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Abstract This paper presents an overview of the state of the art for safety-critical optimal control of

autonomous systems. Optimal control methods are well studied, but become computationally infeasible

for real-time applications when there are multiple hard safety constraints involved. To guarantee

such safety constraints, it has been shown that optimizing quadratic costs while stabilizing affine

control systems to desired (sets of) states subject to state and control constraints can be reduced

to a sequence of Quadratic Programs (QPs) by using Control Barrier Functions (CBFs) and Control

Lyapunov Functions (CLFs). The CBF method is computationally efficient, and can easily guarantee

the satisfaction of nonlinear constraints for nonlinear systems, but its wide applicability still faces

several challenges. First, safety is hard to guarantee for systems with high relative degree, and the

above mentioned QPs can easily be infeasible if tight or time-varying control bounds are involved. The

resulting solution is also sub-optimal due to its myopic solving approach. Finally, this method works

conditioned on the system dynamics being accurately identified. The authors discuss recent solutions

to these issues and then present a framework that combines Optimal Control with CBFs, hence termed

OCBF, to obtain near-optimal solutions while guaranteeing safety constraints even in the presence of

noisy dynamics. An application of the OCBF approach is included for autonomous vehicles in traffic

networks.

Keywords Control barrier function, optimal control, safety.

1 Introduction

Optimizing a cost function associated with the operation of a dynamical system while also
satisfying hard safety constraints at all times is a fundamental and challenging problem. The
challenge is even greater when stabilizing some of the system state variables to desired values is
an additional requirement. At the same time, the proliferation of autonomous systems implies
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the need to provide safety guarantees when operating in autonomous fashion. Safety-critical
optimal control problems can usually be decomposed into planning and execution components.
Optimality is central to the trajectory planning phase, while safety is the main consideration
during real-time execution in complex environments with real system dynamics that may differ
from those used in the planning phase. Typical problems of this type include autonomous
driving[1, 2], space exploration[3] and manufacturing automation[4].

Traditional methods used for planning include Rapidly-exploring Randomized Trees (RRT)[5],
A*[6] and their variations, originating mostly from the robotics field. These approaches do not
usually consider system dynamics or optimality. Optimal control methods, such as Hamiltonian
analysis and the calculus of variations[7], are also widely used in planning. These approaches
usually consider simplified (normally linear) system dynamics in order to reduce the computa-
tional complexity of the two-point-boundary-value problems that they typically reduce to. Even
with such simplifications, these problems are still hard to solve, particularly when multiple state
and/or control constraints are involved.

When it comes to real-time execution, the PID method is the most widely used in all
relevant fields. This approach is case-dependent and requires non-trivial extensive parameter
tuning. Another popular method for execution is Model Predictive Control (MPC)[8–10]. This
approach formulates a receding horizon control problem repeatedly solved over a sequence of
discrete time steps, thus, computational complexity is the main concern, especially for nonlinear
models, when computation resources are limited. Moreover, a receding horizon is not crucial
when there is an optimal reference available from the planning stage. An alternative approach
which is very computationally efficient is based on the use of Barrier Functions (BFs).

The traditional use of BFs is to include them in the cost function[11] treating them as
“soft” constraints. In recent work, however, BFs are considered as explicit constraints in the
optimization problem and these constraints are Lyapunov-like conditions[12, 13] whose use can
be traced back to optimization methodologies[14]. More recently, they have been employed
to prove set invariance[15–17] in formal verification and for multi-objective control[18]. In [12],
it was proved that if a BF for a given set satisfies Lyapunov-like conditions, then the set is
forward invariant, an important property in practice. A less restrictive form of a BF, which is
allowed to decrease when far away from the boundary of the unsafe set, was proposed in [19].
Another approach that allows a BF to become zero (the safe set boundary) was proposed in [20].
This simpler form has also been considered in time-varying cases and applied to enforce Signal
Temporal Logic (STL) formulas as hard constraints[21].

Control BFs (CBFs) are extensions of BFs for control systems and they are used to map
a constraint defined over system states onto a constraint on the control input. Recently, it
has been shown that, to stabilize an affine control system while optimizing a quadratic cost
and satisfying state and control constraints, CBFs can be combined with Control Lyapunov
Functions (CLFs)[22–25] to form quadratic programs (QPs)[19, 20, 26] which can be very efficiently
solved in real time.

It has been recently shown[27] that planning and execution using the CBF method to provide
safety guarantees can be combined to obtain solutions of the aforementioned CBF-based QP



SAFETY-CRITICAL OPTIMAL CONTROL FOR AUTONOMOUS SYSTEMS 1725

which closely track the optimal control. As a result, the real-time optimization problem always
consists of a sequence of QPs even if the original cost function is not quadratic in control. In
addition, we may also define mutiple CLFs to improve the way the system state tracks the
optimal state reference. Noisy dynamics can also be included in this framework to achieve
robust control by considering the noise bounds in the corresponding CBF constraints.

In this paper, we present an overview for safety-critical optimal control problems. Specif-
ically, we will first overview the CBF method and then discuss current research challenges
related to it. We will also present some recent results and ideas for addressing these challenges.
We will then present a framework that combines optimal trajectory planning and safety-critical
real-time control, by aiming to track a planned control while always guaranteeing safety. This
framework combines Optimal Control with Barrier Functions and is, therefore, termed OCBF.
Finally, we provide an application of the OCBF approach to the control of autonomous vehicles
in traffic networks.

The paper is structured as follows. In Section 2, we review definitions and key results
on the CBF method. We discuss research challenges for the CBF method and present some
solutions in Section 3. In Section 4, we present the OCBF framework for safety-critical optimal
control problems. In Section 5, we provide an application to autonomous vehicles in a traffic
merging problem, illustrating its effectiveness through a simulation example. We conclude with
Section 6.

2 Background

Definition 2.1 (Class K function[28]) A Lipschitz continuous function α : [0, a) →
[0,∞), a > 0 is said to belong to class K if it is strictly increasing and α(0) = 0.

We consider affine control systems of the form

ẋ = f(x) + g(x)u, (1)

with x ∈ X ∈ R
n ((X denotes the state constraint set)) and f : R

n → R
n g : R

n → R
n×q

globally Lipschitz, and u ∈ U ⊂ R
q (U denotes the control constraint set). Solutions x(t) of (1),

starting at x(t0), t ≥ t0, are forward complete.

Definition 2.2 (Forward invariant set) A set C ⊂ R
n is forward invariant for the system

(1) if its solutions starting at any x(t0) ∈ C satisfy x(t) ∈ C for ∀t ≥ t0.

We are interested in a safety set C of the form

C := {x ∈ R
n : b(x) ≥ 0}, (2)

where b : R
n → R is a continuously differentiable function.

Definition 2.3 (Control barrier function[19–21]) Given a set C as in Equation (2), b(x) is
a candidate control barrier function (CBF) for the system (1) if there exists a class K function
α such that

sup
u∈U

[Lfb(x) + Lgb(x)u + α(b(x))] ≥ 0 (3)
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for all x ∈ C, where Lf , Lg denote the Lie derivatives† along f and g, respectively.

We refer to the CBF in Definition 2.3 as a “candidate” CBF since α(·) is undefined so that
there may not exist a u ∈ U that satisfies (3). A CBF is defined when α(·) is found in (3) so
that u is within the control constraint set U .

Theorem 2.4 (see [20, 21]) Given a CBF b with the associated set C from Equation (2),
any Lipschitz continuous controller u(t), ∀t ≥ t0 that satisfies (3) renders the set C forward
invariant for control system (1).

Definition 2.5 (Control Lyapunov function[25]) A continuously differentiable function
V : R

n → R is a globally and exponentially stabilizing control Lyapunov function (CLF) for
the system (1) if there exist constants c1 > 0, c2 > 0, c3 > 0 and c1||x||2 ≤ V (x) ≤ c2||x||2 such
that, for ∀x ∈ R

n,
inf

u∈U
[LfV (x) + LgV (x)u + c3V (x)] ≤ 0. (4)

Theorem 2.6 (see [25]) Given a CLF V as in Definition 2.5, any Lipschitz continuous
controller u(t), ∀t ≥ t0 that satisfies (4) exponentially stabilizes system (1) to the origin.

Definition 2.7 (Relative degree[28]) The relative degree of a (sufficiently) differentiable
function b : R

n → R with respect to the system (1) is the number of times we need to differen-
tiate it along the dynamics of (1) until the control u explicitly shows.

In this paper, since function b is used to define a constraint b(x) ≥ 0, we will also refer to
the relative degree of b as the relative degree of the constraint.

Many existing works[19, 21, 29] combine CBFs and CLFs with quadratic costs to formulate
optimization problems. The CLF constraint is always slacked (i.e., considered as a soft con-
straint) when combined with a CBF to make the problem feasible; however, state convergence
may not be guaranteed. In other words, suppose we have a safety-critical optimal control
problem with a cost

∫ tf

t0
uTPudt (P is positive definite), a safety requirement b(x) ≥ 0 and

state convergence captured by a CLF V (x). Then, we have the following optimization problem:

arg min
u(t),δ(t)

∫ tf

t0

[u(t)TPu(t) + pδ2(t)]dt

s.t. u ∈ U and

Lfb(x) + Lgb(x)u + α(b(x)) ≥ 0,

LfV (x) + LgV (x)u + c3V (x) ≤ δ,

(5)

where p > 0, and δ is a relaxation that addresses the possible conflict between the CBF and
CLF constraints. Time is discretized, and an optimization problem with constraints given by
CBFs and CLFs is solved at each time step. In other words, we partition the time interval
[t0, tf ] into a set of equal time intervals {[t0, t0 +Δt), [t0 +Δt, t0 +2Δt), · · · }, where Δt > 0. In
each interval [t0 +ωΔt, t0 +(ω+1)Δt) (ω = 0, 1, · · · ), we keep the state constant at its value at
t0 + ωΔt, and reformulate the above optimization problem as a sequence of QPs. The optimal

†The Lie derivative of a function along a vector field captures the change in the value of the function along

the vector field (see, e.g., [28]).
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control obtained by solving this QP is applied at the current time step t0 + ωΔt and held
constant for the whole associated time interval [t0 + ωΔt, t0 + (ω + 1)Δt). The dynamics (1)
are updated and the procedure is repeated. When Δt is small, we achieve higher accuracy
without the necessity to consider the inter-sampling effect; this comes at the expense of added
computational complexity.

There are still several issues that define challenges for the application of the CBF-based
method. First, safety is harder to guarantee for systems with high relative degrees, in which
case we need to take multiple derivatives of a constraint in order to make the control show up
in the derivative. Second, the problem can easily become infeasible when tight control bounds
are involved at a certain time step due to the myopic nature of the solution method above,
especially for noisy dynamics and time-varying control bounds. Third, the solution of each QP
above is sub-optimal, since the QP is only solved pointwise. Last but not least, this approach
heavily depends on the accuracy of the system dynamics used in (1), which could be very hard
to ensure for systems that are hard to identify (such as time-varying systems) under limited
computational resources. In the following sections, we will discuss how we may address these
challenges.

3 Challenges in the Use of CBFs for Guaranteeing Safe State Trajec-

tories

In the following sections, we discuss in more detail the main challenges facing the use of
CBFs in providing safety constraint guarantees when executing real-time state trajectories that
have been determined at the planning stage of a given problem involving an autonomous system.
The resolution of these challenges presented in what follows is based either on recent research
results or is the subject of ongoing research.

3.1 High-Order CBFs

In order to guarantee safety for constraints of high relative degree, a backstepping approach
was introduced in [30], and it was shown to work for relative degree m = 2. A CBF method for
position-based constraints with relative degree m = 2 was also proposed in [31]. A more general
form, which works for arbitrarily high relative degree constraints, was proposed in [29, 32].
The method in [29] employs input-output linearization and finds a pole placement controller
with negative poles to stabilize the barrier function to zero. The resulting barrier function is
exponential. The authors in [33] proposed an approach to define another function that is with
relative degree m = 1 from the original high-relative-degree constraint. This approach does
not include all the states in the definition of a CBF, which may reduce the problem feasibility.
Another more general approach for arbitrary relative degree constraints is the definition of a
high-order CBF[34], as described next.

For a constraint b(x) ≥ 0 with relative degree m, b : R
n → R, and ψ0(x) := b(x), we define

a sequence of functions ψi : R
n → R, i ∈ {1, 2, · · · ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, 2, · · · ,m}, (6)
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where αi(·), i ∈ {1, 2, · · · ,m} denotes a (m− i)th order differentiable class K function.
We further define a sequence of sets Ci, i ∈ {1, 2, · · · ,m} associated with (6) in the form:

Ci := {x ∈ R
n : ψi−1(x) ≥ 0}, i ∈ {1, 2, · · · ,m}. (7)

Definition 3.1 (High Order Control Barrier Function (HOCBF)[34]) Let C1, C2, · · · , Cm

be defined by (7) and ψ1(x), ψ2(x), · · · , ψm(x) be defined by (6). A function b : R
n → R is a

High Order Control Barrier Function (HOCBF) of relative degree m for the system (1) if there
exist (m − i)th order differentiable class K functions αi, i ∈ {1, 2, · · · ,m − 1} and a class K
function αm such that

sup
u∈U

[Lm
f b(x) + [LgL

m−1
f b(x)]u+S(b(x)) + αm(ψm−1(x))] ≥ 0, (8)

for all x ∈ C1 ∩ C2 ∩ · · · ∩ Cm. In (8), Lm
f denotes the Lie derivative along f m times, and

S(b(x)) =
m−1∑

i=1

Li
f(αm−i ◦ ψm−i−1)(x),

where ◦ denotes the composition of functions. Further, b(x) is such that LgL
m−1
f b(x) �= 0 on

the boundary of the set C1 ∩ C2 ∩ · · · ∩ Cm.

The HOCBF is a general form of the relative degree m = 1 CBF[19–21] (setting m = 1
reduces the HOCBF to the common CBF form in [19–21]), and it is also a more general form of
the exponential CBF[29]. Note that we can define αi(·), i ∈ {1, 2, · · · ,m} in Definition 3.1 to be
the extended class K functions (α : [−a, a] → [−∞,∞] as in Definition 2.1) to ensure robustness
of an HOCBF to perturbations[33]; this is due to the fact that the HOCBF constraint becomes
a Lyapunov-like condition with extended class K functions. However, the use of extended class
K functions cannot ensure a constraint to be satisfied if it is initially violated.

Theorem 3.2 (see [34]) Given an HOCBF b(x) from Definition 3.1 with the associated
sets C1, C2, · · · , Cm defined by (7), if x(0) ∈ C1 ∩C2 ∩ · · · ∩Cm, then any Lipschitz continuous
controller u(t) that satisfies (8), ∀t ≥ 0 renders C1 ∩ C2 ∩ · · · ∩ Cm forward invariant for the
system (1).

The satisfaction of the CBF constraint (3) or the HOCBF constraint (8) is only a sufficient
condition for the satisfaction of the original safety constraint b(x) ≥ 0. Therefore, the CBF
(HOCBF) method introduces some conservativeness to the system operation. In order to al-
leviate this drawback, we may properly define the class K functions of a CBF (HOCBF), as
shown in [35]. In order to apply HOCBFs to guarantee the satisfaction of high-relative-degree
constraints, we simply replace the CBF constraint in the QP (5) by (8). When tight control
bounds are involved, the QP can easily become infeasible at a certain time step since it is solved
in a myopic way, as explained at the end of Section 2. In order to address this potential infea-
sibility problem, one approach is to try to find sufficient conditions for feasibility guarantees,
as detailed in the next section.
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3.2 Sufficient Conditions for Feasibility

In order to guarantee the feasibility of the optimization problem (5), one obvious way is to
derive explicit solutions of (5). It is indeed possible to accomplish this under certain assumptions
as shown in [33]. However, for most constrained optimal control problems, it is hard to find
such explicit solutions. As an alternative, we can discretize time and problem (5) is replaced
by a sequence of QPs, one for each time step. In this case, we need to guarantee that the
QP is always feasible at each time step. To address this, we define an additional feasibility
constraint [36]:

Definition 3.3 (Feasibility constraint) Suppose the QP (5) at each time step is feasible
at the current state x(t), t ∈ [0, T ). A constraint bF (x) ≥ 0, where bF : R

n → R, is a feasibility
constraint if it makes the QP corresponding to the next time interval feasible.

In order to ensure that the QP (5) is feasible at the next time interval, a feasibility constraint
bF (x) ≥ 0 should have two important features: (i) It guarantees that the CBF constraint (3)
(HOCBF constraint (8)) and that the control constraint imposed through bounds:

umin ≤ u ≤ umax (9)

do not conflict, and (ii) the feasibility constraint itself does not conflict with both (3) (or (8))
and (9) at the same time.

An illustrative example of how a feasibility constraint works is shown in Figure 1. A robot
whose control is determined by solving the QP (5), will run close to an obstacle at the following
time step. The next state may be infeasible for the QP associated with that next step. For
example, the state denoted by the red dot in Figure 1 may involve too large a speed for the
robot to find a feasible control (i.e., a large enough deceleration) to avoid the obstacle in the
next step. However, if a feasibility constraint can prevent the robot from reaching this state,
then the QP is feasible.

Figure 1 An illustration of how a feasibility constraint works for a robot control problem.

A feasibility constraint prevents the robot from going into an infeasible state (red

dot). It guides it instead to a feasible state (green dot) below the infeasible state

boundary separating feasible from infeasible states
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After determining such a feasibility constraint bF (x) ≥ 0, we can enforce it through a CBF
(similar to the way we enforce any b(x) ≥ 0 through an associated CBF as in (3)) and include
it as an additional constraint for (5) to guarantee feasibility given system state x.

If a CBF constraint (3) conflicts with the lower control bound in (9), then by multiplying
umin ≤ u with −Lgb(x) (suppose Lgb(x) ≥ 0), and comparing with the CBF constraint (3),
we can obtain a feasibility constraint:

bF (x) = Lfb(x) + α(b(x)) + Lgb(x)umin ≥ 0. (10)

In order to make sure that the feasibility constraint (10) does not conflict with (3) (or (8))
and (9) at the same time, we use another CBF to enforce (10) and reformulate it so as to have
a form similar to (3) (or (8)) such that they are less likely to conflict with each other. Then, we
can impose some additional conditions on the reformulated CBF that guarantee (10). These
conditions are called sufficient conditions, and they are enforced by a CBF and added to the
QP (5) to guarantee its feasibility. Additional details (including how other possible cases are
handled) are given in [36].

For the adaptive cruise control example considered in [36], a sufficient condition for guaran-
teeing feasibility is actually an intuitively appealing speed constraint of the ego vehicle. This
speed constraint depends on the speed of the preceding vehicle, the lower bound umin of the ego
vehicle, and the definition of the CBF (HOCBF) that guarantees safety. However, safety and
feasibility become hard to guarantee for noisy dynamics and/or time-varying control bounds
with this approach. This additional complication can be resolved using adaptive CBFs as
discussed in the next section.

3.3 Adaptive CBFs

Adaptive CBFs (aCBFs) have been proposed in [37] for systems with parameter uncertain-
ties, and a less conservative Robust aCBF (RaCBF)[38] which is combined with a data-driven
method has been proposed to adaptively achieve safety. Machine learning techniques have also
been applied to adaptively achieve safety for systems with parameter uncertainties[39, 40]. How-
ever, the associated QPs can still easily be infeasible when both state constraints (enforced by
CBFs or HOCBFs) and tight control bounds are involved. In order to address this, we have
recently introduced another formulation of adaptive CBFs[41].

The key idea in converting a regular CBF into an adaptive one is to incorporate penalty
terms in a CBF as shown in [34] and then replace them by time-varying functions with suitable
properties as detailed next. Starting with a relative degree m function b : R

n → R, let ψ0(x) :=
b(x). Then, instead of using a constant penalty pi > 0, i ∈ {1, 2, · · · ,m} for each class K
function αi(·) in the definition of an HOCBF[34], we define a time-varying penalty function
pi(t) ≥ 0, i ∈ {1, 2, · · · ,m}, and use it as a multiplicative factor for each class K function
αi(·). Let p(t) := (p1(t), p2(t), · · · , pm(t)). Similar to (6), we define a sequence of functions
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ψi : R
n × R

m → R, i ∈ {1, 2, · · · ,m} in the form:

ψ1(x,p(t)) := ψ̇0(x) + p1(t)α1(ψ0(x)),

ψi(x,p(t)) := ψ̇i−1(x,p(t)) + pi(t)αi(ψi−1(x,p(t))),

i ∈ {2, 3, · · · ,m},
(11)

where αi(·), i ∈ {1, 2, · · · ,m−1} is a (m−i)th order differentiable class K function, and αm(·)
is a class K function.

We further define a sequence of sets Ci, i ∈ {1, 2, · · · ,m} associated with (11) in the form:

C1 := {x ∈ R
n : ψ0(x) ≥ 0},

Ci := {(x,p(t)) ∈ R
n × R

m : ψi−1(x,p(t)) ≥ 0}, i ∈ {2, 3, · · · ,m}
(12)

The remaining question is how to choose pi(t), i ∈ {1, 2, · · · ,m}. We require that pi(t) ≥
0, ∀i ∈ {1, 2, · · · ,m−1}, therefore we define each pi(t) to be an HOCBF, similar to the definition
of b(x) ≥ 0 in Definition 3.1. Just like b(x) is associated with the dynamic system (1), we
need to introduce an auxiliary dynamic system for pi(t). Moreover, as in Definition 3.1, each
penalty function pi(t), i ∈ {1, 2, · · · ,m−1} will be differentiated m− i times, while pm(t) is not
differentiated. Thus, we start by defining πi(t) := (πi,1(t), πi,2(t), · · · , πi,m−i(t)) ∈ R

m−i, i ∈
{1, 2, · · · ,m− 2}, where πi,j ∈ R, j ∈ {1, 2, · · · ,m− i} are the auxiliary state variables. Next,
we define πm−1(t) = pm−1(t) ∈ R which needs to be differentiated only once. Finally, we
set pm(t) ≥ 0 as some function to be determined and set πi,1(t) = pi(t) in (11). We define
input-output linearizable and controllable auxiliary dynamics for each pi (we henceforth omit
the time variable t for simplicity) through the auxiliary state πi in the form:

π̇i = Fi(πi) +Gi(πi)νi, i ∈ {1, 2, · · · ,m− 1},
yi = pi,

(13)

where yi denotes the output, Fi : R
m−i → R

m−i, Gi : R
m−i → R

m−i, and νi ∈ R denotes
the control input for the auxiliary dynamics (13). The exact form of Fi, Gi is mainly used to
guarantee the non-negative property of pi shown later, and it will determine the conservativeness
of this Parameter Adaptive CBF (PACBF) method. For simplicity, we usually adopt linear
forms. For example, we define ṗm−2 = πm−2,2, π̇m−2,2 = νm−2 since we need to differentiate
pm−2 twice as in Definition 3.1, and define ṗm−1 = νm−1 since we need to differentiate pm−1

once. We can initialize πi(0) to any vector as long as pi(0) > 0.
An alternative way of viewing (13) is by defining a set of additional state variables which

cause the dynamic system (1) to be augmented. In particular, let Π := (π1,π2, · · · ,πm−1),
ν := (ν1, ν2, · · · , νm−1), where νi, i ∈ {1, 2, · · · ,m− 1} are the controls in the auxiliary dynam-
ics (13). In order to properly define the PACBF, we augment the system (1) with the auxiliary
dynamics (13) in the form:

⎡

⎣ ẋ

Π̇

⎤

⎦=

⎡

⎣ f(x)

F0(Π)

⎤

⎦

︸ ︷︷ ︸
F (x,Π)

+

⎡

⎣ g(x) 0

0 G0(Π)

⎤

⎦

︸ ︷︷ ︸
G(x,Π)

⎡

⎣ u

ν

⎤

⎦ , (14)
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where F0(Π) = (F1(π1), F1(π2), · · · , Fm−1(πm−1)) and G0(Π) is a matrix composed by
Gi(πi), i ∈ {1, 2, · · · ,m−1} with dimension m(m−1)

2 ×(m−1). F : R
n+ m(m−1)

2 → R
n+ m(m−1)

2 , G :
R

n+ m(m−1)
2 → R

(n+ m(m−1)
2 )×(q+m−1) are the augmented dynamics functions (matrix).

Since pi is an HOCBF with relative degreem−i for (13), similar to (8), we define a constraint
set Ucbf (Π) for ν:

Ucbf (Π) = {ν ∈ R
m−1 : Lm−i

Fi
pi + [LGiL

m−i−1
Fi

pi]νi + S(pi)

+αm−i(ψi,m−i−1(pi)) ≥ 0, ∀i ∈ {1, 2, · · · ,m− 1}}, (15)

where ψi,m−i−1(·) is defined similar to (6).

Definition 3.4 (see [41]) Let Ci, i ∈ {1, 2, · · · ,m} be defined by (12), ψi(x,p), i ∈
{1, 2, · · · ,m} be defined by (11), and the auxiliary dynamics be defined by (13). A func-
tion b : R

n → R is a Parameter Adaptive Control Barrier Function (PACBF) with relative
degree m for (1) if every pi, i ∈ {1, 2, · · · ,m− 1} is an HOCBF with relative degree m− i for
the auxiliary dynamics (13), and there exist (m − i)th order differentiable class K functions
αi, i ∈ {1, 2, · · · ,m− 1}, and a class K function αm such that

sup
u∈U,ν∈Ucbf

[Lm
F b(x) + [LGL

m−1
F b(x)]u + S(b(x),p,ν) + pmαm(ψm−1(x,p))] ≥ 0, (16)

for all x ∈ C1, (x,p) ∈ C2 ∩ C3 ∩ · · · ∩ Cm, and all pm ≥ 0. In (16), S(b(x),p) denotes the
remaining Lie derivative terms of b(x) (or p) along f (or Fi, i ∈ {1, 2, · · · ,m− 1}) with degree
less than m (or m− i), similar to the form in (8).

Given a PACBF b(x), we consider all control values (u,ν) ∈ U × Ucbf (Π) that satisfy:

Kacbf(x,Π) = {(u,ν) ∈ U × Ucbf (Π) : Lm
F b(x) + [LGL

m−1
F b(x)]u

+S(b(x),p,ν) + pmαm(ψm−1(x,p)) ≥ 0}. (17)

Theorem 3.5 (see [41]) Given a PACBF b(x) from Definition 3.4 with the associated
sets C1, C2, · · · , Cm defined by (12), if x(0) ∈ C1 and (x(0),p(0)) ∈ C2 ∩ C3 ∩ · · · ∩ Cm, then
any Lipschitz continuous controller (u(t),ν(t)) ∈ Kacbf (x(t),Π(t)), ∀t ≥ 0 renders the set C1

forward invariant for the system (1) and C2∩C3∩· · ·∩Cm forward invariant for the systems (1),
(13), respectively.

Remark 3.6 (Adaptivity of PACBFs) In the PACBF constraint (16), the control u of
the system (1) depends on the controls νi, ∀i ∈ {1, 2, · · · ,m−1} of the auxiliary dynamics (13).
The control νi is only constrained by the HOCBF constraint in (15) since we require that pi is
a HOCBF, and there are no control bounds on νi. Therefore, we partially relax the constraints
on the control input of the system (1) in the PACBF constraint (16) by allowing the penalty
function pi(t), ∀i ∈ {1, 2, · · · ,m} to change through ν. However, the forward invariance of the
set C1 is still guaranteed, i.e., the original constraint b(x) ≥ 0 is guaranteed to be satisfied.
This is how a PACBF provides “adaptivity”. Note that we may not need to define a penalty
function pi for every class K function αi(·) in (11); we can instead define penalty functions for
only some of them.
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By properly defining the auxiliary dynamics (13), we can show that the satisfaction of the
PACBF constraint (16) is a necessary and sufficient condition for the satisfaction of the original
safety constraint b(x) ≥ 0. This implies that we can address the conservativeness of the existing
CBF method with the PACBF method. As a result, we can show that the PACBF can guarantee
problem feasibility under time-varying control bounds and noisy dynamics[41]. The definition
of the auxiliary dynamics (13) depends on the exact problem, and is an ongoing research topic.
In addition, we would also like to stabilize all the penalty functions to some desired values
using CLFs in order to make sure the system is stable, as described in [41]. Another form
of adaptive CBF, which is simpler and is called Relaxation Adaptive CBF (RACBF), is also
proposed in [41].

Up to this point, we have assumed that the system dynamics are accurately modeled. This
is actually an assumption which may be strong to make; in fact, accurate dynamics are often
hard to identify, especially for time-varying systems. One approach for addressing this issue is
presented in the next section.

3.4 Safety Guarantees for Systems with Unknown Dynamics: An Event-Driven
Approach

In order to determine accurate dynamics for systems with uncertainties, the use of machine
learning techniques was proposed in [42]. This, however, is computationally expensive and is
not guaranteed to yield sufficiently accurate dynamics for the CBF method. Alternatively, the
use of piecewise linear systems was proposed in [43], which is also computationally expensive.
These approaches fail to work for systems (such as time-varying systems) that require on-line
model identification. We describe next a recently introduced approach[44] which can guarantee
safety for systems with unknown dynamics. This approach still relies on the CBF-based QP
method[19]. The complete solution consists of four steps:

Step 1 Define adaptive affine dynamics. Our motivation is that we need affine dynam-
ics of the form (1) in order to apply the CBF-based QP approach. We define affine dynamics
that have the same relative degree for the safety constraint b(x) ≥ 0 as the real system (as-
suming this information is available) in order to estimate the real unknown dynamics in the
form:

ẋ = fa(x) + ga(x)u (18)

where fa : R
n → R, ga : R

n → R
n×q, and x ∈ X ⊂ R

n is the state vector corresponding to x in
the unknown dynamics. Since fa(·), ga(·) in (18) can be adaptively updated to accommodate
the real unknown dynamics, as shown in [44], we refer to (18) as the adaptive affine dynamics.
The real unknown dynamics and (18) are related through the error states obtained from the
real-time measurements of the system and the integration of (18). Theoretically, we can take
any affine dynamics in (18) to model the real system as long as their states are of the same
dimension and with the same physical interpretation within the plant. Clearly, we would like
the adaptive dynamics (18) to “stay close” to the real dynamics.

Step 2 Find an HOCBF that guarantees b(x) ≥ 0. Based on (18), the error state
and its derivatives, we use an HOCBF to enforce b(x) ≥ 0.
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Step 3 Formulate the CBF-based QP. We formulate the problem using a CBF-CLF-QP
approach[19] as shown in (5), with a CBF replaced by an HOCBF[34] if m > 1.

Step 4 Determine the events required to solve the QP and the condition that
guarantees the satisfaction of b(x) ≥ 0 between events. Since there is obviously a
difference between the adaptive affine dynamics (18) and the real unknown dynamics, in order
to guarantee safety in the real system, we bound the state of the adaptive dynamics, the error
state between (18) and the real (observed) system state, and the derivatives of the error state
at a certain time step. Then we need to properly define the following events to solve the QP:

• Event 1 the error state is about to exit the defined bound.

• Event 2 the derivative of the error state is about to exit the defined bound.

• Event 3 the state of (18) reaches the boundaries of the defined bound.

In other words, these events are equivalent to determining the times tk, k = 1, 2, · · · (t1 = 0)
at which the QP must be solved in order to guarantee the satisfaction of b(x) ≥ 0 for the real
unknown dynamics.

The proposed solution framework is shown in Figure 2 where we note that we apply the
same control from the QP to both the real unknown dynamics and (18). Technical details of
this framework and simulation examples illustrating its effectiveness are given in [44].

Figure 2 The solution framework for an optimal control problem with safety constraints

and the connection between the real unknown dynamics and the adaptive affine

dynamics (18). The state x is obtained from the sensor measurements of the plant

Thus far, the solution to the problem (5) is focused on ensuring safety guarantees for an
optimal control problem whose objective includes several aspects not included in (5). Therefore,
these solutions are sub-optimal relative to the original optimal control problem of interest. To
address this issue, we describe next a joint Optimal Control and Barrier Function (OCBF)
framework.

4 Bridging the Gap Between Optimal Planning and Safety-Critical

Control: The OCBF Approach

In this section, we first present a general-purpose safety-critical optimal control problem,
and then overview a joint Optimal Control and Barrier Function (OCBF) framework introduced
in [27] to solve it.
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Objective (Cost minimization) Consider an optimal control problem for the system (1)
with the cost defined as:

J =
∫ tf

t0

[β + C(x,u, t)]dt+ p||x(tf ) − X||2, (19)

where t0, tf denote the initial and final times, respectively, and C : R
n ×R

q × [t0, tf ] → R
+ is a

cost function. The parameter β ≥ 0 is used to capture a trade-off between the minimization of
the time interval (tf − t0) and the operational cost C(x,u, t). p > 0,X ∈ X , and the terminal
time tf is generally free (unspecified). It is also possible that all or some of the terminal state
variables in x(tf ) are constrained, in which case we include xj(tf ) = xf for all such state
variables xj .

Constraint 1 (Safety constraints) Let So denote an index set for a set of safety constraints.
System (1) should always satisfy

bj(x(t)) ≥ 0, ∀t ∈ [t0, tf ], (20)

where each bj : R
n → R, j ∈ So is continuously differentiable.

Constraint 2 (Control constraints) These are provided by the control constraint set defind
as

umin ≤ u ≤ umax, (21)

where the inequality is interpreted componentwise, and umin ∈ R
q,umax ∈ R

q.
Constraint 3 (State constraints) System (1) should always satisfy the state constraints

(componentwise):
xmin ≤ x(t) ≤ xmax, ∀t ∈ [t0, tf ], (22)

where xmin ∈ R
n and xmax ∈ R

n. Note that we distinguish the state constraints from the safety
constraints in (20) since the latter are viewed as hard, while the former usually capture system
capability limitations that can be relaxed to improve the problem feasibility; for example, in
traffic networks vehicles are constrained by upper and lower speed limits.

Problem 4.1 Find a control policy for the system (1) such that the cost (19) is minimized,
constraints (20), (21), and (22) are strictly satisfied.

The cost in (19) can be properly normalized by defining β :=
α supx∈X,u∈U,τ∈[t0,tf ] C(x,u,τ)

(1−α)

where α ∈ [0, 1) and then multiplying (19) by α
β . Thus, we construct a convex combination as

follows:

J =
∫ tf

t0

(

α+
(1 − α)C(x,u, t)

supx∈X,u∈U,τ∈[t0,tf ] C(x,u, τ)

)

dt. (23)

If α = 1, then we solve (19) as a minimum time problem. The normalized cost (23) facilitates a
trade-off analysis between the two metrics. However, we will use the simpler cost expression (19)
throughout this paper. Thus, we can take β ≥ 0 as a weight factor that can be adjusted to
penalize time relative to the cost C(x,u, t) in (19).

Approach Step 1 We use Hamiltonian analysis[7] to obtain an optimal control u∗(t) and
optimal state x∗(t), t ∈ [t0, tf ] for the cost (19) and the system (1), under the terminal state
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constraint in (19), the safety constraints (20), and the control and state constraints (21), (22).
The goal here is to derive a tractable analytical solution to the problem within some given
real-time computational constraints. To accomplish this, we may linearize or appropriately
simplify the dynamics (1)[45]. We may also omit some or all of the state and control constraints
in the problem. The final solution is denoted by u∗(t) and the corresponding state trajectory
by x∗(t).

Step 2 There are usually unmodelled dynamics and measurement noise in (1). Thus, we
consider a modified version of the system (1) to denote the real dynamics:

ẋ = f(x) + g(x)u + w, (24)

where w ∈ R
n denotes all unmodeled uncertainties in the dynamics. We consider x as a

measured state which includes the effects of such unmodelled dynamics and measurement
noise and which can be used in what follows. Allowing for the noisy dynamics (24), we set
uref (t) = h(u∗(t),x∗(t),x(t)) where h : R

q ×R
n ×R

n → R
q is a state feedback control. In the

simplest possible case, we set uref (t) = u∗(t). More generally, as in the traffic merging control
problem[27] presented in the next section, uref(t) depends on the optimal position, optimal
control and the actual vehicle position. We then use the CBF method to track the optimal
control as a reference, i.e.,

min
u(t)

∫ tf

t0

||u(t) − uref (t)||2dt (25)

subject to (i) the CBF constraints (3) corresponding to the safety constraints (20), (ii) the state
constraints (22), and (iii) the control constraints (21). In order to better track the optimal state
x∗(t) and minimize the deviation ||x(tf )−X||2 from the terminal state constraint, we also define
a CLF V (x−x∗). Thus, the cost (25) is also subject to the corresponding CLF constraint (4).
The resulting problem can then be solved by the approach described at the end of Section 2.
Full details are given in [27].

5 An OCBF Application: The Traffic Merging Control Problem

In this section, we present an application of the OCBF framework which arises in a traffic
merging problem. This problem occurs when traffic must be joined from two different roads,
usually associated with a main lane and a merging lane as shown in Figure 3. We consider the
case where all traffic consists of Connected Autonomous Vehicles (CAVs) randomly arriving at
the two lanes joined at the Merging Point (MP) M where a collision may occur. The segment
from the origin O or O′ to the merging point M has a length L for both lanes, and is called the
Control Zone (CZ). We assume that CAVs do not overtake each other in the CZ. A coordinator
is associated with the MP whose function is to maintain a First-In-First-Out (FIFO) queue
of all CAVs regardless of lanes based on their arrival time at the CZ and to enable real-time
communication with the CAVs that are in the CZ as well as the last one leaving the CZ.
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Figure 3 The merging problem: A lateral collision may occur at the MP and rear-end colli-

sions may occur everywhere within the CZ

Let S(t) be the set of the FIFO-ordered indices of all CAVs located in the CZ at time t
along with the CAV (whose index is 0 as shown in Figure 3) that has just left the CZ. Let N(t)
be the cardinality of S(t). Thus, if a CAV arrives at time t, it is assigned the index N(t). All
CAV indices in S(t) decrease by one when a CAV passes over the MP and the vehicle whose
index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the lane to which it belongs takes the
form ⎡

⎣
ẋi(t)

v̇i(t)

⎤

⎦ =

⎡

⎣
vi(t)

ui(t)

⎤

⎦ , (26)

where xi(t) denotes the distance to the origin O (O′) along the main (merging) lane if the
vehicle i is located in the main (merging) lane, vi(t) denotes the velocity, and ui(t) denotes
the control input (acceleration). We consider two objectives for each CAV subject to three
constraints, as detailed next.

Objective 1 (Minimize travel time): Let t0i and tmi denote the time that CAV i ∈ S(t)
arrives at the origin O or O′ and the merging point M , respectively. We wish to minimize the
travel time tmi − t0i for CAV i.

Objective 2 (Minimize energy consumption): We also wish to minimize the energy con-
sumption for each CAV i ∈ S(t) expressed as

Ji(ui(t)) =
∫ tm

i

t0i

C(ui(t))dt, (27)

where C(·) is a strictly increasing function of its argument.
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Constraint 1 (Safety constraints): Let ip denote the index of the CAV which physically
immediately precedes i in the CZ (if one is present). We require that the distance zi,ip(t) :=
xip(t) − xi(t) be constrained by the speed of i ∈ S(t):

zi,ip(t) ≥ ϕvi(t) + δ0, ∀t ∈ [t0i , t
m
i ], (28)

where ϕ denotes the reaction time (as a rule, ϕ = 1.8 is used, e.g., [46]). If we define zi,ip to be
the distance from the center of CAV i to the center of CAV ip, then δ0 is a constant determined
by the length of these two CAVs (generally dependent on i and ip but taken to be a constant
over all CAVs for simplicity).

Constraint 2 (Safe merging): There should be enough safe space at the MP M for a
merging CAV to cut in, i.e.,

z1,0(tm1 ) ≥ ϕv1(tm1 ) + δ0. (29)

Constraint 3 (Vehicle limitations): Finally, there are constraints on the speed and accel-
eration for each i ∈ S(t):

vmin ≤ vi(t) ≤ vmax, ∀t ∈ [t0i , t
m
i ],

umin ≤ ui(t) ≤ umax, ∀t ∈ [t0i , t
m
i ],

(30)

where vmax > 0 and vmin > 0 denote the maximum and minimum speed allowed in the CZ,
umin < 0 and umax > 0 denote the minimum and maximum control, respectively.

The common way to minimize energy consumption is by minimizing the control input effort
u2

i (t). By normalizing travel time and u2
i (t), and using α ∈ [0, 1], we construct a convex

combination as follows:

min
ui(t)

Ji(ui(t)) =
∫ tm

i

t0i

(

α+
(1 − α)1

2u
2
i (t)

1
2 max{u2

max, u
2
min}

)

dt. (31)

Letting β := α max{u2
max,u2

min}
2(1−α) , we obtain a simplified form:

min
ui(t)

Ji(ui(t)) := β(tmi − t0i ) +
∫ tm

i

t0i

1
2
u2

i (t)dt, (32)

where β ≥ 0 denotes a weight factor that can be adjusted to penalize travel time relative to the
energy cost.

Then, we have the following problem formulation:

Problem 5.1 For each CAV i ∈ S(t) governed by dynamics (26), determine a control law
such that (32) is minimized subject to (26), (28), (29), (30), given the initial time t0i and the
initial and final conditions xi(t0i ) = 0, xi(tmi ) = L, vi(t0i ).

In addition, we may include the possibility of system model uncertainties, errors due to
signal transmission, as well as computation errors. Therefore, we add two noise terms in (26)
to get ⎡

⎣ ẋi(t)

v̇i(t)

⎤

⎦ =

⎡

⎣ vi(t) + wi,1(t)

ui(t) + wi,2(t)

⎤

⎦ , (33)



SAFETY-CRITICAL OPTIMAL CONTROL FOR AUTONOMOUS SYSTEMS 1739

where w = (wi,1, wi,2), wi,1(t), wi,2(t) denote two random processes defined in an appropriate
probability space.

Referring to Figure 3, in our simulation examples CAVs arrive according to Poisson processes
with arrival rates that we allow to vary. The initial speed vi(t0i ) is also randomly generated
with uniform distribution in [15, 20] m/s at the origins O and O′, respectively. The simulation
parameters are: L = 400 m, ϕ = 1.8 s, δ0 = 0 m, umax = 3.924 m/s2, umin = −3.924 m/s2,
vmax = 30 m/s, vmin = 0 m/s, β = 1, c3 = 10, Δt = 0.1 s, and we consider uniformly distributed
noise processes (in [−2, 2] for wi,1(t) and in [−0.2, 0.2] for wi,2(t)) for all simulations. The value
of Δt is chosen as small as possible, depending on computational resources available, in order
to address the inter-sampling effect on the HOCBFs and maintain a guaranteed satisfaction of
all constraints.

We show in Figure 4 how the travel time and energy consumption vary as the weight factor
α in (31) changes. The significance of Figure 4 is to show how closely the OCBF controller can
match the optimal performance (upper bound) obtained through optimal control OC. Examples
of the barrier function profiles for the safety constraint (28) under known (the CBF formulation
is given in [27, 47]) and unknown noise bound W of w are shown in Figure 5. If W is
known, the safety constraint (28) is guaranteed with some conservativeness; otherwise, the
safety constraint (28) is satisfied most of the time without conservativeness.

Figure 4 Travel time and energy consumption as the factor α changes

Figure 5 Barrier function b(x) under noise wi,1(t) ∈ [−4, 4] m/s, wi,2(t) ∈ [−0.4, 0.4] m/s2.

b(x) ≥ 0 denotes the satisfaction of the safety constraint (28)
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6 Conclusion

We have provided an overview of safety-critical optimal control problems where a planning
phase determines a trajectory to be followed and a real-time execution phase is primarily re-
sponsible for guaranteeing that strict safety constraints are always satisfied. For this second
phase, we have described how Control Barrier Functions (CBFs) and Control Lyapunov Func-
tions (CLFs) can be used to generate a sequence of QPs which are computationally efficient
to solve in real time. The applicability of CBFs rests on several remaining research challenges
which we have discussed how to address, including how to ensure the feasibility of the QPs and
how to deal with unknown system dynamics through the use of event-driven methods. We have
also overviewed a framework that combines Optimal Control with CBFs, giving rise to OCBF
controllers which can lead to near-optimal solutions while guaranteeing safety constraints even
in the presence of noisy dynamics.
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