0) + Λ2(0) + ΛT

2 (0) + Λ4(0)]μ0 + Tr[Λ1(0)Σ i
0] +O(1/N), (98)

where the last equality follows from Corollary 4.8. Similarly, we use (89) and Lemma 6.5 to
obtain

Ji(ub
i , ǔ−i) =μT

0 Y
bN (0)μ0 + Tr[ΛbN

1 (0)Σ i
0] +O(1/N)

=μT
0 [Λ1(0) + ζb(0)]μ0 + Tr[Λ1(0)Σ i

0] +O(1/N). (99)

The term O(1/N) in all estimates obtained above does not depend on i. By (98)–(99) and (86)
in Lemma 6.4, we obtain (95), which combined with Theorem 6.1 yields (96).
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6.1 The General Model

Now we consider a general LQ model where D and D0 in (1) may be nonzero and where
the cost (2) is modified by using the running cost [Xi(t) − ΓX(N)(t) − η]2Q + [ui(t)]2R and the
terminal cost [Xi(T ) − ΓfX

(N)(T ) − ηf ]2Qf
for η, ηf ∈ R

n. Then all the previous analysis in
Sections 3–6 may be easily adapted to this general model.

The value function in (15) is now replaced by the form

V G(t,x) = xTPi(t)x + 2xTSG
i (t) + rG

i (t), 1 ≤ i ≤ N.

The same ODE system (16)–(17) is used for (P1,P2, · · · ,PN ). If (P1,P2, · · · ,PN) is given
on [0, T ], then (SG

1 ,S
G
2 , · · · ,SG

N ) is uniquely solved from a linear ODE system. Finally, given
(Pi,S

G
i ), 1 ≤ i ≤ N , on [0, T ], each rG

i is again solved from a linear ODE. For this general
model, Definition 4.2 about asymptotic solvability remains valid, and Theorem 4.6 still holds.
The asymptotic analysis can be extended to treat {SG

i , r
G
i , 1 ≤ i ≤ N}. We can accordingly

determine the Nash equilibrium strategies ûG
i , 1 ≤ i ≤ N , the decentralized strategies ǔG

i ,
1 ≤ i ≤ N , and the best response strategy uGb

i given ǔG
−i, which are further used to establish

Theorems 6.1 and 6.13. We summarize the following result:

Corollary 6.14 Under Assumptions 5.1 and 5.2, Theorems 6.1 and 6.13 still hold for the
general model with parameters (D,D0, η, ηf ).

7 Numerical Example

We present a numerical example to illustrate asymptotic solvability and individual costs.
The parameter values are A = −1, B = 1, B0 = −2, B1 = 4, G = 1, R = −1, Q = 8, Γ = 0.8,
Qf = 8, Γf = 0.8, and T = 2. We take the initial conditions Xi(0) = 1 for all i ≥ 1, and so
X(0) = 1.

When (23)–(24) admits a solution (Λ1,Λ2) on [0, T ], we use MATLAB ODE solver ode45

to solve (23)–(26) to obtain the solution (Λ1,Λ2,Λ3,Λ4). At t = 0, we obtain Λ1(0) = 3.9435,
Λ2(0) = −2.3751, Λ3(0) = 1.8351 and Λ4(0) = 1.7786. Figure 1 (left panel) shows that
(23)–(24) admits a solution (Λ1,Λ2) on [0, T ] so that the Nash game (1)–(2) has asymptotic
solvability. By the initial conditions and (98), under Nash strategies the asymptotic per agent
cost is limN→∞ Ji(ûi, û−i) = Λ1(0)+2Λ2(0)+Λ4(0) = 0.9719, which is indicated by the dashed
horizonal line in Figure 1 (right panel). Figure 1 (right panel) shows that asN increases, the cost
Ji(ǔi, ǔ−i) of player Ai under the set of decentralized strategies approaches limN→∞ Ji(ûi, û−i),
as asserted by Theorem 6.13.
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Figure 1 Left panel: (Λ1,Λ2) admits a solution on [0, T ] with T = 2. Right panel:

The cost of player Ai under the set of decentralized strategies (ǔi, ǔ−i)

converges to a limit as N → ∞

8 Conclusion

This paper studies an asymptotic solvability problem for LQ mean field games with con-
trolled diffusions and indefinite cost weights. By a rescaling approach we derive a necessary and
sufficient condition for asymptotic solvability. We further establish anO(1/N)-Nash equilibrium
property for the obtained decentralized strategies.
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[1] Huang M, Malhamé R P, and Caines P E, Large population stochastic dynamic games: Closed-

loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inform.

Systems, 2006, 6(3): 221–252.

[2] Lasry J M and Lions P L, Mean field games, Japan. J. Math., 2007, 2(1): 229–260.

[3] Bauso D, Tembine H, and Basar T, Opinion dynamics in social networks through mean-field

games, SIAM J. Control Optim., 2016, 54(6): 3225–3257.

[4] Carmona R, Fouque J P, and Sun L H, Mean field games and systemic risk, Communications in

Mathematical Sciences, 2015, 13: 911–933.

[5] Chan P and Sircar R, Fracking, renewables, and mean field games, SIAM Review, 2017, 59(3):

588–615.

[6] De Paola A, Angeli D, and Strbac G, Distributed control of micro-storage devices with mean

field games, IEEE Transactions on Smart Grid, 2016, 7(2): 1119–1127.

[7] Huang X, Jaimungal S, and Nourian M, Mean-field game strategies for optimal execution, Applied

Mathematical Finance, 2019, 26(2): 153–185.

[8] Lachapelle A and Wolfram M T, On a mean field game approach modeling congestion and

aversion in pedestrian crowds, Transportation Research Part B: Methodological, 2011, 45(10):

1572–1589.



LQ MEAN FIELD GAMES: DECENTRALIZED O(1/N)-NASH EQUILIBRIA 2031

[9] Lacker D and Zariphopoulou T, Mean field and n-agent games for optimal investment under

relative performance criteria, Math. Finance, 2019, 29(4): 1003–1038.

[10] Laguzet L and Turinici G, Individual vaccination as Nash equilibrium in an SIR model with

application to the 2009–2010 influenza A (H1N1) epidemic in France, Bulletin of Mathematical

Biology, 2015, 77(10): 1955–1984.

[11] Li Z, Reppen A M, and Sircar R, A mean field games model for cryptocurrency mining, arXiv:

1912.01952, 2019.

[12] Ma Z, Callaway D S, and Hiskens I A, Decentralized charging control of large populations of

plug-in electric vehicles, IEEE Transactions on Control Systems Technology, 2013, 21(1): 67–78.
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Handbook of Dynamic Game Theory, Springer, Berlin, 2017, 345–372.

[19] Cardaliaguet P, Notes on Mean Field Games, University of Paris, Dauphine, 2013.

[20] Carmona R and Delarue F, Probabilistic Theory of Mean Field Games with Applications I-II,

Springer, Cham, Switzerland, 2018.

[21] Bensoussan A, Sung K C J, Yam S C P, et al., Linear-quadratic mean-field games, J. Optim.

Theory Appl., 2016, 169(2): 496–529.

[22] Huang J, Wang S, and Wu Z, Backward mean-field linear-quadratic-gaussian (LQG) games: Full

and partial information, IEEE Trans. Autom. Control, 2016, 61(12): 3784–3796.
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Appendix 1

Proof of Theorem 3.2 To show the feedback Nash equilibrium property, we let Ak, k =
2, 3, · · · , N , take the strategies in (18) and A1 unilaterally improves for itself. We need to show
the optimality of û1 for minimizing J1(t,x, u1, û−1) for any given (t,x).

Step 1 Denote the Riccati ODEs (16) in the form

−Ṗi = Φi(P1,P2, · · · ,PN ), Pi(T ) = Qif , 1 ≤ i ≤ N. (100)

Let (P2,P3, · · · ,PN ) still be specified by (100). We will derive a new but equivalent ODE for
P1. It is necessary to do so since the best response control problem will give rise to a Riccati
equation not exactly in the form of (16) with i = 1. For parameter x ∈ R

Nn, based on (10) we
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consider the following equation system

0 = ̂BT
i Pi(t)x + BT

0 Pi(t)B0

N
∑

k �=i

ux
k + [BT

0 Pi(t)B0 + BT
i Pi(t)Bi +R]ux

i , 1 ≤ i ≤ N, (101)

which under (17) has a unique solution

ux
i = −[R+ BT

i Pi(t)Bi]−1[BT
0 Pi(t)B0M0(t) + ̂BT

i Pi(t)]x

=: Ki(t)x, 1 ≤ i ≤ N.

Now for i = 1, we further use (101) to obtain

ux
1 = − [R+ BT

1 P1(t)B1 + BT
0 P1(t)B0]−1

{

̂BT
1 P1(t)x + BT

0 P1(t)B0

N
∑

k=2

Kk(t)x
}

= : ˜K1(t)x.

Since x is arbitrary, we obtain the identity

K1(t) = ˜K1(t), ∀t ∈ [0, T ].

Although the Riccati equation system (16) may be written down without using the HJB
equation (5), the following observation is useful. For each Pi, the vector field in (16) may be
constructed from the quadratic form determined by the right hand side of (5). For illustration,
take k �= i. Then ∂T

xVi
̂Bkûk in (5) contributes Pi

̂BkKk(t)+KT
k (t) ̂BT

k Pi contained in the right
hand side of (16). Now for the ODE (16) of P1, whenever a term originates from û1 so that
K1(t) is used in the vector field, we replace K1(t) by ˜K1(t). For example, now MT

0 BT
0 P1B0M0

is replaced by
(

˜K1(t) +
N

∑

j=2

Kj(t)
)T

BT
0 P1B0

(

˜K1(t) +
N

∑

j=2

Kj(t)
)

,

which is ultimately expressed in terms of (P1,P2, · · · ,PN ). By the above substitution of K1(t)
by ˜K1(t), we see that P1 satisfies the new equation

−Ṗ1 = Φnew
1 (P1,P2, · · · ,PN ), P1(T ) = Q1f . (102)

The vector field Φnew
1 is not fully displayed here to save space, but can be easily determined.

We note that the term Pi
̂BkKk(t) + KT

k (t) ̂BT
k Pi, k �= i, mentioned above remains in Φnew

1 .
Then (P1,P2, · · · ,PN ) is uniquely solved from the ODE system specified by Φnew

1 ,Φ2, · · · ,ΦN .
Step 2 Consider the initial time and state pair (t,x), t ∈ [0, T ). Suppose players Ak,

k ≥ 2, apply the strategies in (18) while A1 minimizes the cost J1(t,x, u1, û−1) with the
initial condition (t,x). The resulting optimal control ubr

1 on [t, T ] is its best response. By
considering the state process X(s), s ∈ [t, T ] under (u1, û−1) and the cost J1(t,x, u1, û−1), it is
straightforward to determine the Riccati equation of this optimal control problem in the form

Ṗ br
1 = Φbr(P br

1 ; P1,P2, · · · ,PN ), P br
1 (T ) = Q1f , s ∈ [t, T ], (103)
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where (P1,P2, · · · ,PN ) specifies coefficients of (103) and has been solved from (102) and (100)
with i ≥ 2. By comparing the structure of (102) and (103), we see that (103) is verified by
taking P br

1 = P1. In particular, for the inverse term [R + BT
1 P br

1 (t)B1 + BT
0 P br

1 (t)B0]−1

appearing in (103), we have

R+ BT
1 P br

1 (t)B1 + BT
0 P br

1 (t)B0 > 0,

since R + BT
1 P1(t)B1 + BT

0 P1(t)B0 > 0 holds and we have taken P br
1 = P1. By uniqueness,

we see that P br
1 must be equal to P1 on [t, T ]. The best response is well defined on [t, T ], and

we use (103) and P br
1 to determine

ubr
1 (s) = ˜K1(s)X(s) = K1(s)X(s), s ∈ [t, T ].

The optimality of ubr
1 may be shown by using (103) and applying completion of squares to the

cost (see [44, Theorem 6.6.1]). Hence û1 gives the best response for Ai on [t, T ].
Step 3 The same best response property holds for ûi when any other single player Ai is cho-

sen for unilateral performance improvement. We conclude that the feedback Nash equilibrium
property holds.

Proof of Lemma 4.1 The proof is carried out in the same manner as that of [34, Theorem3].
Step 1 For each 2 ≤ j < l ≤ N , denote P †

i = JT
jlPiJjl, 1 ≤ i ≤ N . We have that

(P †
1 ,P

†
2 , · · · ,P †

j−1, P †
l , P †

j+1, · · · , P †
l−1, P †

j , P †
l+1, · · · , P †

N )

satisfies the same ODE system (16)–(17) as (P1,P2, · · · ,PN ) does. Thus JT
jlP1Jjl = P1 for all

2 ≤ j < l ≤ N . Denote Pi = (P i
jl)1≤j,l≤N , where each P i

jl is an n × n matrix. Then we have
that

P 1
12 = P 1

13 = · · · = P 1
1N , P 1

21 = P 1
31 = · · · = P 1

N1,

P 1
22 = P 1

33 = · · · = P 1
NN , P 1

j1l1 = P 1
j2l2 , ∀2 ≤ j1 �= l1 ≤ N, ∀2 ≤ j2 �= l2 ≤ N.

This proves the representation of P1 in (19).
Step 2 For each 2 ≤ j ≤ N , denote P ‡

i = JT
1jPiJ1j , 1 ≤ i ≤ N . We have that

(P ‡
j , P ‡

2 , · · · ,P ‡
j−1, P ‡

1 , P ‡
j+1, · · · , P ‡

N )

and (P1,P2, · · · ,PN ) both satisfy (16)–(17). This implies Pj = JT
1jP1J1j .

Appendix 2 A Limit ODE System

We introduce the following ODE system:
⎧

⎨

⎩

Λ̇b
1 = Λb

1B(R1(Λb
1))

−1BTΛb
1 − Λb

1A−ATΛb
1 −Q,

Λb
1(T ) = Qf , R1(Λb

1(t)) > 0, ∀t ∈ [0, T ],
(104)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λ̇b
2 = Λb

1B(R1(Λb
1))−1BTΛb

2 − (Λb
1 + Λb

2)G

−ATΛb
2 − Λb

2(A−BΘ) +QΓ ,

Λb
2(T ) = −QfΓf ,

(105)
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇b
3 = ΛbT

2 B(R1(Λb
1))

−1BTΛb
2 − (Λb

2 + Λb
4)

TG

−GT(Λb
2 + Λb

4) − Λb
3(A−BΘ) − (A−BΘ)TΛb

3

−ΘTBT
0 (Λb

1 + Λb
2 + ΛbT

2 + Λb
4)B0Θ

−ΘTBT
1 Λb

3B1Θ − ΓTQΓ ,

Λb
3(T ) = ΓT

f QfΓf ,

(106)

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇b
4 = ΛbT

2 B(R1(Λb
1))

−1BTΛb
2 − ΛbT

2 G−GTΛb
2

−Λb
4(A+G−BΘ) − (A+G−BΘ)TΛb

4

−ΘTBT
0 (Λb

1 + Λb
2 + ΛbT

2 + Λb
4)B0Θ − ΓTQΓ ,

Λb
4(T ) = ΓT

f QfΓf ,

(107)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Λ̇b
11 = Λb

1B(R1(Λb
1))

−1BTΛb
11 + Λb

2BΘ1 −ATΛb
11

−Λb
11(A+G−B(Θ + Θ1)),

Λb
11(T ) = 0,

(108)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇b
12 = ΛbT

2 B(R1(Λb
1))

−1BTΛb
11 −GT(Λb

11 + Λb
12)

−(A−BΘ)TΛb
12 − Λb

12(A+G−B(Θ + Θ1))

−ΘTBT
0 (Λb

1 + Λb
2 + ΛbT

2 + Λb
4)B0Θ1

−ΘTBT
0 (Λb

11 + Λb
12)B0(Θ + Θ1) + Λb

4BΘ1,

Λb
12(T ) = 0,

(109)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Λ̇b
22 = ΛbT

11B(R1(Λb
1))

−1BTΛb
11

−Λb
22(A+G−B(Θ + Θ1)) + ΛbT

12BΘ1

−(A+G−B(Θ + Θ1))TΛb
22 + ΘT

1 B
TΛb

12

−ΘT
1 B

T
0 (Λb

1 + Λb
2 + ΛbT

2 + Λb
4)B0Θ1

−(Θ + Θ1)TBT
0 Λb

22B0(Θ + Θ1)

−ΘT
1 B

T
0 (Λb

11 + Λb
12)B0(Θ + Θ1)

−(Θ + Θ1)TBT
0 (Λb

11 + Λb
12)

TB0Θ1,

Λb
22(T ) = 0.

(110)

Under Assumption 5.1, the coefficients in (104)–(110) are defined on [0, T ]. We may regard
(104)–(110) as the limit ODE system for (77)–(83).

Lemma 8.1 Under Assumption 5.1, the ODE system (104)–(110) admits a unique solu-
tion on [0, T ].

Proof We have that (104) admits a unique solution Λb
1 = Λ1 on [0, T ]. With Λb

1 obtained
from solving (104), (105) is a first order linear ODE and admits a unique solution Λb

2 on [0, T ].
Given (Λb

1,Λ
b
2) on [0, T ], the ODE system (106)–(109) is a first order linear ODE system and

admits a unique solution (Λb
3,Λ

b
4, · · · ,Λb

12) on [0, T ]. Finally, we further uniquely solve (110)
on [0, T ].


