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Abstract This paper studies a novel trajectory tracking guidance law for a quadrotor unmanned

aerial vehicle (UAV) with obstacle avoidance based on nonlinear model predictive control (NMPC)

scheme. By augmenting a reference position trajectory to a reference dynamical system, the authors

formulate the tracking problem as a standard NMPC design problem to generate constrained refer-

ence velocity commands for autopilots. However, concerning the closed-loop stability, it is difficult to

find a local static state feedback to construct the terminal constraint in the design of NMPC-based

guidance law. In order to circumvent this issue, the authors introduce a contraction constraint as a

stability constraint, which borrows the ideas from the Lyapunov’s direct method and the backstepping

technique. To achieve the obstacle avoidance extension, the authors impose a well-designed potential

field function-based penalty term on the performance index. Considering the practical application, the

heavy computational burden caused by solving the NMPC optimization problem online is alleviated by

using the dynamical adjustment of the prediction horizon for the real-time control. Finally, extensive

simulations and the real experiment are given to demonstrate the effectiveness of the proposed NMPC

scheme.
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1 Introduction

In recent years, the applications of quadrotor unmanned aerial vehicles (UAVs) have signif-
icantly widened for diverse areas, such as aerial surveillance, transportation and power lines’
maintenance[1]. Various autonomous commercial platforms appear on the market and become
preferable, such as DJI and Parrot[2, 3]. For such ready-to-fly platforms, since the low-level
autopilots are able to follow the given velocity references, users only need to design a guid-
ance system (guidance law) in the outer loop that accesses position and velocity data from
onboard sensors and sends guidance signals (velocity references signals) to the autopilot for
transnational motion. Although these platforms facilitate the control system design, they also
subject to the system constraints, e.g., the allowed maximum magnitude of input commands
for autopilots and the limited computing power of onboard processors. Therefore, the motion
controller design for such quadrotors up to today is stilling challenging.

Among diverse applications, trajectory tracking control, as one of the most critical motion
control problems, has been receiving a growing interest. Linearization methods, such as feedback
linearization[4] or Jacobian linearization[5], provide useful tools to cope with the nonlinearities.
However, the main contradiction is that it requires accurate system model parameters, while
they are rarely identified accurately. In order to tackle the parametric uncertainties, nonlin-
ear control techniques are extensively resorted. In [6], a sliding mode controller is combined
with a nonlinear extended state observer for the robust finite-time tracking control of wheeled
mobile robots. This kind of combination is also applied to the quadrotor high stabilization
flight control[7]. The Lyapunov-basd backstepping control (LBSC) is a mainstream method
for tracking control of quadrotors because it can achieve the asymptotically stability subject
to bounded disturbances[8]. In order to ensure the flight safety in constrained environments
such as [2, 9], some collision avoidance strategies have been combined with these approaches
for the integrated trajectory tracking and collision avoidance[10, 11]. Although the prescribed
performance tracking control method in [12] addresses the performance constraints, it as well
as the preceding control methods rarely consider input constraints explicitly in practical appli-
cations. Input constraints are often discarded in the controller design phase and then treated
by heuristics, e.g., in terms of “saturation”and “antiwindup”. In [13], the authors introduced
a saturation function-based auxiliary system to counteract the input saturation in the design
of SMC for attitude tracking. However, these heuristics don’t consider the performance index
with respect to power consumption explicitly and may result in poor control performances, and
at least lose a certain degree of “optimality”. Therefore, it is essential to design a trajectory
tracking control scheme accounting for input constraints while achieving acceptable tracking
performance.

An efficient alternative is model predictive control (MPC) because of its capability of han-
dling control constraints systematically. The flexibility in formulating control problems allows
MPC to digest any nonlinearity or time-varying characteristics of system models[14]. The salient
features of handling system constraints and ensuring prescribed performance index make MPC
widely used in chemical industry[15], industrial manipulators[16], aerospace engineering[17], mo-
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bile robots[18]. Such an advanced control approach gradually becomes an appealing option
for quadrotor guidance and control problems[3, 19]. In [3], a robust MPC law is design for
an AR.Drone quadrotor for the waypoint tracking problem with the input constraint. In [19],
flatness-based MPC for quadrotor trajectory tracking is proposed for balancing tracking perfor-
mance and constraint satisfaction with fast computation. However, the classical MPC strategy
for the motion control problem of quadrotor UAVs is quite limited because it is hard to find a
local continuous time-invariant state feedback to design its terminal constraint for closed-loop
stability by using linear matrix inequalities[20], or a feedback controller by using linearization
is hard to be implemented in engineering[21]. Although the nonlinear MPC (NMPC) strat-
egy with the large prediction horizon in [22] can remove the requirement for the terminal
constraint, it greatly increases the computational complexity of solving NMPC optimization
problem. Therefore, it is necessary to find a novel NMPC formulation that can make the
tradeoff between specifying the maximum prediction horizon length without destabilizing the
tracking control. In the NMPC framework, the most general treatments for collision avoidance
rely on the collision avoidance constraint[23, 24]. Since the recursive feasibility is not considered
in these works, these treatments may result in unfeasible problems.

Motivated by the above considerations, in order to handle the aforementioned issues, we
aim to propose a stable trajectory-tracking guidance law based on a novel NMPC scheme. This
guidance law generates the constrained reference velocity commands for autopilots to follow
given reference trajectories. The specific contributions of this paper are as follows:

1) A novel NMPC optimization problem formulation for the integrated trajectory track-
ing and obstacle avoidance guidance law is proposed such that we can exploit the kinematic
properties of the UAV motion under the reference velocity constraint. The obstacle avoidance
capability is achieved by imposing a well-designed penalty term on the performance index,
which is inspired by the artificial potential field approach.

2) For the quadrotor system, we introduce a stability constraint in our proposed NMPC-
based trajectory tracking guidance law to guarantee the closed-loop stability and achieve the
acceptable tracking performance. This stability constraint is derived from a time-varying state
feedback auxiliary controller, which borrows the ideas from Lyapunov’s direct method and
backstepping approach.

3) The proposed NMPC scheme in essence provides a tradeoff between control performance
and computational burden, which introduces an effective mechanism for reducing the computa-
tional burden with acceptable tracking performance. Extensive simulations and the experiment
demonstrate its prominent performance.

The remainder of this article is organized as follows: In Section 2, the quadrotor UAV model
is described and the trajectory tracking and obstacle avoidance problem is formulated. Sec-
tion 3 presents the regularized NMPC optimization problem for trajectory tracking and obstacle
avoidance. In Section 4, the auxiliary controller development and theoretical analysis of recur-
sive feasibility and closed-loop stability are detailed. In Section 5, simulation and experimental
results are provided to demonstrate the effectiveness and robustness of the proposed NMPC
algorithm. In Section 6, some conclusive remarks and future work are discussed.
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Notations: The absolute value is denoted by | · |, the Euclidean norm is denoted by || · ||
and the infinity norm is denoted by || · ||∞. ||x||2P denotes the weighted norm xTPx, where
P is a positive-definite matrix. η̇ and η̈ denote the derivative and the second derivative of η

with respect to time. The column operation [xT
1 ,x

T
2 , · · · ,xT

n ]T is written as col(x1,x2, · · · ,xn).
The superscript “T” represents the transposition, diag(·) denotes the diagonal operation and
max{·} is the maximum elements of an array. The internal variables in the NMPC controller
are denoted by a hat (x̂, û) to indicate the predicted values.

2 Preliminaries and Problem Formulation

2.1 Quadrotor UAV Modeling

For the translational motion of a quadrotor UAV, its kinematic equations can be described
with the yaw attitude as follows[25]:

η̇ = R(ψ)vb, (1)

where η = [x, y, z, ψ]T is the position and yaw vector in the inertial frame, vb = [u, v, w, r]T is
the velocity and yaw rate vector in the body frame,

R(ψ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

cos(ψ) − sin(ψ) 0 0

sin(ψ) cos(ψ) 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

is the rotation matrix from the body frame to the inertial frame. In the body frame, the pitch
and roll are considered to be neglectable. u and v are lying in xoy plane, where u is pointing
to the front of the quadrotor and v to the left. w is aligned with the inertial frame z.

For commercial quadrotors, the measurements for the force, torque and rotor speed are
unavailable in the closed-source configuration so that the Euler-Lagrange equations can not an-
alyze the cause of the motion. Its relationship between the velocity responses and the reference
velocity commands in the forward direction ux, sidewards uy, upwards uz and the yaw angular
velocity around the z-axis uψ is approximated by a following linear state space model via a
precise parameter identification[23]:

v̇b = Svb + Fu, (2)

where u = [ux, uy, uz, uψ]T, S = diag([as, bs, cs, ds]), F = diag([af , bf , cf , df ]), as = − 1
τx

,
bs = − 1

τy
, cs = − 1

τz
, ds = − 1

τψ
, af = Kx

τx
, bf = Ky

τy
, cf = Kz

τz
, df = Kψ

τψ
, Kx,Ky,Kz,Kψ > 0 are

gains and τx, τy, τz , τψ > 0 are time constants in the corresponding first-order transfer functions.
Based on these considerations, we establish the following dynamic model for a quadrotor UAV
trajectory tracking task:

ẋ =

⎡

⎣

R(ψ)vb

Svb + Fu

⎤

⎦

Δ= f(x,u), (3)

where x = col(η,vb) ∈ R
8 denotes the motion state and u ∈ R

4 is the control input.
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2.2 Problem Formulation

To better describe the control objective, we now formulate the integrated trajectory tracking
and obstacle avoidance problem. It is assumed that the environmental structure and obstacle
location have been obtained by using some exploration algorithms with the onboard sensors, and
thus a safe parameterized path S(θ) = [xrr(θ), yrr(θ), zrr(θ)]T with the path parameter θ can be
generated. Readers with an interest in the environment modeling can take reference to [26]. In
order to keep the quadrotor in a prescribed safe distance rs from the current quadrotor position
p(t) = [(x(t), y(t), z(t)]T to the obstacle position po and track the safe time-parameterized
reference trajectory ηr(t) = [xr(t), yr(t), zr(t), ψr(t)]T generated by S(θ), the real trajectory
η(t) and the input u(t) of the quadrotor system are driven to satisfy:

• Forward direction: The quadrotor moves along the trajectory in forward direction, e.g.,
ẋr(t) > 0;

• Trajectory convergence: η(t) converges to the reference trajectory ηr, e.g., limt→∞ ||η(t)−
ηr(t)|| = 0;

• Input constraint satisfaction: For all t ∈ [t0,+∞), the constraint on the input, e.g.,
||u(t)||∞ ≤ umax is satisfied, where umax is the maximum magnitude;

• Obstacle avoidance: ||p(t) − po|| ≥ rs.

3 Nonlinear Model Predictive Tracking Control

In this section, a reference trajectory augmentation is firstly generated. Next, the NMPC
optimization problem for the trajectory tracking and obstacle avoidance is formulated, where
the closed-loop stability is guaranteed.

3.1 Reference Trajectory Augmentation Generation

The reference path S(θ) describes the desired position in the inertial frame. In general,
θ is time-dependent. The time-parameterized reference position trajectory p(t) is generated
based on a predetermined timing law θ(t) = vtt, e.g., xr(t) = xrr(vtt), yr(t) = yrr(vtt), zr(t) =
zrr(vtt), where vt > 0 denotes the velocity of the path progress in forward direction. To avoid
singularities in the reference trajectory, we make the following assumption.

Assumption 3.1 The reference trajectory p(t) and its derivatives are bounded, satisfying
that: |xr(t)| ≤ x, |yr(t)| ≤ y, |zr(t)| ≤ z, |ẋr| ≤ x1, |ẏr| ≤ y1, |żr| ≤ z1, |ẍr| ≤ x2 , |ÿr| ≤ y2,
|z̈r| ≤ z2.

For a continuous and smooth reference path, Assumption 3.1 is easy to be satisfied. Together
with p(t) we have the reference augmentation as follows: Let xr(t) = col(ηr(t),vbr(t)) with

ηr(t) = [xr(t), yr(t), zr(t), ψr(t)]T,

vbr(t) = [ur(t), vr(t), wr(t), rr(t)]T,
(4)
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where

ψr(t) = atan2{ẏr(t), ẋr(t)},

ur(t) =
√

ẋ2
r(t) + ẏ2

r(t), vr(t) = 0, wr(t) = żr(t), rr(t) =
ẋr(t)ÿr(t) − ẍr(t)ẏr(t)

ẋ2
r(t) + ẏ2

r(t)
,

atan2{·} is the four-quadrant inverse tangent operator. The designed reference augmentation
system, on the one hand, is restrained by the nonholonomic constraint such that the quadrotor
modeled as the wheeled robots-like structure has smooth curve trajectory. On the other hand,
it ensures that the reference state xr(t) = col(ηr(t),vbr(t)) fulfills the kinematic property of
the UAV motion, that is, η̇r = R(ψr)vbr. Therefore, each state of the dynamic model has a
unique reference such that the singularity can be avoided.

Remark 3.1 The reference trajectory plays a momentous role in the trajectory tracking.
Note that an appropriate timing law of θ(t) may be carefully designed such that the reference
augmentation chosen in (4) fits the realistic constraints. Moreover, vt decides the forward
velocity of the quadrotor in the body frame. If vt is small, the forward speed is slow so that
the quadrotor spends more time to traverse the path. Instead, if it is large, it is hard for the
quadrotor to converge to the path within a limited distance considering the initial position error,
which may lead to an unsafe result. The influence of this parameter on trajectory tracking will
be discussed in the simulation.

3.2 Obstacle Avoidance

Existing works on MPC-based trajectory tracking control rarely consider obstacle avoidance[3, 19].
Inspired by [10, 11, 25], we perform the switching behavior between obstacle avoidance and tra-
jectory tracking by imposing the following cost function:

Joa(x(t)) =

⎧

⎨

⎩

λ, ||p(t) − po|| < rs (obstacle avoidance),

0, ||p(t) − po|| ≥ rs (trajectory tracking),
(5)

where λ > 0 is a well-tuned parameter according to the other goals in the system cost. Accord-
ingly, λ is chosen with a big enough value for the sake of dominating the obstacle avoidance
cost Jca so that obstacle avoidance is prioritized over trajectory tracking. However, the lack
of continuous differentiability at the condition border results in the non-differentiability of the
cost function. This problem can be tackled by using the following continuous potential field
function to approximate the obstacle avoidance behavior:

Joa(x(t)) ≈ ρ(t) =
λ

1 + e−k·d(t)
, (6)

where d(t) = r2s−(p(t)−po)T(p(t)−po), k > 0 is a positive constant that denotes the smoothness
of the obstacle avoidance trajectory. For the potential field function, the closer distance between
the obstacle and the quadrotor results in the higher potential value; otherwise, it has the lower
value, which can be omitted compared with the trajectory tracking goal in the cost function.
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Remark 3.2 As the k value increases, the obstacle avoidance trajectory becomes more
sharp, which results in that the system becomes more ill-conditioned and the optimization
problem is more difficult to be solved. Therefore, k should be well-tuned according to the
different environmental situations.

3.3 New Regularized NMPC Formulation

The relationship between the closed-loop state responses and the MPC control actions are
expressed implicitly, which may not explicitly indicate the stability property like Lyapunov-
based nonlinear controllers. Furthermore, due to the difference between predicted and closed-
loop responses, there is no guarantee that an MPC controller based on a finite-horizon cost
will achieve stability in the closed-loop operation[27]. In other words, the switching behavior
from the avoidance to tracking may probably cause the unstability. Therefore, we regularize
the NMPC optimization problem for the integrated trajectory tracking and obstacle avoidance
and introduce a contraction constraint as a stability constraint to guarantee the closed-loop
stability[28]. Based on the generated reference augmentation, a new regularized finite-horizon
NMPC formulation (P0(x)) for the quadrotor trajectory tracking and obstacle avoidance guid-
ance at time tk is established as follows:

P0(x) : min
û(·)

J =
∫ tk+T

tk

||x̃(s; tk)||2Q + Joa(x̂(s; tk)) + ||û(s; tk)||2R ds (7a)

s.t. ˙̂x(s; tk) = f(x̂(s; tk), û(s; tk)), s ∈ [tk, tk + T ], (7b)

x̂(tk; tk) = x(tk), (7c)

||û(s; tk)||∞ ≤ umax, s ∈ [tk, tk + T ], (7d)

∂V

∂x
f(x̂(tk; tk), û(tk; x̂(tk; tk))) ≤ ∂V

∂x
f(x̂(tk; tk),h(x̂(tk; tk))), (7e)

where x̃ = x̂ − xr is the predicted error state, T is the prediction horizon, Q and R are the
positive-definite weighting matrices that define the cost. h(x) is the Lyapunov-based nonlinear
tracking control law, V (x) is the corresponding Lyapunov function.

Note that the performance index J includes integral operations and the constraints en-
compass derivative operations. Both the integral and derivative operations are performed nu-
merically under the assumption that the discretization is stable with sufficient accuracy. The
prediction horizon is divided into N steps. The step size δ is decided by δ = T/N , which is
interpreted as the sampling period. For (P0(x)), the discretized version (P1(x)) is solved at
each sampling time tk:

P1(x) min
ûi

J =
N

∑

i=0

(||x̃i||2Q + ||ûi||2R + Joa(x̂i))δ (8a)

s.t. x̂i+1 = x̂i + f(x̂i, ûi)δ, (8b)

x̂0 = x(tk), (8c)

cin(x̂i, ûi) ≤ 0, (8d)
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where cin(x̂i, ûi) ≤ 0 stands for the vector-valued inequality constraint including the input
constraint and the stability constraint. The UAV system model (3) is discretized and denoted
by xi+1 = xi + f(xi,ui)δ with xi = x(iδ) and ui = u(iδ).

From (7e), it can be seen that the proposed NMPC scheme inherits the stability property of
h(x), which introduces the flexibility between control performance and computational efficiency.
Obviously, it allows for specifying the prediction horizon without destabilizing the closed-loop
system. In other words, it essentially improves the control performance and further reduces the
computational complexity. Rather the prediction horizon can be adjusted properly in order to
reduce the size of the NMPC optimization for the real-time control if the control algorithm is
running on the low-cost onboard processor. Therefore, it is promising for such processors to
perform the proposed NMPC. By virtue of the feedback of the computation time tp for each
iteration in real time, this adjustment is integrated into the NMPC scheme. The proposed
NMPC algorithm is briefly described in Algorithm 1, where ΔN is the prediction horizon
increment (or decrement), ω ∈ (0, 1) is the well-tuned weighting coefficient. The schematic
illustration of the NMPC-based trajectory tracking guidance is shown in Figure 1.

Algorithm 1 NMPC Algorithm
1: Input the objective function J in (8)
2: Receive the measured state x(tk) from the onboard sensors
3: Solve the optimization problem (P(x)) with x̂0 = x(tk) and generate the (sub-) optimal

solution U∗ = [û∗
0, û

∗
1, · · · , û∗

N−1]
4: Record the computational time tp. If tp > δ then set N = N − ΔN ; else if tp < ωδ then

set N = N + ΔN ; else N = N

5: Implement the control input u(t) = û∗
0 for one sampling period

6: k = k + 1, tk+1 = tk + δ, go to Step 2.

Figure 1 NMPC-based guidance system diagram

Remark 3.3 As far as the nonlinear dynamics are concerned, the optimization problem
presents generic nonlinear programming problems, which is solved by the iterative optimization
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algorithm SQP in numerical simulations and the efficient numerical algorithm C/GMRES in
engineering practice. Since the best guaranteed solution to (7) is a local optimum, the subopti-
mal solutions are acceptable. Moreover, for the optimal solutions, their quality can be improved
by prolonging the prediction horizon, which increases the computational burden accordingly.
Owing to the stability constraint, the compatibility with suboptimal solutions introduces the
flexibility between computational efficiency and control performance. For low-cost commercial
platforms with limited computational resource, we can cut down the prediction horizon length
for real-time control without destabilizing the tracking control.

4 Closed-Loop System Stability

The improved NMPC formulation for trajectory tracking and obstacle avoidance control of
a quadrotor is presented above. Subsequently, we will discuss the design of the auxiliary state
feedback control law h(x) for the stability constraint. The closed-loop stability is analyzed
theoretically.

4.1 Auxiliary State Feedback Control Law Design

In the framework of the traditional MPC, a feasible input sequence candidate is composed
of the optimized input sequence without the first element at the last time instant and a local
stabilizing law. If an initial feasible solution is assumed, the recursive feasibility can be proved
by inductive principle[29]. For (P0(x)), it admits recursive feasibility if the auxiliary control law
h(x) can be treated as a feasible solution under the condition that ||h(x)||∞ ≤ umax can hold.
In fact, we can construct h(x) by using any Lyapunov-based controller design technique. Con-
sidering the Lyapunov-based backstepping controller is extensively used in quadrotor systems,
we construct h(x) by using the backstepping technique.

Consider a Lyapunov candidate as follows:

V1 =
1
2
zT

1 z1, (9)

where z1 = ηr − η is the position error. Then,

V̇1 = zT
1 ż1 = zT

1 [η̇r −R(ψ)vb] + α1z
T
1 z1 − α1z

T
1 z1, (10)

where α1 > 0 is one of the LBSC parameters.
Further define the velocity error in the inertial frame

z2
Δ= η̇r −R(ψ)vb + α1z1 = ż1 + α1z1. (11)

Then,
ż2 = η̈r − Ṙ(ψ)vb −R(ψ)v̇b + α1ż1

= η̈r − Ṙ(ψ)vb −R(ψ)v̇b + α1(z2 − α1z1). (12)

Exploiting (10) with (11), we have

V̇1 = zT
1 z2 − α1z

T
1 z1. (13)
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The Lyapunov candidate is chosen as

V = V1 +
1
2
zT

2 z2. (14)

Substituting (13) into (15) yields:

V̇ = V̇1 + zT
2 ż2

= −α1z
T
1 z1 + zᵀ

1 z2 + zT
2 ż2

= −α1z
T
1 z1 − α2z

T
2 z2 + α2z

T
2 z2 + zT

1 z2 + zT
2 ż2, (15)

where α2 is another user-specified LBSC parameter.
Substituting (12) into (15), we can obtain

V̇ (x,h(x)) = −α1z
T
1 z1 − α2z

T
2 z2 (16)

under the following control law

h(x) = −F−1Svb + F−1RT(ψ)μ, (17)

where
μ = η̈r − Ṙ(ψ)vb + (α1 + α2)z2 + (1 − α2

1)z1. (18)

Likewise, submitting (3), (11) and (12) into (15), we can get (19) under the NMPC control
action u:

V̇ (x,u) = − α1z
T
1 z1 − α2z

T
2 z2 + zT

2 [μ − R(ψ)(Svb + Fu)]. (19)

The contraction constraint (7e) is exploited for the detailed expression when V̇ (x,h(x)) and
V̇ (x,u) are substituted:

ẑT
2 (tk; tk)[μ̂(tk; tk) − R( ̂ψ(tk; tk))(Sv̂b(tk; tk) + Fû(tk; x̂(tk; tk))] ≤ 0.

Remark 4.1 The NMPC control action derived from (P0(x)) is u(tk) = û∗(s; tk), s ∈
[tk, tk+δ], e.g., only the first element of the optimal solution sequence is sent into the autopilot.
For the sake of improving computational efficiency, it is necessary to consider the contraction
constraint for s ∈ [tk, tk + δ]. Moreover, according to the LBSC law derivation process, we can
conclude that this is the contraction constraint that allows one to prove that the NMPC-based
on (P0(x)) inherits the stability and robustness properties of LBSC.

4.2 Feasibility Analysis

Note that the auxiliary state feedback law must satisfy ||h(x)||∞ ≤ umax so as to ensure
feasibility of the NMPC optimization (P0(x)). To this end, we obtain the following theoretical
results for ensuring the feasibility:

Lemma 4.2 Given that the quadrotor is controlled by the LBSC law (17), the velocity vb

is bounded by
||vb||∞ ≤

√
2(η1 + ||z2(t0)||2 + α1||z1(t0)||2), (20)

where z1(t0) and z2(t0) are the position error and velocity error, respectively, at initial time t0
(generally t0 = 0).



NMPC-BASED QUADROTOR TRAJECTORY TRACKING 1389

Proof Based on (1), we have

||vb||∞ = ||RT(ψ)η̇||∞ ≤ ||RT(ψ)||∞||η̇||∞ ≤ √
2||η̇||∞. (21)

From z1 = ηr − η and ż1 = z2 − α1z1, yield

||η̇||∞ = ||η̇d − ż1|| ≤ η1 + ||ż1||∞ ≤ η1 + ||z2||∞ + α1||z1||∞. (22)

Since V̇ ≤ 0, there exist that ||z1(tk)||∞ ≤ ||z1(tk)||2 ≤ ||z1(t0)||2 and ||z2(tk)||∞ ≤
||z2(tk)||2 ≤ ||z2(t0)||2. Therefore, (20) holds for ||η̇||∞ ≤ η1 + ||z2(t0)||2 + α1||z1(t0)||2. This
completes the proof.

Theorem 4.3 Given f = ||F−1||∞, s = ||S ||∞, e.g., f = max{a−1
f , b−1

f , c−1
f , d−1

f }, s =
max{as, bs, cs, ds} and the control parameters α1 and α2 are positive scalars. If the following
condition can be satisfied:

√
2 · f(s · l + η2 + 2

√
2 · l2 +m) ≤ umax, (23)

where l = η1 + ||z2(t0)||2 + α1||z1(t0)||2, m = (α1 + α2)||z2(t0)||2 + (1 − α2
1)||z1(t0)||2, then

(P0(x)) admits recursive feasibility.

Proof Firstly, it is necessary to calculate ||h(x)||∞ by taking infinity norm on the both
sides of (17). Then, we obtain the following inequality:

||h(x)||∞ ≤ ||F−1||∞||S||∞||vb||∞ + ||F−1||∞||RT(ψ)||∞||μ||∞. (24)

Next, we calculate ||vb||∞, ||RT(ψ)||∞ and ||μ||∞ respectively. According to the definition
of R(ψ), we imply

||RT(ψ)||∞ = max{| sin(ψ)| + | cos(ψ)|, 1} ≤
√

2. (25)

Similarly, the following inequality holds for (18)

||μ||∞ ≤ η2 + ||Ω||∞||vb||∞ + (α1 + α2)||z2||∞ + (1 − α2
1)||z1||∞, (26)

where

Ω = −Ṙ(ψ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

sin(ψ)r cos(ψ)r 0 0

− cos(ψ)r sin(ψ)r 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

with the fact that ||Ω||∞ ≤ √
2||vb||∞.

According to Lemma 4.2, there exists

||μ||∞ ≤ η2 + 2
√

2 · l2 +m, (27)

where l = η1 + ||z2(t0)||2 + α1||z1(t0)||2, m = (α1 + α2)||z2(t0)||2 + (1 − α2
1)||z1(t0)||2.



1390 ZHAO CHUNHUI, et al.

Substituting (20), (25) and (27) into (24), we have

||h(x)||∞ ≤
√

2 · f(s · l + η2 + 2
√

2 · l2 +m). (28)

Obviously, if (23) is satisfied, the sufficient condition of recursive feasibility, e.g., ||h(x)||∞ ≤
umax, is always satisfied at all times. This completes the proof.

Remark 4.4 Theorem 4.3 restricts the selection range of the LBSC parameters by con-
structing (23) for recursive feasibility. Once the parameters are determined, a region of attract
(ROA) SΩ = {x ∈ R

8|√2 · f(s · l + η2 + 2
√

2 · l2 + m) ≤ umax} for the solution is given by
the set of all initial conditions from which it is possible to drive the state predictions to the
equilibrium point. For the sake of facilitating the exploration of the possible optimal solution,
it is desirable to make SΩ as large as possible in order to maximize the allowable operating
region. Obviously, (23) allows for a larger ROA with smaller values of α1 and α2. Although the
small α1 and α2 result in slow convergence under LBSC, the control performance is enhanced
by the online optimization of NMPC.

4.3 Stability Analysis

Remember that the Lyapunov-based contraction constraint is constructed to ensure closed-
loop stability under the recursive feasibility of (P0(x)) guaranteed. Therefore, we have the
following theoretical result:

Theorem 4.5 Consider the auxiliary state feedback law h(x) in (17). Algorithm 1 en-
forces asymptotic convergence to the reference trajectory.

Proof For the Lyapunov candidate V (x) in (14), which is continuously differentiable and
radically unbounded [30, Theorem 4.2], there exist K∞ functions βi(·), i = 1, 2, 3 that satisfy
the following inequalities by the converse Lyapunov theorem [30, Theorem 4.17]:

β1(||x||) ≤ V (x) ≤ β2(||x||), (29a)

∂V (x)
∂x

f(x,h(x)) ≤ −β3(||x||). (29b)

Considering the stability constraint (7e) and that the control action u(t) = u∗(s), s ∈ [t, t+ δ]
in (P0(x)) will be input for one sampling period each time, together with (29b) V (x) in the
closed-loop system under the NMPC control actions satisfies the following inequality:

∂V (x)
∂x

f(x,u) ≤ ∂V (x)
∂x

f(x,h(x)) ≤ −β3(||x||).

Based on standard Lyapunov arguments (see [30, Theorem 4.9]), we claim that, x̃ = 0 is
asymptotically stable for the closed-loop system associated with the NMPC-based guidance
law.

5 Simulation and Experimental Results

In this section, we design three simulation scenarios to validate the effectiveness of the pro-
posed NMPC scheme. In the first scenario, we test the tracking performance for trajectory
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tracking of a circle in three-dimensional space. In the second scenario, we exemplify the sta-
bility and robustness for trajectory tracking of a sinusoidal path in xoy plane by imposing the
wind gust disturbances. In the third scenario, the obstacle avoidance function is tested for
trajectory tracking of a safe straight line when going through a constrained environment. The
simulation results illustrate the practical and theoretical advancement of the proposed NMPC
method, including the excellent tracking performance, the robustness and the collision avoid-
ance function. At last, we implement the gap traversal mission with the real flight platform by
using the proposed NMPC guidance algorithm.

5.1 Parameters Selection

For the identified quadrotor UAV model parameters, its gains and time constants can be
found in [23]. We choose the sampling period as δ = 0.1 [s]. For the proposed NMPC controller,
the weighting matricesQ = diag(103, 103, 103, 103, 100, 100, 100, 100) andR = diag(1, 1, 1, 1) are
selected properly to achieve the trajectory convergence. The prediction horizon is T = 7δ [s].
The maximum allowed control signal umax is 1 and the LBSC parameters are α1 = 0.45, α2 = 1.

5.2 Tracking Performance

The reference trajectory to be tested is the circle path defined in three-dimensional space:
xr = 1

2 cos θ, yr = 1
2 sin θ, zr = 3 − 2 cos θ with the timing law θ(t) = π

20 t. Since the model
parameters are obtained by the system identification, there probably exist the identification
errors. We assume a 30% model parameter error for the gains Kx,Ky,Kz,Kψ. The trajectory
tracking results are shown in Figures 2–4. The actual tracking trajectory steered by NMPC
is drawn in the blue curve. The orange curve is the simulated trajectory using LBSC, while
the green dashed circle curve is the reference trajectory. According to Figures 2 and 3, it can
be clearly seen that both controllers could drive the quadrotor along the reference trajectory.
Yet, the NMPC controller outperforms the LBSC controller. At the beginning of the tracking,
it achieves more aggressive movements than LBSC to get the fastest possible convergence.
As discussed in Remark 4.4, this is because NMPC searches for the best possible solution by
leveraging online optimization, while the control parameters α1 and α2 with regard to LBSC are
set as the small values for a large ROA. Figure 4 shows the computed control input signals for
motion in x-axis, y-axis, z-axis and heading direction. All the control signals satisfy the control
requirements as expected. However, the LBSC cannot fully take advantage of the allowed
control input with the fixed control gain, which reveals the benefits of the proposed NMPC.
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Figure 2 The quadrotor tracks the reference trajectory with the proposed NMPC guidance algorithm

successfully

Figure 3 The state trajectories for the circle case

Figure 4 The control signals for the circle case
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In order to better show the stability and robustness, a sinusoidal curve defined in xoy plane:
xr = θ, yr = sin θ with θ = 0.2t is treated as the reference trajectory. In addition to the
model uncertainties, the quadrotor is exposed to the wind gust disturbances in y-axis. The
mathematical description of the wind gust is defined as:

dwind(t) =

⎧

⎪

⎨

⎪

⎩

0, others,
Vmax

2

(

1 − cos
(

2π
(

t− t1
tp

)))

, t1 < t < t1 + tp,
(30)

where Vmax is the maximum wind speed, t1 is the start time of the wind, tp is the time duration.
In this simulation, Vmax = 0.2 [m/s], t1 = 5 [s], 15 [s] and 22 [s], tp = 3 [s]. The simulation
results are shown in Figures 5 and 6.

Figure 5 The tracking performance and robustness with the different NMPC parameters

Figure 6 The control input for trajectory tracking with the wind gust disturbances

Figure 5 exemplifies that the closed-loop system controlled by the traditional NMPC without
the stability constraint becomes unstable if the prediction horizon is set improperly, e.g., T = 2δ
[s]. In contrast, the proposed NMPC demonstrates the better closed-loop performance with
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the same prediction horizon, which highlights its advantage. For the pre-specified trajectory
tracking, we can always design a set of proper parameters by trial and error to achieve the
trajectory convergence. Nevertheless, for fully autonomous flight projects that involve arbitrary
trajectory tracking, it is necessary to consider this stability constraint.

Figure 5 also demonstrates the robustness of NMPC with regard to the external distur-
bances. It can be seen that NMPC (N = 7) steers the quadrotor converging to the reference
trajectory in the presence of model uncertainties and wind gust disturbances, while LBSC and
NMPC (N = 2) exhibit visible tracking error. As discussed in Remark 3.3, on the one hand,
this reveals that NMPC yields a better performance with a longer prediction horizon. However,
extending the prediction horizon increases the computational burden. The prediction horizon
may be restricted for real-time control. In practical applications, we should make a tradeoff
between tracking performance and numerical efficiency. Nevertheless, with the stability con-
straint, we can easily make this tradeoff by specifying the maximum prediction horizon without
destabilizing the tracking control. On the other hand, according to Figure 6, this also demon-
strates that the prominent tracking performance of NMPC is comparably more acceptable than
LBSC in terms of robustness. In essence, LBSC is a closed-loop state feedback control based on
the tracking error while NMPC is an online open-loop optimal control. The proposed NMPC
scheme can take advantage of online optimization to calculate appropriate control signals ac-
counting for the compensation of the disturbances.

5.3 Tracking with Obstacle Avoidance

In order to testify the obstacle avoidance function, we set the initial position of the quadrotor
at x0 = 0.3 [m], y0 = 0 [m] and the quadrotor flies through the gap along a safe straight line
xr = θ, yr = −1 with θ = 0.2t. The parameters of the obstacle avoidance cost term λ = 2000,
k = 5. The safety distance for the collision region is rs = 0.25 [m]. The trajectories are shown
in Figures 7 and 8. Obviously, when we choose the timing law parameter as vt = 0.3, the
quadrotor converges to the reference trajectory without any collision. But, lower vt results in
slower forward speed and spending more time for traversal as shown in Figure 8. When vt

is 0.6, without considering obstacle avoidance, the quadrotor enters the collision region (black
dashed circle). In contrast, the proposed NMPC with the obstacle avoidance cost term steers
the quadrotor avoiding the collision region.
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Figure 7 The trajectories comparison in obstacle avoidance with the difference timing laws

Figure 8 The evolution of the velocity v and control inputs ux and uy

5.4 Gap Traversal Experiment

To validate the trajectory tracking control performance of the proposed NMPC in practice,
we do the gap traversal experiment by implementing this algorithm on the DJI M100 platform
in comparison to LBSC with collision avoidance[31]. In addition to the onboard GPS/IMU and
the processor Manifold, the platform is equipped with the onboard UTM-30XL 2D LIDAR for
sensing the gap, UWB[32] for recording the position data in the local frame and DC-DC for
power converting. The experimental scene and setup are shown in Figure 9. The blue square
frame of 2 × 1.3 [m] is the gap. Obviously, the direct and convenient safe path is the straight
line that is perpendicular to the gap plane through its center point. For simplification, we keep
the quadrotor flying at the same altitude with the center of the frames by using 1D LIDAR for
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altitude hold. The quadrotor is required to fly through the gap in forward direction without
considering the collision in the vertical direction. When the gap is detected by the 2D LIDAR,
its center’s position is calculated by using the geometric method with the measured angles
and distances and further the safe straight reference trajectory for traversal is generated with
vt = 0.1 [m/s]. The software module on the Manifold for detection and guidance is shown in
Figure 10, which runs in the robot operating system (ROS) environment. According to the
position reference trajectory, the guidance module generates the reference velocity commands
for the autopilot. The control updating frequency in the guidance module is maintained at
10 [Hz]. The software development kit (SDK) of the DJI M100 is used to communicate with
the autopilot via the UART serial port. The communication between the node of the guidance
module and the SDK node is through the inter-process communication.

Figure 9 The experimental scene and hardware setup

Figure 10 The software modules on the Manifold
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The experimental results are shown in Figures 11–13. When the quadrotor approaches the
gap, the gap is detected by UTM-30XL and the straight path is generated. Owing to the
measurement errors for the angles and the distances to the gap sides, the calculated center
point deviates from the real center point so that the straight path for traversal is close to one
side of the gap. As the quadrotor traverses along the path, the distance to the collision region is
reducing gradually. The obstacle avoidance function ensures that the quadrotor could avoid the
collision and converge back to the straight line when it enters the collision region. Moreover,
the guidance signals generated by the Manifold are always feasible for the real platform. In
contrast, as we can see, the quadrotor has the slower trajectory convergence under LBSC than
NMPC. The effect of the collision avoidance function is not significant. This is because that
we have to reduce the controller parameters so that the control input signals stay within the
bound. This results in the slow trajectory convergence and worse control performance.

Figure 11 The gap traversal of the quadrotor along a safe path

Figure 12 The real trajectory comparisons under the LBSC and NMPC in the experiment
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Figure 13 The control inputs ux and uy generated by LBSC and NMPC for trajectory tracking and

obstacle avoidance

6 Conclusion

In this paper, we have proposed the NMPC guidance algorithm for the integrated trajec-
tory tracking and obstacle avoidance control of a quadrotor UAV. We imposed the potential
field function-based penalty term with well-tuned parameters on the tracking cost function for
obstacle avoidance. Moreover, we incorporated a stability constraint into the online NMPC
optimization problem to ensure the closed-loop stability. The simulations and experimental
results demonstrated the effectiveness of the proposed NMPC.

As we can see in Figure 7, the parameter vt of the timing law in the reference trajectory
generation has a heavy influence on the tracking performance. As discussed in Remark 3.1, vt
should be carefully selected to fit the realistic constraint. Thus, how vt is predetermined or
whether vt is capable of adaptive auto-adjustment according to tracking error is worth extensive
researching in the near future. Moreover, when applying the proposed NMPC algorithm in
safety critical applications, in addition to designing a collision-free trajectory, it is necessary
to introduce the state constraint to limit the quadrotor position within the safe corridor for
collision avoidance. Furthermore, NMPC could be combined with SMC or state observer to be
more robust in the presence of external disturbances.
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[21] Chen H and Allgöwer F, A quasi-infinite horizon nonlinear model predictive control scheme with

guaranteed stability, Automatica, 1998, 34(10): 1205–1217.

[22] Worthmann K, Mehrez M W, Zanon M, et al., Model predictive control of nonholonomic mo-

bile robots without stabilizing constraints and costs, IEEE Transactions on Control Systems

Technology, 2016, 24(4): 1394–1406.

[23] Castillo-Lopez M, Sajadi-Alamdari S A, Sanchez-Lopez J L, et al., Model predictive control

for aerial collision avoidance in dynamic environments, Proceedings of the 2018 Mediterranean

Conference on Control and Automation, Croatia, 2018.

[24] Kamel M, Alonso-Mora J, Siegwart R, et al., Robust collision avoidance for multiple micro aerial

vehicles using nonlinear model predictive control, Proceedings of the 2017 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, Canada, 2017.

[25] Dentler J, Kannan S, Mendez M A O, et al., A real-time model predictive position control with

collision avoidance for commercial low-cost quadrotors, Proceedings of the 2016 IEEE Conference

on Control Applications, Argentina, 2016.

[26] Blochliger F, Fehr M, Dymczyk M, et al., Topomap: Topological mapping and navigation based

on visual SLAM maps, Proceedings of the 2018 IEEE International Conference on Robotics and

Automation, Australia, 2018.

[27] Mayne D Q, Model predictive control: Recent developments and future promise, Automatica,

2014, 50(12): 2967–2986.

[28] Munoz de la Pena D and Christofides P D, Lyapunov-based model predictive control of nonlinear

systems subject to data losses, IEEE Transactions on Automatic Control, 2008, 53(9): 2076–

2089.

[29] Mayne D Q, Rawlings J B, Rao C V, et al., Constrained model predictive control: Stability and

optimality, Automatica, 2000, 36(6): 789–814.

[30] Khalil H K, Nonlinear Systems, Prentice, Upper Saddle River, NJ, 2002.

[31] Kowalczyk W, Rapid navigation function control for two-wheeled mobile robots, Journal of In-

telligent & Robotic Systems, 2019, 93(3): 687–697.

[32] Guo K, Qiu Z, Miao C, et al., Ultra-wideband-based localization for quadcopter navigation,

Unmanned Systems, 2016, 4(1): 23–34.


